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Abstract

Recently, a novel species of the genus Borreliawas identified in Bothriocroton concolor and Ixodes holocyclus ticks from

echidnas. Analyses of 16S rRNA and flaB genes identified three closely related genotypes of this bacterium (Borrelia sp. Aus

A-C) that were unique and distinct from previously described borreliae. Phylogenetic analyses of flaB (763 bp), groEL

(1537 bp), gyrB (1702 bp) and glpQ (874 bp) gene sequences and concatenated sequences (3585 bp) of three gene loci (16S

rRNA, flaB and gyrB) were consistent with previous findings and confirm that this novel species of the genus Borrelia is more

closely related to, yet distinct from, the Reptile-associated (REP) and Relapsing Fever (RF) groups. At the flaB locus,

genotypes A, B and C shared the highest percentage sequence similarities (87.9, 88 and 87.9%, respectively) with B.orrelia

turcica (REP), whereas at the groEL and gyrB loci, these genotypes were most similar (88.2–89.4%) to B.orrelia hermsii (RF).

At the glpQ locus, genotypes A and B were most similar (85.7 and 85.4% respectively) to Borrelia sp. Tortoise14H1 (REP). The

presence of the glpQ gene, which is absent in the Lyme Borreliosis group spirochaetes, further emphasises that the novel

species of the genus Borrelia characterized in the present study does not belong to this group. Phylogenetic analyses at

multiple loci produced consistent topographies revealing the monophyletic grouping of this bacterium, therefore providing

strong support for its species status. We propose the name ‘Candidatus Borrelia tachyglossi’, and hypothesize that this

species of the genus Borrelia may be endemic to Australia. The pathogenic potential of this bacterium is not yet known.

The family Spirochaetaceae is classified under the
order Spirochaetales, belonging to the phylum Spirochaetes.
This family consists of genera that are of concern to human
health, such as Borrelia and Treponema [1], with common
pathogenic species including ‘Treponema pallidum
subsp. pallidum’, the causative agent of syphilis worldwide
[2], and ‘Treponema pallidum subsp. pertenue’, the bacte-
rium responsible for yaws [3]. The genus Borrelia is a mem-
ber of the family Spirochaetaceae and through convention is
divided into three major clades: Lyme disease/Borreliosis
(LB) caused by members of the Borrelia burgdorferi sensu
lato complex, the Relapsing Fever (RF) borreliae and the
Reptile-associated (REP) borreliae [4]. The LB borreliae cur-
rently comprise over 20 recognized species including the
primary Northern hemisphere Lyme-disease-causing agents
Borrelia afzelii, Borrelia bavariensis, Borrelia burgdorferi
sensu stricto, and Borrelia garinii, along with a newly
described genospecies ‘Candidatus Borrelia mayonii’ that
causes LB in the upper Midwestern USA [5–8]. Members of
the LB group are vectored by hard ticks (family Ixodidae),
with the pathogenic species commonly transmitted to

humans and other animals by ticks within the Ixodes ricinus
complex: Ixodes ricinus in Europe, Ixodes persulcatus in
Europe and Asia, and Ixodes pacificus and Ixodes scapularis
in USA [7]. These pathogenic spirochaetes are dependent
on wildlife, particularly rodents and birds, which act as
asymptomatic reservoir hosts that maintain their life cycles
and transmission [9].

Spirochaetes within the RF group have been reported
throughout a number of continents, including Africa [10],
Eurasia [11] and North America [12]. These borreliae, in
contrast to the LB group, are generally transmitted by soft
ticks (family Argasidae), with the exceptions of Borrelia
miyamotoi identified in I. persulcatus [13], I. ricinus [14], I.
pacificus [15] and I. scapularis [16]; ‘Borrelia lonestari’ in
Amblyomma americanum [17]; Borrelia theileri in Rhipice-
phalus microplus [18]; and ‘Candidatus Borrelia texasensis’
in Dermacentor variabilis [19].

The third major clade of this genus, the REP borreliae, was
identified after the discovery of Borrelia turcica in Hya-
lomma aegyptium ticks collected from tortoises in Turkey
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[20, 21], followed by subsequent addition of REP-related
species of the genus Borrelia identified in various reptiles [4,
22]. While the LB and RF spirochaetes consist of zoonotic
pathogens and are of significant public health concern in
many countries, the pathogenicity and zoonotic potential of
the REP group are not yet known.

