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Abstract

The nuclear receptor family of transcription factor proteins mediate endocrine function and play 

critical roles in development, physiology and pharmacology. Malfunctioning nuclear receptors are 

associated with several disease states. The functional activity of nuclear receptors is regulated by 

small molecular hormonal and synthetic molecules. Multiple sources of evidence have identified 

and distinguished between the different allosteric pathways initiated by ligands, DNA and 

cofactors such as co-activators and co-repressors. Also, these biophysical studies are attempting to 

determine how these pathways that regulate co-activator and DNA recognition can control gene 

transcription. Thus, there is a growing interest in determining the genome-scale impact of allostery 

in nuclear receptors. Today, it is accepted that a detailed understanding of the allosteric regulatory 

pathways within the nuclear receptor molecular complex will enable the development of efficient 

drug therapies in the long term.
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1. Introduction

Nuclear receptors (also nuclear hormone receptors and abbreviated as NR) are a family of 

transcription factors whose transcriptional activity is controlled by lipophilic hormone 

molecules and the ensuing recruitment of coactivator molecules (Evans, 1988; Evans & 

Mangelsdorf, 2014). There is a specific classification of nuclear receptors proposed by the 

International Union of Pharmacology Committee on Receptor Nomenclature and Drug 

Classification (NC-IUPHAR) (Alexander, et al., 2015; Auwerx, et al., 1999). It is based on a 

phylogenetic tree that connects all known nuclear receptor sequences. This nomenclature 

also accounts for the evolution of the two well-conserved domains of nuclear receptors 

(described below).
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2. Nuclear receptors, human disease and pharmacology

Nuclear receptors are widely expressed in all human tissue (Bookout, et al., 2006; Kumar, et 

al., 2013; McKenna & O'Malley,). For instance, the peroxisome proliferator-activated 

receptor (PPAR) and liver X receptor (LXR) isoforms are expressed in tissues as diverse as 

the epidermis (Schmuth, Jiang, Dubrac, Elias, & Feingold, 2008) and in adipose tissue 

(Michalik, et al., 2006). The estrogen receptor (ER) and PPAR are also expressed in neural 

tissue (Couse, Lindzey, Grandien, Gustafsson, & Korach, 1997; Cullingford, et al., 1998) 

and ER is also expressed within the reproductive tract, hypothalamus and the lungs (Couse, 

et al., 1997). The constitutive androstane receptor (CAR) whose activity is linked to xeno 

and endobiotic metabolism (Huang, et al., 2003; Sonoda, Rosenfeld, Xu, Evans, & Xie, 

2003; Sueyoshi & Negishi, 2001; Wei, Zhang, Egan-Hafley, Liang, & Moore, 2000; Zhang, 

Huang, Chua, Wei, & Moore, 2002; Zhang, Huang, Qatanani, Evans, & Moore, 2004) is 

most abundantly expressed in the liver and intestine (Bertilsson, et al., 1998; Lamba, et al., 

2004) and is also expressed in the testis, adrenal tissue and the brain (Lamba, et al., 2004). 

Multiple reviews on the many disease states associated with nuclear receptor malfunction 

already exist (McKenna & O'Malley). For instance, the PPARs are associated with diseases 

as diverse as diabetes (Cipolletta, et al., 2012) and Alzheimer’s (Moutinho & Landreth, 

2017; Prakash & Kumar, 2014). Signaling through the glucocorticoid receptor (GR) has 

been linked with cardiovascular disease, psychiatric disorders and hyperglycemia, among 

many other ailments (Kadmiel & Cidlowski, 2013). Also, nuclear receptors have been linked 

to the progression of multiple cancers (McKenna & O'Malley; Tang, et al., 2011), by the 

fatty liver disease and liver tumors by the farnesoid X (FXR) (Neuschwander-Tetri, et al., 

2015) and the constitutive androstane receptors (CAR) (Yamamoto, Moore, Goldsworthy, 

Negishi, & Maronpot, 2004).

