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Abstract

Tick-borne encephalitis virus (TBEV) is a member of the genus Flavivirus. It can cause serious infections in humans that

may result in encephalitis/meningoencephalitis. Although several studies have described the involvement of specific genes

in the host response to TBEV infection in the central nervous system (CNS), the overall network remains poorly

characterized. Therefore, we investigated the response of DAOY cells (human medulloblastoma cells derived from

cerebellar neurons) to TBEV (Neudoerfl strain, Western subtype) infection to characterize differentially expressed genes by

transcriptome analysis. Our results revealed a wide panel of interferon-stimulated genes (ISGs) and pro-inflammatory

cytokines, including type III but not type I (or II) interferons (IFNs), which are activated upon TBEV infection, as well as a

number of non-coding RNAs, including long non-coding RNAs. To obtain a broader view of the pathways responsible for

eliciting an antiviral state in DAOY cells we examined the effect of type I and III IFNs and found that only type I IFN pre-

treatment inhibited TBEV production. The cellular response to TBEV showed only partial overlap with gene expression

changes induced by IFN-b treatment – suggesting a virus-specific signature – and we identified a group of ISGs that were

highly up-regulated following IFN-b treatment. Moreover, a high rate of down-regulation was observed for a wide panel of

pro-inflammatory cytokines upon IFN-b treatment. These data can serve as the basis for further studies of host–TBEV

interactions and the identification of ISGs and/or lncRNAs with potent antiviral effects in cases of TBEV infection in human

neuronal cells.

INTRODUCTION

Tick-borne encephalitis virus (TBEV) is a medically import-
ant tick-borne flavivirus and is the causative agent of tick-
borne encephalitis (TBE). TBE is widespread in Europe and
North Asia, and more than 10 000 cases per year are
reported [1]. The Czech Republic has the second highest
incidence of TBE in Europe after Russia [2]. The clinical
outcome of TBE can vary from sub-clinical cases to severe
encephalitis/meningoencephalitis. The European subtype of
TBEV is associated with a high ratio of sub-clinical or
asymptomatic cases (estimated 70–95%). Neurologic
sequelae were reported in up to 30% of the patients and the
case fatality in adult patients is <2% [3].

The mechanism(s) by which TBEV crosses the blood–brain
barrier (BBB) and enters the CNS are still not clear. Several

routes have been suggested: (i) direct infection of epithelial
cells and transport of viruses across basolateral membranes,
(ii) cytokine-mediated breakdown of BBB, or (iii) a ‘Trojan
horse’ pathway in which TBEV-infected leukocytes can
migrate across the BBB [4, 5]. Once TBEV enters the CNS,
neurons are the predominantly infected cell type [6]. Astro-
cytes were recently also shown to be susceptible to TBEV
infection [7]. Immunocytochemistry analysis of brain autop-
sies from fatal TBE cases detected localization of viral anti-
gens in the spinal cord, brainstem, cerebellum and basal
ganglia. Labelling was consistently found in the perikarya
and processes of Purkinje cells, large neurons of the dentate
nucleus, inferior olives and anterior horns [6]. The suggested
mechanism of neural tissue damage during TBEV infection
is virus-associated cell death combined with an immunopa-
thogenic role of the cellular/humoral responses of the host
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immune system, especially CD8+ granzyme B–releasing
cytotoxic T cells and macrophages/microglia [8, 9].