Although LB borreliae have never been identified in Austra-
lian ticks, wildlife or people [23], two RF borreliae are recog-
nized: B. theileri and Borrelia anserina that are transmitted
by Rhipicephalus (Boophilus) australis [24, 25] and Argas
persicus [26, 27], respectively. In addition, ‘Borrelia queens-
landica’ was the first species of the genus Borrelia to be
reported from native long-haired rats, Rattus villosissimus,
in north-west Queensland, Australia. While the soft tick,
Ornithodorus gurneyi, was considered to be the vector of
this species due to its presence in the region, transmission
experiments were not successful, and molecular characteri-
zation was never conducted to reliably identify the species of
the genus Borrelia [28, 29].

Sequence analysis of multiple loci offers the advantage over
morphological characterization of being highly discrimina-
tory, therefore serving as a reliable method for accurate
identification, characterization and population, and epide-
miological analyses in numerous bacterial studies [30, 31].
This technique was first used on Borrelia burgdorferi in
2008 [32] and has become an increasingly common tech-
nique for taxonomic and epidemiological studies of this
genus [33–36].

Recently, a novel species of the genus Borrelia was detected
in a number of echidna ticks, Bothriocroton concolor, col-
lected [37]. An additional representative was detected in an
Ixodes holocyclus tick [38]. Based on the 16S rRNA
(1097 bp) and flagellin (flaB, 400 bp) gene phylogenetic
analyses, this species of the genus Borrelia formed a distinct
clade from other well-described borreliae, indicating this
organism, designated ‘Borrelia sp. Aus¢, to be unique [37].
In the present study, we conducted sequence analyses of the
flaB, groEL, glpQ and gyrB genes, in addition to the 16S
rRNA and short flaB loci reported previously [37], to study
the relationship of this novel species to other of the genus
Borrelia. Phylogenetic analysis confirmed its species status,
and we hereby propose to designate this species as ‘Candi-
datus Borrelia tachyglossi’.

This study was conducted under the compliance of the Aus-
tralian Code for the Responsible Conduct of Research, 2007
and Australian Code for the Care and Use of Animals for Sci-
entific Purposes, 2013. Tick collection was carried out
opportunistically with the approval from the Murdoch Uni-
versity Animal Ethics Committee.

Genomic DNA was extracted previously from 97 Bothrioc-
roton concolor ticks, with 38 (39%) ticks testing positive at
the Borrelia-specific flaB locus [37]. These 38 Borrelia-
positive ticks were included in this study. Nested- and
hemi-nested PCRs were conducted using primers targeting
the housekeeping genes flaB (763 bp), groEL (1537 bp), glpQ

(874 bp) and gyrB (1702 bp) (Table S1, available in the
online Supplementary Material). Primers were designed to
amplify short fragments of each gene with overlapping
regions in order to obtain maximum coverage of the genes
analysed for accurate characterization. PCR cycling condi-
tions were as described by Loh et al. [37] (see Table S1 for
respective annealing temperatures), with the exception of
groEL primers: initial denaturation at 95

�

C for 5 mins, 35
cycles of denaturation at 95

�

C for 30 s, annealing at 48
�

C
for 40 s, extension at 72

�

C for 2 mins, and a final extension
at 72

�

C for 7 mins. Amplification products of the targeted
DNA products were electrophoresed in 1–2% agarose gel
with blue light using safe (Invitrogen), and positive samples
were purified and sent for Sanger sequencing.

DNA sequences generated at flaB, groEL, glpQ and gyrB loci
were aligned and analysed together with sequences repre-
senting species of the genus Borrelia retrieved from Gen-
Bank. All sequences were aligned using MAFFT v7.017 [39]
and then refined using MUSCLE [40]. The best-fit model for
each locus was assessed using MEGA6 [41] and was selected
based on the Bayesian Information Criterion (BIC). Bayesian
phylogenetic reconstructions using sequence alignments of
all four loci were generated using MrBayes 3.2.6 [42],
and concatenated phylogenetic reconstructions using
concatenated sequence alignments were produced using the
CIPRES Science Gateway V.3.3 [43]. GTR and HKY substi-
tution models were selected, with gamma categories of five,
MCMC length of 1 100 000, burn-in length of 10 000 and
subsampling frequency of 200.

In the present study, Borrelia-specific flaB (763 bp), groEL
(1537 bp), gyrB (1702 bp) and glpQ (874 bp) DNA sequen-
ces were successfully amplified and sequenced from 38 Bor-
relia-positive Bothriocroton concolor ticks described by Loh
et al. [37]. Thirty samples were positive for all flaB frag-
ments; 24 samples were positive for all glpQ fragments; 13
samples were positive for all groEL fragments; and 10 sam-
ples were positive for all gyrB fragments.