Consequently, nuclear receptors are vital targets of therapeutic drugs (Alexander, et al., 

2015; Burris, et al., 2013; Evans & Mangelsdorf, 2014; Moore, Collins, & Pearce, 2006; 

Safe, Jin, Hedrick, Reeder, & Lee, 2014). Multiple small-molecule scaffolds have been 

designed as pharmaceutical nuclear receptor ligands that function as agonists or antagonists. 

These include therapeutic drugs such as bicalutamide that bind to the androgen receptor 

(AR) and target prostate cancer (Blackledge, 1996), tamoxifen for ERs (that target breast 

cancer) (Ward, 1973), thiazolidinediones against PPARγ that target type II diabetes 

(Lehmann, et al., 1995) and corticosteroids such as dexamethasone which targets the GR 

when treating ailments associated with inflammation (Madretsma, Dijk, Tak, Wilson, & 

Zijlstra, 1996).

3. Nuclear receptor structural topology, assembly and signaling

Nuclear receptors have common modular structural features that include an N-terminal 

domain (A/B domain, Figure 1A). This A/B domain is of variable length and amino acid 

sequence and is critical for regulating transactivation (Dieken & Miesfeld, 1992; Kato, et al., 

1995; O'Malley, et al., 1995; Tora, et al., 1989; Werman, et al., 1997). With a few 

exceptions, the A/B domain encompasses a ligand-independent transactivation function 

(AF1) domain (Tora, et al., 1989; Tsai & O'Malley, 1994). Following the A/B domain is a 

highly conserved DNA-binding domain (DBD) (C domain, Figure 1B) that binds 
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palindromic or direct repeat DNA sequences (six nucleotide segments of varied 

arrangements), or response elements (RE). A short ‘hinge’ sequence (D domain) connects 

the DBD to a C-terminal ligand-binding domain (LBD) (E & F domain, Figure 1A). Upon 

binding agonist-ligands the LBD undergoes conformational changes and recruits coactivator 

molecules to the ligand-dependent transactivation function (AF2) domain within the LBD 

(Suino, et al., 2004; Wright, et al., 2011; Wright, Vincent, & Fernandez, 2007; Xu, et al., 

2004). Inverse agonists disrupt the ‘active’ AF2 conformation and the resulting LBD 

conformation functions as a docking site for co-repressors (Dussault, et al., 2002; Shan, et 

al., 2004).

These receptors function as monomers, homodimers and as heterodimers, most commonly in 

a bimolecular complex with the nuclear receptor, the retinoid X receptor (RXR) (Auwerx, et 

al., 1999; Evans & Mangelsdorf, 2014; Kliewer, Umesono, Noonan, Heyman, & Evans, 

1992; D. D. Moore, et al., 2006). When activated, nuclear receptors bind specific DNA 

sequences called hormone response elements (HRE) which are usually labeled to signify the 

activity-initiating hormone. For instance, the estrogen response elements (ERE) are HREs 

that bind the estrogen hormone receptor (ER) (Klock, Strahle, & Schutz, 1987), the 

androgen response elements (ARE) bind the androgen hormone receptor (AR) (Cato, 

Henderson, & Ponta, 1987), glucocorticoid response elements (GRE) bind the 

glucocorticoid receptor (Klock, et al., 1987), and the thyroid hormone response elements 

(TRE) bind the thyroid hormone receptor (Figure 1B) (Umesono, Giguere, Glass, Rosenfeld, 

& Evans, 1988), among others (Evans, 1988; Olefsky, 2001). This DNA/nuclear receptor 

complex recruits and binds to transcriptional coactivator proteins such as the steroid receptor 

coactivators (SRC) (A. B. Johnson & O'Malley, 2012), TIF-2/GRIP-1/NcoA-2 

(transcriptional intermediary factor 2/glucocorticoid receptor interacting protein 1/nuclear 

receptor coactivator 2) (Min, Kemper, & Kemper, 2002), peroxisome proliferator-activated 

receptor ɣ coactivator 1 α (PGC-1α) (Ding, Lichti, Kim, Gonzalez, & Staudinger, 2006; 