The interferon (IFN) response is part of the innate immune
system. IFNs activate the expression of hundreds of genes,
known as IFN-stimulated genes (ISGs), which elicite the
antiviral state [10–12]. In most cell types, type I IFNs (IFN-
a and IFN-b), which signal through the IFNAR1/IFNAR2
receptors, are the primary IFNs produced. With regard to
the production of type I IFNs in CNS, murine astrocytes
and microglia were observed to be the main IFN producers
following La Crosse virus (LACV) infection [13]. However,
a study by Delhaye et al. showed that 16% of IFN-produc-
ing cells in the CNS of mice infected with either Theiler’s
encephalomyelitis virus (TMEV) or LACV corresponded to
neurons [14]. The importance of the type I IFN system in
preventing CNS infection in mice was also characterized for
West Nile virus (WNV) [15]. Furthermore, the role of IFN-
b in preventing viral infection in neuronal cells was shown
for human granule cell neurons and cortical neurons when
IFN-b pre-treatment resulted in the inhibition of WNV and
Saint Louis encephalitis (SLEV) flaviviruses [16]. Recently,
type III IFNs were found to play an important role in the
immune response to neurotropic viruses. IFN-l1/2 pre-
treatment of human neurons and astrocytes resulted in inhi-
bition of herpes simplex virus 1 (HSV1) [17] and IFN-l2
pre-treatment reduced WNV infection in murine CNS by
decreasing BBB permeability [18]. Type III IFNs bind to
IFNLR1/IL10b, which signals through a similar pathway to
the type I IFN receptor complex and induces many of the
same ISGs [19, 20].

To date, only the type I IFN system has been shown to
be essential for control of TBEV and related Langat virus
(LGTV) systemic infection of the murine CNS [21, 22].
Moreover, type I IFN responses have been shown to pro-
tect murine astrocytes – a CNS cell type – from tick-
borne flavivirus infection [23]. IFN-a pre-treatment of
murine neuroblastoma cells resulted in a decrease in the
production of LGTV [24]. However, to date no study has
described the host response of human neuronal cells
upon TBEV infection. Here we investigated the responses
to TBEV infection and type I IFNs in DAOY cells
(human medulloblastoma cells derived from cerebellar
neurons) by transcriptome analysis. We previously used
this cell line to investigate morphological changes post-
TBEV infection [25], and here expanded our study of
virus–cell interactions. Our results show that in response
to TBEV infection DAOY cells modulate the expression
of ISGs, type III IFNs and pro-inflammatory cytokines.
We found that the virus-induced responses differed from
those induced by IFN-ß, with partial overlap. We exam-
ined the protective effect of type I and III IFNs on TBEV
infection to assess pathways capable of eliciting an antivi-
ral state in DAOY cells. Host responses mediated by type
I but not type III IFNs mediated antiviral protection.
Virus-specific host response signatures may be relevant
for understanding TBEV pathogenesis.

RESULTS

Human DAOY medulloblastoma cell line expresses
markers typical for neural precursor cells

As TBEV infection can result in CNS damage, we studied
the antiviral host response against TBEV strain Neudoerfl
(Western subtype) in vitro in the human medulloblastoma-
derived neuronal cell line, DAOY HTB-186. These cells are
derived from the cerebellum [26], one of the brain areas
affected most during TBE infection [6], and were shown to
be susceptible to TBEV strain Hypr [25]. In order to deter-
mine the infection rate of TBEV Neudoerfl, DAOY cells
were infected at a multiplicity of infection (m.o.i.) of 0.1, 1,
and 5, respectively, and levels of viral NS3 protein were ana-
lysed at 24 h post infection (h p.i.) using an immunofluores-
cence assay. The infection rates for an m.o.i. 0.1, 1 or 5 at 24
h p.i. were 1.5% (SD ±0.44), 5.0 % (SD ±0.93) and 19.6% (SD
±2.25), respectively (Fig. 1a). The m.o.i. refers to the TBEV
titre in PS cells (see below); infection rates may therefore
vary in other cell lines.

In order to verify the neuronal origin of DAOY cells, we
analysed them for the presence of CNS biomarkers – tubu-
lin beta 3 class III (TUBB3), vimentin (VIM) and myelin
oligodendrocyte glycoprotein (MOG) [27]. These three
CNS biomarkers were found to be among the genes with the
highest expression according to transcriptomic analysis [see
Tables S1 and S2 (available with the online Supplementary
Material) for lists of glial and neuronal markers identified in
DAOY cells]. In addition, we characterized the presence of
glial fibrillary acidic protein (GFAP) in DAOY cells, which
is a commonly used marker for glial cells [28]. The human
glioblastoma cell line U-373 MG (Uppsala) was used as a
control for glial origin [29]. The expression of GFAP was
only detected in U373 cells (14.6%, SD ±2.5), whereas MOG
was detected in both DAOY (18.9%, SD ±11.0) and U373
(23.4%, SD ±10.4). Both cell lines were also positive for
TUBB3 (45.4%, SD ±13.1, and 81.7%, SD ±12.2 for DAOY
and U373, respectively) as well as VIM (100%, SD ±0, and
100%, SD ±0 for DAOY and U373, respectively), as shown
in Fig. 1(b, c) (see also Fig. S1 for separate TUBB3/MOG
staining).