Previously, three closely related genotypes were distin-
guished in the Bothriocroton concolor ticks using the 16S
rRNA gene sequences, tentatively given the designations
Borrelia sp. Aus A, Borrelia sp. Aus B and Borrelia sp. Aus C
[37]. However, in the present study, these genotypes are
referred as ‘Candidatus Borrelia tachyglossi’ genotypes A, B
and C, respectively. At the flaB locus, genotypes A, B and C
consisted of nine, three and five identical samples, respec-
tively. The flaB gene alignment (787 bp) between ‘Candida-
tus Borrelia tachyglossi’ genotypes and other described
species of the genus Borrelia showed that the novel geno-
types shared highest percentage sequence identities with
Borrelia turcica from the REP group (87.9–88%); similari-
ties to the LB Borrelia group ranged from 82.1–83.2%; with
the least similarity to Borrelia hispanica from the RF group
(79.8–80%). The percentage identities within the ‘Candida-
tus Borrelia tachyglossi’ genotypes ranged from 99.6–99.9%.
The percentage nucleotide identities between ‘Candidatus
Borrelia tachyglossi’ genotypes and Borrelia turcica (87.9–
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88%) were higher than that between Borrelia turcica and
Borrelia hermsii (86.7 %). In contrast, the percentage nucleo-
tide identities between ‘Candidatus Borrelia tachyglossi’
genotypes and Borrelia hermsii (84.6–84.8%) were lower
than that between Borrelia turcica and Borrelia hermsii
(86.7%) (Table S2). Phylogenetic analyses of the flaB gene
locus showed that the ‘Candidatus Borrelia tachyglossi’ gen-
otypes clustered most closely with Borrelia turcica with a
high posterior probability (Fig. 1).

At the glpQ locus, genotypes A and B consisted of eight and
two identical samples respectively. The amplification of this
gene was not successful for genotype C. The glpQ nucleotide
alignment (947 bp) between ‘Candidatus Borrelia tachy-
glossi’ genotypes exhibited 83.9–85.7% similarity with the
REP species of the genus Borrelia and lower similarities
(80.6–84.8%) with the RF species of the genus Borrelia. The
percentage similarity within ‘Candidatus Borrelia tachy-
glossi’ genotypes was 98.6%. Phylogenetic analysis con-
firmed the closer relationship of the ‘Candidatus Borrelia
tachyglossi’ genotypes from the present study with the REP
Borrelia group (100% bootstrap support) (Fig. 1). The per-
centage nucleotide identities between ‘Candidatus Borrelia
tachyglossi’ genotypes and Borrelia turcica (84.1–84.2%)
and Borrelia coriaceae (RF) (84.1–84.8%) were higher than
that between Borrelia turcica and Borrelia coriaceae (83.3%)
(Table S3).

At the groEL locus, ‘Candidatus Borrelia tachyglossi’ geno-
types A and B were identical, and both shared 99.9% simi-
larities with ‘Candidatus Borrelia tachyglossi’ genotype C.
Nucleotide alignment (1540 bp) between ‘Candidatus Borre-
lia tachyglossi’ genotypes and other described species of the
genus Borrelia showed that the novel isolates had the least
similarity with the LB group (83.9–85%) and were most
similar to Borrelia hermsii from the RF group (89.3–89.4%).
Phylogenetic analysis of the groEL locus showed that ‘Can-
didatus Borrelia tachyglossi’ genotypes from the present
study clustered with the RF group with strong posterior
probability support (Fig. 1). The percentage nucleotide
identities between ‘Candidatus Borrelia tachyglossi’ geno-
types and Borrelia hermsii (89.3–89.4%) were higher than
that between Borrelia hermsii and Borrelia burgdorferi
(84.8%); whereas the percentage identity between ‘Candida-
tus Borrelia tachyglossi’ genotypes and Borrelia burgdorferi
(84.3%) was slightly lower (Table S4). The genetic distance
between ‘Candidatus Borrelia tachyglossi’ and Borrelia tur-
cica at this locus remains to be determined until the groEL
gene is characterized in Borrelia turcica.