Shiraki, Sakai, Kanaya, & Jingami, 2003), Activating signal cointegrator-2 (ASC-2) (Choi, 

et al., 2005) and others (Arnold, Eichelbaum, & Burk, 2004). Coactivator recruitment can be 

accompanied by histone acetylation, recruitment of the RNA polymerase II complex and 

gene expression (Dasgupta, Lonard, & O'Malley, 2014; Glass & Rosenfeld, 2000; Kamei, et 

al., 1996; Rastinejad, Huang, Chandra, & Khorasanizadeh, 2013; Yao, Ku, Zhou, Scully, & 

Livingston, 1996). Within the nucleus, the transcriptional activity of nuclear receptors can be 

maintained in a repressed state by antagonists and inverse agonists (Weatherman, Fletterick, 

& Scanlan, 1999) which promote the recruitment of transcriptional co-repressors (Lonard & 

O'Malley, 2012) such as the silencing mediator of retinoid and thyroid-hormone receptors 

(SMRT) (J. D. Chen & Evans, 1995; Sande & Privalsky, 1996) and the nuclear receptor co-

repressor (NCoR) (Figure 1C) (Horlein, et al., 1995; Seol, Mahon, Lee, & Moore, 1996).

4. Noncanonical nuclear receptor signaling

Several additional mechanisms can also control the action of nuclear receptors and alter 

target gene expression. For instance, RNA-seq studies on CAR in hepatocyte-like (HepaRG) 

cell lines have shown distinct ligand (CITCO)-dependent and ligand-independent 

(phenobarbital, PB, activated) gene expression profiles (Li, et al., 2015; Mutoh, et al., 2009). 

Likewise, diverse mechanisms can control the DNA-binding-site specificity of nuclear 
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receptors. Genome-scale studies with the estradiol (E2)-activated ER using ChIP-seq data in 

breast cancer tissue cell lines have been reported to bind multiple, non-overlapping ER-

binding DNA sites (Welboren, Sweep, Span, & Stunnenberg, 2009; W. J. Welboren, et al., 

2009). Also, different thiazolidinedione (TZDs)-agonists, the type 2 diabetes directed 

medications, that activate the PPARγ elicit overlapping but distinct in vivo gene expression 

profiles (Camp, et al., 2000; Lehmann, et al., 1995; Sears, et al., 2007). ChIP-seq studies 

using a border pattern-based motif recognition approach in multiple prostate cancer cell 

lines show that agonist dihydrotestosterone (DHT)-liganded human androgen receptor (AR) 

and antagonist bicalutamide and enzalutamide-liganded AR bind to distinctly different DNA 

ARE motifs (Z. Chen, et al., 2014). Furthermore, these motifs can be linked to distinct 

prostate cancer-relevant transcriptional outcomes.

Conversely, different DNA HRE sequences can also alternately activate or repress nuclear 

receptor transactivation. ‘Negative’ GREs are GR HREs that effectively repress transcription 

of agonist-liganded glucocorticoid (GR) (Surjit, et al., 2011). Indeed, these negative GREs 

promote the recruitment of transcriptional repression-associated SMRT and NCoR proteins 

to the negative GRE-GR(+agonist) molecular complex. Such negative HRE have also been 

reported to repress the thyroid receptors (TR) (Sharma, Thakran, Deng, Elam, & Park, 

2013). By binding to TREs upstream, the agonist-ligand TRβ actively represses transcription 

of the secretory phospholipase A2 group IIa (PLA2g2a) gene. As with GR (Surjit, et al., 

2011), the TRE-TR(+agonist) molecular complex also recruits co-repressor molecules 

SMRT and NCoR (Sharma, et al., 2013). Thus, noncanonical mechanisms can direct DNA-

recognition for target gene selection by liganded nuclear receptors and a comprehensive 

analysis of these mechanisms will be essential to explain the overall in vivo significance of 

nuclear receptor ligands.