Furthermore we analysed the expression of selected glial/
neuronal markers in DAOY cells upon TBEV infection, and
whether TBEV preferentially targets certain cells (m.o.i. 5;
analysis at 24 h p.i.). As shown in Fig. S2(a), the expression
rates of TUBB3, MOG and VIM were not significantly
changed upon TBEV infection in comparison to control
cells (Student‘s t-test; P=0.9679, P=0.9249 and P=0.2244,
respectively). No signal was detected for GFAP, which cor-
relates with the data described in Fig. 1. In order to deter-
mine whether the presence of a particular marker affects the
ability of DAOY cells to be infected with TBEV, we also
quantified infected cells positive for TUBB3, MOG or VIM
(30.4%, SD ±5.1; 7.9%, SD ±2.5; 100.0 %, SD ±0, respectively)
(Fig. S2b). These numbers largely correlated with CNS
marker expression levels in infected and uninfected cells, as
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shown in Fig. S2(a), suggesting that TBEV did not preferen-
tially infect cells expressing a specific marker.

IFN-b pre-treatment of DAOY cells resulted in
reduced production of TBEV

It was previously shown that in vitro type I IFN pre-treat-
ment of neuronal cells resulted in decreased production
of several neurotropic RNA viruses, including LGTV,
WNV and SLEV [16, 30]. To analyse whether IFN-b pre-

treatment can impair TBEV infection, DAOY and A549
cells were pre-treated with human recombinant IFN-b (10,
100, and 1000 ngml�1) and infected with TBEV 12 h later at
an m.o.i. of 5. A549 cells were used as controls, given their
wide use in type I IFN studies (for example [31–34]). Cells
were incubated for 5 days until a virus-induced cytopathic
effect (CPE) was observed in the control wells. Viability
assays using MTT were subsequently performed (see the
Methods section). We analysed the rescue of cell viability in
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Fig. 1. DAOY cells were susceptible to TBEV infection and expressed both neuronal and glial markers. (a) DAOY cells were seeded on

a chamber slide and infected at an m.o.i. of 0.1, 1 and 5 with TBEV Neudoerfl strain. Detection of viral NS3 protein via immunofluores-

cence was carried out at 24 h p.i. using anti-NS3 antibodies. Representative pictures from two independent experiments (in triplicate

per experiment) are shown. The infection rate was calculated as a ratio of the total number of infected cells (positive signal for NS3)

to the total number of cells. The average with standard deviation is shown. (b) DAOY and U373 cells were seeded on a chamber slide

and incubated 24 h. Cells were stained with antibodies for TUBB3, MOG, VIM and GFAP. Representative pictures from two independent

experiments (in triplicate per experiment) are shown. Scale bar represents 20 µm. (c) Cell counts for each of the markers are pre-

sented. The average with standard deviation from two independent experiments (in triplicate per experiment) is shown.
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the presence of recombinant IFN-b compared to uninfected
samples. In both cases, rescue effects were observed at IFN
concentrations of 10 ngml�1, culminating at 100 ngml�1 in
DAOY cells (Fig. 2a). To further verify the antiviral effect of
IFN-b and determine the kinetics of virus production,
DAOY cells were treated with recombinant IFN-b (10 ng
ml�1) and subsequently infected with TBEV at an m.o.i. of
5 at 12 h post-IFN-b treatment. Samples were harvested at
12, 24, 48 and 72 h p.i. An over 10000-fold decrease in viral
titres was observed starting at 24 h p.i. in IFN-b-pre-treated
cells (Fig. 2b). Moreover, a decrease of viral NS3 protein lev-
els in IFN-b-pre-treated cells was also observed, as shown
in Fig. 2(c).