At the gyrB locus, ‘Candidatus Borrelia tachyglossi’ geno-
types A and B were identical. Nucleotide alignment
(1712 bp) revealed that the ‘Candidatus Borrelia tachyglossi’
genotypes exhibited 80.8–82.0%, 80.8–82.0% and 84.8–
88.2% sequence similarity with the LB Borreliae, the RF
group and Borrelia turcica, respectively. The percentage
similarities within ‘Candidatus Borrelia tachyglossi’ geno-
types ranged from 99.6 to 99.9%. Phylogenetic analysis
showed that ‘Candidatus Borrelia tachyglossi’ genotypes

formed their own monophyletic clade, separate from
Borrelia turcica and the RF group, with high bootstrap sup-
port (98%) (Fig. 1). The percentage nucleotide identities
between ‘Candidatus Borrelia tachyglossi’ genotypes and
Borrelia turcica (87.8–88%) and Borrelia hermsii (88.1–
88.2%) were higher than that between Borrelia turcica and
Borrelia hermsii (86.7%) (Table S5).

A Bayesian phylogenetic tree reconstructed using the
concatenated alignment (3585 bp) consisting of three genes,
16S rRNA, flaB and gyrB, available for each of the main bor-
reliae (Fig. 1), illustrated that the ‘Candidatus Borrelia
tachyglossi’ genotypes from Bothriocroton concolor ticks
grouped separately, with Borrelia turcica as the closest rela-
tive (91.1–91.2%nucleotide identities) (Table S6). Likewise,
the concatenated alignment (5154 bp), which excluded
Borrelia turcica (REP), based on the four loci amplified in
the present study (16S rRNA, flaB, groEL and gyrB) also
produced a similar tree topology with ‘Candidatus Borrelia
tachyglossi’ genotypes forming a monophyletic clade sup-
ported by high posterior probabilities (Fig. S1), sharing the
highest percentage identities with Borrelia hermsii (90.3%)
(Table S7).

All phylogenetic trees reconstructed revealed similar topolo-
gies with the REP group species of the genus Borrelia as the
closest sister clade. The recently established REP group has
been detected in various reptiles from several countries and
in ticks that parasitise them [4, 21]. The recent discovery of
a novel species of the genus Borrelia in Amblyomma vare-
nense collected from the reticulated python (Python reticu-
latus) showed that the species of the genus Borrelia
identified clustered together with the REP-associated Borre-
lia group, along with Borrelia turcica, based on phylogenetic
analyses of 16S rRNA and flaB genes [44]. However, the
pathogenic potential of the species of the genus Borrelia
belonging to the REP group is unknown.

A number of members within the genus Borrelia are well
known to cause diseases in humans outside of Australia;
nonetheless, borrelial tick-borne disease in humans still
remains highly speculative and controversial in this country.
‘Candidatus Borrelia tachyglossi’ was first reported in 2016
[37], hence the urgency to further characterize this bacte-
rium on the basis of multi-loci gene sequencing in order to
confirm the taxonomic position of this new member in the
genus Borrelia. Our results, based on sequence and phyloge-
netic characterization of multiple loci, provide conclusive
evidence that ‘Candidatus Borrelia tachyglossi’, identified in
Bothriocroton concolor ticks from echidnas, is distinct from
other described species of the genus Borrelia and constitutes
to a new clade in this genus.

Borrelial spirochaetes are well known to be associated
closely with wildlife and utilize tick vectors to maintain a
sylvatic life cycle [45, 46]. Australian wildlife are also known
to be involved in spill-over of various zoonotic parasites
[47]. Therefore, it is plausible that this bacterium is also
likely to persist in the environment through circulation
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Concatenated
(16S rRNA, flaB, gyrB)

Borrelia afzelii Tom3107 (CP009212)

Borrelia garinii (CP003151)

Borrelia valaisiana (CP009117)

‘Borrelia chilensis’ (CP009910)

Borrelia burgdorferi B31 (AE000783)

‘Candidatus Borrelia tachyglossi’ genotype B (KY586964)

‘Candidatus Borrelia tachyglossi’ genotype C (KY586965)

‘Candidatus Borrelia tachyglossi’ genotype A (KY586966)

Borrelia turcica IST7 (KF422815)

Borrelia anserina BA2 (CP005829)

Borrelia hermsii (NC_010673)

Borrelia parkeri (CP007022)

Borrelia miyamotoi (CP006647)

Borrelia crocidurae (CP003426)

Borrelia duttonii Ly (CP000976)

Borrelia recurrentis (CP000993)