5. Allostery in biology

Allosteric coupling of distinct sites on proteins and DNA is fundamental to many biological 

processes (Monod, Changeux, & Jacob, 1963). Within nuclear receptors, allostery is 

increasingly recognized as a common regulatory process (Forman, Umesono, Chen, & 

Evans, 1995; Hilser & Thompson, 2011; Q. R. Johnson, Lindsay, Nellas, Fernandez, & 

Shen, 2015; Kojetin, et al., 2015; Mangelsdorf & Evans, 1995; Pavlin, Brunzelle, & 

Fernandez, 2014; Putcha, Wright, Brunzelle, & Fernandez, 2012; Shulman, Larson, 

Mangelsdorf, & Ranganathan, 2004; Wright, et al., 2011; Wright, et al., 2007). Structural 

and biophysical tools have shown that ligand binding and even minor perturbations (such as 

non-binding-site mutations) can be detected at distal regions of nuclear receptors. There are 

significant structural changes associated with allostery which are observed with 

crystallography (Osz, et al., 2012; Putcha, et al., 2012), hydrogen-deuterium exchange mass 

spectrometry (HDX MS) (Wright, et al., 2011) and NMR spectroscopy (Kojetin, et al., 

2015).

6. Linking ligand and ligand through allostery

Since both receptors within nuclear receptor heterodimers can bind small-molecule agonist 

ligands in the simplest model for transactivation, agonist binding to either receptor can 
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generate comparable transcriptional levels of downstream genes (Figure 1B) (Evans, 1988; 

Forman & Samuels, 1990). Such model systems are exemplified by the PPAR:RXR; 

CAR:RXR and LXR:RXR heterodimers (Clark, et al., 2016; Shulman, et al., 2004; Wright, 

et al., 2011). Yet, there are other nuclear receptor heterodimers that exhibit transcriptional 

responses that are distinct from this model (Forman, et al., 1995; Shulman, et al., 2004). For 

instance, transactivation by RAR:RXR, VDR:RXR and TR:RXR only occurs in the presence 

of the RAR, VDR and TR agonists, respectively. However, when these agonists are applied 

exogenously in combination with the agonist for the heterodimeric partner RXR (9-cis 
retinoic acid, 9c), transactivation levels are either enhanced, unaffected or are repressed, 

respectively (Forman, et al., 1995; Kurokawa, et al., 1994; Putcha, et al., 2012; Shulman, et 

al., 2004; Yao, et al., 1993). Such ligand-ligand allostery has been observed to link ligand 

bound to one nuclear receptor subunit to ligand and co-activator binding to the associated 

dimeric partner as observed in the RAR:RXR (Schulman, Li, Schwabe, & Evans, 1997) and 

TR:RXR (Putcha, et al., 2012) heterodimeric complexes (Figure 2A). These allostery-

initiated conformational changes are significantly large and have easily identifiable local 

conformational pathways that can be characterized through multiply-liganded crystal 

structure analyses of the RAR:RXR and VDR:RXR heterodimers (Rochel, et al., 2011). 

With the TR:RXR heterodimer complex, the corresponding conformational changes are less 

obvious (Putcha, et al., 2012). The ‘frustrated fit’ mechanism is a recent approach to 

understanding how subtle conformational changes associated with ligand-ligand allostery 

are propagated throughout the molecular complex and across the heterodimer interface 

(Clark, et al., 2016; Q. R. Johnson, et al., 2015). The propagation of these allosteric signals 

can also be ligand-specific as observed in the murine CAR:RXR heterodimer with the 

agonists tcpobop and meclizine (Huang, Zhang, Wei, Schrader, & Moore, 2004; Wright, et 

al., 2011). Although these ligands elicit comparable transcriptional activity, studies with 

fluorescence spectroscopy and HDX MS show that they induce discrete conformational 

changes across the CAR:RXR dimer interface (Wright, et al., 2011).