In order to analyse the activity of viral pattern-recognition/
signalling pathways leading to IFN-b expression, DAOY
cells were co-transfected with the p125Luc plasmid encod-
ing the Firefly luciferase reporter gene under the control of
IFN-b promoter [35] and the pRL-CMV plasmid encoding
Renilla luciferase as internal control. Cells were stimulated
with poly I:C (1 or 10 µgml�1) at 24 h post-first transfection
and luciferase actvity was determined 24 h post-second
transfection. Again, A549 was used for positive controls
[36]. No activation of IFN-b promoter was observed in
DAOY cells upon poly I:C treatment (Fig. 2d).

IFN-b treatment and TBEV infection induce
characteristic transcriptome changes in DAOY cells

To characterize the cellular response to TBEV infection and
identify the differentially expressed genes responsible for
the inhibition of TBEV replication after IFN-b treatment,
an unbiased transcriptome analysis was performed. Infected
(m.o.i. 5) and mock-infected DAOY cells at 24 h p.i. in the
presence or absence of IFN-b pre-treatment (carried out
12 h prior to infection) were utilized for this analysis. Three
biological replicates for each of the four combinations were
prepared and successful infection was confirmed by plaque
titration assays; again, a decrease in viral titre was observed
in IFN-b-pre-treated cells (Fig. 3a). On average, ~48million
reads/sample were generated (Phred quality >30), and these
were assembled against the Homo sapiens genome using
TopHat2 [37]. In total, 94.3% of the sequence reads were
assembled to the reference genome. Differentially expressed
genes (Benjamini Hochberg P-value�0.05 and fold change
>1.5 or <�1.5) in comparison to mock-treated cells were
identified using Cuffdiff2 [38]. The analysis showed that
TBEV infection resulted in the differential expression of 498
genes (Fig. 3b; see Table S3 for a comprehensive list of dif-
ferentially expressed genes). Moreover, either 155 or 778
genes were found to be differentially expressed in mock- or
TBEV-infected cells pre-treated with IFN-b, respectively,
thus confirming the high sensitivity of DAOY cells to IFN-
b treatment (Fig. 3 and Table S3). Interestingly, IFN-b pre-
treatment resulted in the altered expression of a rather
unique set of genes: only 12.3 and 29.2% of the differentially
expressed genes identified in mock- and TBEV-infected
cells that had been pre-treated with IFN-b were also identi-
fied in TBEV-infected cells. The differential expression

analysis was further validated by the relative quantification
of eight selected genes using qRT-PCR (Fig. 3c). Signifi-
cantly decreased numbers of reads mapped to the TBEV
genome in IFN-b-pre-treated cells infected with TBEV (613
reads; SD ±61) compared to TBEV-infected cells without
IFN-b pre-treatment (176 000 reads; SD ±15733) were
observed (Student’s t-test; P<0.0001). In addition, the Kra-
ken tool was used to verify any contamination present in
the samples. As shown in Table S4, the DAOY cells were
free of bacterial or viral contamination, including Myco-
plasma spp. or human cytomegalovirus, which might have
interfered with host responses.

Host response-associated genes, including type III
IFNs, are activated upon TBEV infection of DAOY
cells