Borrelia hispanica (U28498)0.05

0.97

0.59

1

0.96

0.58
0.54

0.73

0.78

0.6

0.99 0.71

flaB

Borrelia sp. tAG17M (AB529398)

‘Candidatus Borrelia tachyglossi’ genotype B (KY586967)

Borrelia sp. tAG88 (AB529404)

Borrelia sp. tAG66M (AB529402)

Borrelia sp. tAG85 (AB529403)

Borrelia turcica (AB529430)

‘Candidatus Borrelia tachyglossi’ genotype A (KY586968)

Borrelia coriaceae Co53 (CP005745)

Borrelia anserina BA2 (CP005829)

Borrelia crocidurae (CP003426)

Borrelia duttonii Ly (CP000976)

Borrelia recurrentis (CP000993)

Borrelia sp. Tortoise14H1 (AB529431)

Borrelia sp. Tick98M (AB529432)

Borrelia theileri (KF569938)

Borrelia hermsii (CP005680)

Borrelia parkeri (CP007022)

Borrelia miyamotoi (CP006647)

0.1

glpQ 1

1

1

1

0.99

0.99

0.99

0.64

0.91

0.930.92

0.920.52

Borrelia afzelii Tom3107 (CP009212)

Borrelia valaisiana (CP009117)

Borrelia burgdorferi B31 (AE000783)

Borrelia garinii (CP003151)

‘Borrelia chilensis’ VA1 (CP009910)

Borrelia anserina (CP005829)
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Fig. 1. Phylogenetic reconstructions based on flaB, groEL, glpQ and gyrB gene sequences, and concatenated gene sequences of ‘Candi-

datus Borrelia tachyglossi’ genotypes A, B, and C identified in Bothriocroton concolor ticks from echidnas. Brachyspira pilosicoli

(AY241832), Treponema pallidum (NZ_CP010566), Escherichia coli (X56907) and Spirochaeta lutea (JNUP01000064) were used as
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among native ticks and native mammalian (including mar-
supial) hosts. Unlike the Australian paralysis tick I. holocy-
clus, Bothriocroton concolor is a highly specialized tick, with
echidnas as their primary host, and with a geographic distri-
bution known only in Australia and Papua New Guinea
[48]. ‘Candidatus Borrelia tachyglossi’ has previously been
identified in one human-biting tick (I. holocyclus) removed
from an echidna [38] and its prevalence in I. holocyclus or
other human-biting ticks remains to be determined. The
morphological characteristics and the pathogenicity of this
bacterium are also unknown.

DESCRIPTION OF ‘CANDIDATUS BORRELIA

TACHYGLOSSI’

‘Candidatus Borrelia tachyglossi¢ (ta.chy.glos¢si. N.L. gen. n.
tachyglossi of Tachyglossus aculeatus, the monotreme host
of the ticks in which the bacterium was first identified]).

Species can be differentiated from other borreliae based on
sequence and phylogenetic analyses of five genomic loci
(16S rRNA, flaB, groEL, gyrB and glpQ). Comparisons of
the flaB gene sequences among the ‘Candidatus Borrelia
tachyglossi’ genotypes showed two single nucleotide poly-
morphisms (SNPs) in genotype A at bases 485 and 519
(GenBank accession no. KY586966); and one SNP in geno-
type B at base 227 (KY586964). As for the groEL gene,
analysis revealed two SNPs in genotype C at bases 656 and
1143 (KY586970). Analysis of the gyrB gene showed two
SNPs in genotype B at bases 985 and 1416 (KY586972);
and five SNPs in genotype C at bases 405, 757, 1075, 1093
and 1420 (KY586973). At the glpQ locus, genotype A
(KY586968) and genotype B (KY586967) showed 12 base
differences at bases 3, 43, 103, 112, 264, 515, 520, 530, 532,
702, 819 and 852.

The DNA G+C contents for 16S rRNA, flaB, groEL, gyrB
and glpQ genes of ‘Candidatus Borrelia tachyglossi’ geno-
type A are 47.3, 40.9, 38.5, 33.8 and 34.1mol%, respectively.
The DA G+C contents for 16S rRNA, flaB, groEL, gyrB and
glpQ genes of ‘Candidatus Borrelia tachyglossi’ genotype B
are 47.2, 40.9, 38.5, 33.9 and 34.7mol%, respectively. The
DNA G+C contents for 16S rRNA, flaB, groEL, and gyrB
genes of ‘Candidatus Borrelia tachyglossi’ genotype C are
47.2, 41, 38.5 and 34mol%, respectively.
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