The immediate molecular consequence of this ligand-ligand allostery results in unique 

nuclear receptor heterodimer:co-activator molecular stoichiometries: 1:2 nuclear 

receptor↔co-activator stoichiometries for CAR:RXR (Pavlin, et al., 2014) and RARβ (Osz, 

et al., 2012) and ER homodimers (Yi, et al., 2015), reflecting the ligand response of these 

receptor systems, the 1:1 nuclear receptor↔co-activator stoichiometries for RAR:RXR and 

VDR:RXR (Rochel, et al., 2011) and the ‘phantom ligand effect’ where binding of ligand to 

RXR within the RAR:RXR heterodimer results in a linked conformational change within 

RAR (Schulman, et al., 1997).

7. Linking ligand and DNA through allostery

Ligand-DNA allostery is a potent mechanism for ligand-dependent gene expression 

(Meijsing, Elbi, Luecke, Hager, & Yamamoto, 2007; Meijsing, et al., 2009). It has been 

shown that ligand binding can also affect the DNA-binding-site specificity of the nuclear 

receptor (ligand-DNA allostery) (Forman, et al., 1995) (Figure 3). For instance, the thyroid 

hormone, T3, has been reported to promote the binding of monomeric TRβ to TRE DNA 

(Ribeiro, Kushner, Apriletti, West, & Baxter, 1992). In these studies, T3 is also observed to 

increase the gel mobility of these TR(+T3) monomer-DNA complexes suggesting a ligand-
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induced conformational change in the TR(+T3) molecular complex. Furthermore, T3 

appears to subtly change the specificity of TR to different TREs. In nuclear receptors, the 

DBD and LBD have been shown to interact directly, and structural changes in the LBD can 

influence DNA binding (Chandra, et al., 2008; Putcha & Fernandez, 2009). Through 

biochemical studies Rastinejad et al. have shown that a single point mutation within the 

PPARγ LBD can reduce the DNA-binding affinity of the PPARγ:RXRα heterodimer 

(Chandra, et al., 2008). Likewise, point mutations within the androgen receptor (AR) LBD – 

associated with androgen insensitivity syndromes – decrease the DNA-binding affinity of the 

AR homodimer, while leaving intact the ligand-binding affinity (Helsen, et al., 2012). 

Additionally, distinct ligand-dependent recognition patterns of promoter DNA by CAR have 

been identified (Cherian, Lin, Wu, & Chen, 2015; Hosoda, et al., 2015; Li, et al., 2015; H. 

Wang, et al., 2003).

Ligand identity can also affect nuclear receptor target gene expression and DNA binding in 
vivo, further suggesting that ligand molecules directly influence the DNA binding-site 

specificity of nuclear receptors, and not just the binding-affinity for DNA. For instance, a 

recently identified human CAR inverse agonist (CAR inhibitor not PXR activator 1, 

CINPA1) is observed to induce the dissociation of CAR from the promoter when used alone 

(Cherian, et al., 2015). It is speculated that this LBD-targeted inverse agonist also functions 

through allostery to induce conformational changes within the DBD that decreases the CAR-

CARE binding affinity. In other studies, when the two ERα ligands E2 and 4-

hydroxytamoxifen, 4-OHT are used in concert with different EREs there are notable 

differences in the sensitivity of each ER(+ligand)-ERE molecular complex to digestion by 

the protease chymotrypsin (Klinge, Jernigan, Smith, Tyulmenkov, & Kulakosky, 2001). 

Thus, different ERE-ligand combinations appear to induce distinct conformations in ERα. It 

is also reported in the study above that transcriptional activity correlates both, with distinct 

ligand-ERE combinations and with the ER-ERE binding affinity (Klinge, et al., 2001). 

Additionally and as noted above, multiple genome scale studies have shown that the TZD-

ligand activation of PPARγ can elicit overlapping but discrete patterns of promoter binding 

and target gene expression (Camp, et al., 2000; Sears, et al., 2007). Similarly, different GR 

ligands such as the arylpyrazole compounds prednisolone and dexamethasone can induce 

different gene expression patterns and lead to distinct GR ChIP-seq-defined GRE-binding 

patterns (J. C. Wang, et al., 2006). Also, comparative studies by Wang et al. on AR show 

how different ligands (bound to the LBD) can result in the switching of DNA ARE motifs by 

the receptor DBD (Z. Chen, et al., 2014).