It was recently shown that TBEV infection of mouse brain
and human astrocytes resulted in inflammatory responses,
which included elevated production of cytokines (IL-1a, IL-
1b, IL-6, IL-8, IFN-a and IFN-g) and chemokines (CCL2/
MCP1, CCL3/MIP12a, CCL4/MIP1b, CCL5/RANTES and
CXCL10/IP-10) [7, 39]. As shown in Fig. 4(a), DAOY cells
activated a similar panel of cytokine-coding genes upon
TBEV infection (CCL3/MIP1a, CCL4/MIP1b, CCL5/
RANTES, CXCL10/IP-10, IL-6 and TNF-a). In addition,
five new cytokine-coding genes were identified as being sig-
nificantly up-regulated, (CXCL2/MIP2a, CXCL11/IP-9, IL-
12a, IL-15 and IL-23a), together with the IL-18 receptor
accessory protein (IL18RAP). Hundreds of ISGs have been
identified as being induced following viral infection
(reviewed in [10–12]). Transcriptome analysis of TBEV-
infected DAOY cells revealed significant induction of a
number of ISGs (Table S3), including IFIT1, IFIT2, RSAD2,
OASL, IFIT3, OAS2, ISG15 and ISG20 amongst the most
up-regulated (fold-change >2.5; Fig. 4a and Table S5). RIG-
I/DDX58 and MDA5/IFIH1 of the retinoic acid-inducible
gene I-like receptor family, which are responsible for sens-
ing viral RNA [40], were also significantly up-regulated. A
TBEV-directed decrease in IL-2 and IL-4 mRNA levels was
documented in the murine spleen [41]. A panel of 277 sig-
nificantly down-regulated genes in TBEV-infected DAOY
cells (fold-change >1.5; Fig. 3b and Table S3) was also
observed. RNA28S5, RN7SL2, NOTCH3, COL1A1, BCL9L,
BCORL1, POLR2A, FAM71D, IGF2, RN7SL3 and HSPG2
were found to be the most strongly down-regulated genes
(fold-change >2.5; Fig. 4 and Table S5). Other than protein-
coding genes, a number of non-coding RNAs were also
identified as being differentially expressed upon TBEV
infection, as shown in Fig. 4(b). However, of these, RN7SL2,
RN7SL3 and RNA28S5 are the only RNA genes with known
functions. The remaining differentially expressed RNAs
were long non-coding RNAs (lncRNAs) with unknown
functions. The observed pattern of general activation of host
responses upon TBEV infection was also confirmed by
Ingenuity Pathway Analysis (IPA) software. Table 1 shows
the 10 most significantly affected canonical pathways that
include IFN signalling. Furthermore, the unfolded protein
response and endoplasmic reticulum stress pathways were
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ment) is shown. *Represent a significant difference from the TBEV-infected control as calculated by Student’s t-test (*P<0.05;
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also identified as being significantly affected. The TBEV-
induced expression changes for genes that are functionally
involved in these two pathways correlates with recent find-
ings of TBEV-driven reorganization of the ER structure in
infected cells [25, 42].

Basal expression of IFN-l1 and its receptor, IFNLR1/

IL10Rb, was documented in human brain tissue and a set of

human neuronal cells including primary human neurons,

NT2-N neurons and neuroblastoma cell lines [43]. Our

transcriptome data, together with qRT-PCR analysis, dem-

onstrated that IFN-l1 was expressed in non-infected

DAOY cells and highly up-regulated upon TBEV infection.

Surprisingly, type I IFNs (IFN-a and IFN-b) as well as type

II IFNs (IFN-g) were not found to be up-regulated in

response to TBEV infection in DAOY cells (Fig. 5a, b). In

addition, the basal levels of IFN-a and IFN-b, but not INF-

g, were found to be significantly lower than the basal levels

of IFN-l1. IPA software analysis confirmed that a wide

spectrum of genes involved in the IFN-l signalling pathway

were differentially expressed upon TBEV infection, as

shown in Fig. 5(c). In order to assess the potential antiviral

effect of IFN-l1 on TBEV infection, we performed CPE

triplicate. Data were normalized to cells co-transfected with p125Luc and pRL-CMV without poly I:C treatment. Significant differences

from the control were calculated by Student’s t-test (**P<0.01).
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Fig. 4. Overview of selected differentially expressed genes. DAOY cells were pre-treated with IFN-b (10 ngml�1) and/or infected with

TBEV (m.o.i. 5) after 12 h. Three independent biological replicates were included for each of the combinations [untreated mock cells

(control); IFN-b-treated mock cells; untreated cells infected with TBEV; IFN-b-pre-treated cells infected with TBEV]. Total cellular RNA