8. Linking co-activator/co-repressor and DNA through allostery

Conversely, DNA HREs can also function as allosteric regulators of co-activator and co-

repressor recruitment by nuclear receptors (Figure 4A & 3B) (Gronemeyer & Bourguet, 

2009; Putcha & Fernandez, 2009). Biophysical studies using isothermal titration calorimetry 

(ITC) show significant differences in both binding affinity, KD, and the thermodynamic 

binding parameters for SRC-derived LXXLL peptides by monomeric TR and TR:RXR 

heterodimers in the presence and absence of DNA TREs (Putcha & Fernandez, 2009). In 

separate studies, different DNA ERE sequences conferred distinct binding preferences for 

LXXLL-containing peptides to both ERα and ERβ (Hall, McDonnell, & Korach, 2002; 
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Wood, Likhite, Loven, & Nardulli, 2001). Also, while the LXXLL peptides derived from 

SRC3/ACTR are recruited equally well by ERβ to four different EREs, analogous peptides 

from the co-activators SRC1 and GRIP1 show distinct preferences for different EREs 

(Figure 4C). Studies on GR have shown that by knocking down expression levels of the GR 

co-activators Brahma and the co-activator-associated arginine methyltransferase 1 (CARM1) 

co-activators the specific sequence of the DNA GRE is able to regulate GR transcriptional 

activity by specifically altering the molecular composition of the transcriptional co-activator 

complex (Meijsing, et al., 2009).

Indeed, nuclear receptor structure is strongly affected by the presence and even sequence of 

the DNA response element, and this provides a mechanism for co-activator-DNA allosteric 

communication. The source of these differential interactions has been shown to derive from 

conformational changes within the DBD as specifically observed in structural analyses on 

GR bound to multiple GREs (Lefstin & Yamamoto, 1998; Meijsing, et al., 2009; Watson, et 

al., 2013). These studies by Yamamoto et al. show that the conformation of a ‘lever arm’ 

region in the DBD which is known to regulate the transcriptional activity of GR, is affected 

by the GRE DNA sequence. NMR studies further reveal that the specificity of interactions 

with GRE bases affects the conformation of distal regions of the GR DBD (Watson, et al., 

2013). It is likely that analogous conformational changes within the DBD are propagated to 

the DBD-LBD interface and may explain the DNA-dependent interactions between the DBD 

and LBD within TR (Putcha & Fernandez, 2009). Likewise, the propagation of such DNA-

induced conformational changes within the vitamin D receptor (RXR:VDR) heterodimer are 

manifested as fluctuating structural dynamics of the co-activator binding surfaces in the 

DNA-bound RXR:VDR which are initiated by distinct sequences of the DNA response 

element (Zhang, et al., 2011).

Remarkably, the base composition of the DNA HRE can also reverse the canonical role of 

ligands (Figure 4D). As noted above, GR can also mediate gene repression by recruiting 

transcriptional repressors to specific negative GREs that differ in sequence from canonical, 

activating GREs (Surjit, et al., 2011). Similar studies on the TR agonist-ligand 

triiodothyronine (T3) response element (TRE) within the promoter of the secretory 

phospholipase A2 group IIa (PLA2g2a) gene suggest that this promoter sequence functions 

as a negative regulator of T3 agonist-bound TRβ (Sharma, et al., 2013). Furthermore, when 

associated with the PLA2g2a promoter, the TRβ(+T3) complex actively recruits co-

repressors to inhibit PLA2g2a expression.

9. Linking the N-terminal A/B domain and DNA through allostery

The N-terminal domain of nuclear receptors is the least understood (Figure 1A). This N-

terminal A/B region is diverse in size, sequence and is conformationally malleable 

suggesting that this domain plays a role in conferring cell type and/or promoter specificity 

(Hill, Roemer, Churchill, & Edwards, 2012; Lavery & McEwan, 2005; Uversky, Oldfield, & 

Dunker, 2005; Warnmark, Treuter, Wright, & Gustafsson, 2003). Often, nuclear receptors 

differ most significantly in the amino-acid composition of the N-terminal A/B domain, 

implying that this region may play a significant role in mediating different effects of these 

receptors (Baniahmad, et al., 1993; Evans & Mangelsdorf, 2014; Hadzic, et al., 1995; 
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McEwan & Gustafsson, 1997; Tian, Mahajan, Wong, Habeos, & Samuels, 2006; Tomura, 

Lazar, Phyillaier, & Nikodem, 1995). The absence of 3-dimensional data on the atomic 

resolution structure of any nuclear receptor A/B domain has necessitated a broad reliance on 

the use of spectroscopy and other biophysical tools to infer conformational changes within 

this domain. Multiple lines of evidence suggest that the nuclear receptor A/B domains are 

flexible and can adopt distinct conformations through allostery initiated by DNA:DBD 

interactions (D. L. Bain, Franden, McManaman, Takimoto, & Horwitz, 2000; David L. Bain, 

Franden, McManaman, Takimoto, & Horwitz, 2001; Baskakov, et al., 1999; Brodie & 

McEwan, 2005; Connaghan-Jones, Heneghan, Miura, & Bain, 2007; Fernandez, Gahlot, 

Rodriguez, & Amburn, 2017; Kumar, Lee, Bolen, & Thompson, 2001; Kumar, et al., 2013; 

Lavery & McEwan, 2005; McEwan, Lavery, Fischer, & Watt, 2007; Reid, Kelly, Watt, Price, 

& McEwan, 2002; Simons, Edwards, & Kumar, 2014). A common observation is that the 

A/B domains in all nuclear receptors studied to date, the DNA-initiated allostery elicits a 

conformational change in the N-terminal A/B domain (Figure 5). This structural flexibility 

has been proposed to enable the A/B domains to achieve multiple inter-molecular 

interactions have also been observed for AR (Lavery & McEwan, 2008), GR (Ford, 

McEwan, Wright, & Gustafsson, 1997; Khan, et al., 2012), PR (Hill, et al., 2012) and TR 

(Fondell, Brunel, Hisatake, & Roeder, 1996; Fondell, Roy, & Roeder, 1993). Furthermore, 

the A/B domain observed to fine-tune DNA recognition is finely tuned by the domains 

flanking the DBD (C domain) (Fernandez, et al., 2017). Thus even subtle changes within 

these flanking domains (A/B or E/F domains) such as mutations (Helsen, et al., 2012) and 

molecular interactions with cellular factors (Putcha & Fernandez, 2009) or small-molecule 

ligands (Chandra, et al., 2008) can affect DNA binding.

10. Conclusions and Outlook

Although significant advances have been made in our understanding of how these 

transcription factors respond to specific stimuli and regulate gene expression, critical details 

remain uncharacterized, such as, (1) how these nuclear receptors with overlapping DNA-

binding specificity control specific gene transcription, and (2) how the finely-tuned gene-

specific recruitment of distinct coregulatory molecules is achieved. Detailed structural 

analyses on multiple nuclear receptors that include the PPAR:RXR heterodimer (Chandra, et 

al., 2008), AR (Helsen, et al., 2012) and the GR homodimers (Meijsing, et al., 2009; 

Watson, et al., 2013) have already identified a few residues that transmit allosteric 

conformational changes. Already, the allosteric ‘BF-3’ surface site on the AR LBD has been 

targeted by transcriptional-activity modulating small molecules (Estebanez-Perpina, et al., 

2007). However, at the genomic level, the role of ligand-to-DNA, DNA-to-co-activator and 

ligand-to-ligand allostery remains less characterized. Evidence strongly suggests that DNA 

HRE sequences and the ligand conformation have considerable long-range effects on nuclear 

receptor structure. Allosteric communication between co-activator-DNA-binding sites 

provides a link between target genes and distinct co-activators; however, studies have been 

restricted to only a few DNA sequences which have limited our understanding of the role of 

allostery on a genomic scale. Yet, its impact and prevalence in nuclear receptor signaling is 

of potentially substantial importance in nuclear receptor biology and pharmacology. Such 

studies will establish a functional connection between the nuclear receptor ligand, co-
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activators and DNA-binding sites. The genome-scale analysis of allosteric effects on gene 

transcription, combined with the proposed structural analysis of nuclear receptor-ligand 

interactions, will provide a unique opportunity for future drug-design studies and will 

explore how novel ligands will reshape nuclear receptor structure, HRE-DNA recognition 

and gene transcription. Also, these studies may inherently be collaborative to be performed 

in an iterative feed-back process where data from one study will inform towards designing 

more efficacious nuclear receptor modulators through rational ligand design. Comprehensive 

studies to predict residues that propagate intermolecular interactions across the heterodimer 

resulting in finely tuned activity states, novel high-throughput computational methods will 

need to be developed.
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Figure 1. Nuclear Receptor (NR) Mode of Action and Molecular Topology
A. The nuclear receptor topology and functional organization consists of distinct N-terminal 

A/B, a DNA-binding (C, DBD), linker D and C-terminal ligand-binding (EF, LBD) domains. 

Arrows show locations of the binding sites for ligand, co-activators/co-repressors and the 

DNA HRE. B. Ligand agonists (green) interact with the receptor (heterodimer of nuclear 

receptor (NR):retinoid X receptor, (RXR)). Ligand binding is accompanied by the 

recruitment of co-activators and the basal transcriptional machinery. C. In the absence of 

agonists or when bound to antagonists (red) the nuclear receptor is maintained in an inactive 

transcriptional state by co-repressor molecules.
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Figure 2. Ligand-to-Ligand Allostery
A. In nuclear receptor heterodimers, the conformational changes (blue arrow) induced 

within one receptor subunit upon binding its cognate ligand (green) are transmitted to the 

ligand-binding pocket of the second receptor (green). B. (a) The allosteric pathway from one 

ligand-binding pocket to the second includes the formation of both new interactions and the 

breaking of old interactions, as determined by the program CAMERRA (Q. R. Johnson, et 

al., 2015). (b) The result of these allosteric conformational changes are cooperative implying 

that the binding of ligand to one ligand-binding pocket can facilitate the binding of ligand to 

the second binding pocket in the nuclear receptor heterodimer. (c) Conversely, 

anticooperative binding occurs when the binding of ligand to one binding pocket diminishes 

the binding-affinity of the second binding pocket for ligand. Adapted with permission from 

(Clark, et al., 2016). Copyright (2016) American Chemical Society.
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Figure 3. Ligand-to-DNA Allostery
Different conformational changes in the ligand-binding pocket induced by distinct ligands 

(green shapes) can lead to the binding of discrete DNA HRE sequences by the distal DBD 

through interdomain LBD↔DBD allosteric pathways (blue arrow).
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Figure 4. DNA-to-Co-activator/Co-repressor Allostery
A. Allosteric pathways (blue arrow) link the DNA HRE-binding and co-activator/co-

repressor-binding sites. B. Binding of DNA HRE can impact the binding-affinity of co-

activators and conversely, the presence of co-activator protein can change the binding of the 

DNA HRE. C. DNA HREs can also control the specificity for distinct co-activator isoforms 

(broken line). D. Negative DNA HREs (nDNA HRE) overturn the ligand-agonist paradigm. 

Thus, nDNA HREs can promote the recruitment of transcriptional silencing co-repressor 

molecules to nuclear receptors bound to their cognate agonists.
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Figure 5. A/B domain-to-DNA Allostery
Biophysical studies with isolated A/B+DBD and DBD-only domain constructs indicate that 

the A/B domain and DBD also communicate through allosteric pathways (blue arrow). The 

A/B domain is shown to influence DNA HRE binding to the DBD and in turn, the DNA 

HRE induces observable conformational changes within the A/B domain (note the different 

shapes of the A/B domain sketches: left (DNA-free) to right (DNA-bound)).
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