was isolated at 24 h p.i. and used for transcriptome analysis. (a) List of selected protein-coding genes identified to be differentially
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inhibition in pre-treated DAOY and A549 cells. The cells
were pre-treated with human recombinant IFN-l1 (10, 100
and 1000 ngml�1) and then the analysis was carried out
12 h p.i. with TBEV at m.o.i. 5. Cells were incubated for
5 days until a virus-induced CPE was observed in non-
treated control cells and then viability assays using MTT
were performed. A significant rescue effect by type III IFNs
in A549 cells was only seen when 100 ng IFN-l1/ml was
applied. No significant rescue of cell viability was observed
in the case of DAOY cells, as shown in Fig. 6(a). The poten-
tial antiviral effects of IFN-l1 pre-treatment were further
validated via plaque assays and the detection of TBEV NS3
protein by Western blot. Again, no significant changes were
observed in the viral titres and protein levels of NS3 in
DAOY cells pre-treated with either 10 or 100 ngml�1 of
IFN-l1, as shown in Fig. 6(b, c). In order to verify whether
these concentrations of IFN-l1 are sufficient to trigger the
expression of ISGs, we analysed the mRNA expression of
six genes that were found to be up-regulated most after
TBEV infection. This suggested that the activation of their
expression could be influenced by elevated levels of
endogenous IFN-l. No ISG expression was observed in
DAOY cells treated with 10 ngml�1 of IFN-l1, but in cells
treated with 100 ngml�1 of IFN-l a strong induction of
RSAD2 (viperin) gene expression was detected (Fig. 6d).
Moreover, high basal mRNA expression of receptor subu-
nits for both type I and type III IFNs was documented in
DAOY cells (Fig. 6e).

IFN-b pre-treatment results in up-regulation of
ISGs and down-regulation of pro-inflammatory
cytokines

Transcriptome analysis showed that IFN-b treatment of
DAOY resulted in the altered expression of 155 genes, as
shown in Fig. 3(b), thus confirming the high sensitivity of
human neuronal cells to type I IFNs. Based on the inhibi-
tory effects observed following IFN-b pre-treatment in
TBEV infected-DAOY cells, we speculated that IFN-b
activates the expression of the genes responsible for this
antiviral effect. We searched for genes that were highly up-
regulated upon IFN-b pre-treatment in both mock- and
TBEV-infected DAOY cells; 41 genes were found to be up-
regulated in both data sets (Fig. 3b). Analysis of the litera-
ture showed that five genes (encoding BST2, IFI27, IFITM3,
ISG15 and RSAD2) were also expressed in IFN-b-treated
human granule and cortical neurons [16]. Out of the 41
identified genes, IFI27, IFI6, RMRP, RN7SK, IFITM1, BST2,
EPSTI1, IFITM3 and CRABP2 were up-regulated most
(fold-change >2.5; Fig. 4a Tables S6 and S7). IFI6 and IFI27
were both characterized as being most highly expressed

upon IFN-b treatment in mock- and TBEV-infected cells
(Fig. 4a, Tables S6 and S7). Interestingly, a panel of genes
down-regulated following IFN-b treatment consisted
mainly of cytokine coding genes (Fig. 4a and Table S3). The
same rate of down-regulation for CCL3/MIP1a, CSF3,
CCL20/MIP3a, IL36RN, CXCL1/KC, CXCL2/MIP2a,
CXCL3/MIP2b, CXCL5/ENA78, IL1a, IL1b, IL6, IL8 and
IL11 was observed in both mock- and TBEV-infected
DAOY cells pre-treated with IFN-b, but not in TBEV-
infected cells (Fig. 4a). These data suggest a unique response
of DAOY cells to type I IFN treatment in terms of the
decreased mRNA levels of pro-inflammatory cytokines. The
down-regulation of cytokine expression was by far the most
significant expression pattern observed after IFN-b treat-
ment. These findings were also supported by IPA analysis,
which identified that for the most part cytokine-related
canonical pathways were most significantly affected
(Table 1). Our transcriptome analysis also revealed altered
IFN-b-driven expression of a wide panel of non-coding
RNAs (Fig. 3b). RNA5-8SP6, RMRP and RN7SK were the
most up-regulated non-coding RNAs in this condition.
Their expression may, however, be negatively influenced by
TBEV, since a lower rate of up-regulation was seen for all
three genes in IFN-b-treated cells subsequently infected
with TBEV (Fig. 4b; Tables S6 and S7).

DISCUSSION

Here we established a model for studying the interactions
between TBEV and cells of neural origin. Human DAOY
medulloblastoma cells are derived from cerebellum and
their neuronal origin was analysed using TUBB3, MOG,
VIM and GFAP biomarkers. TUBB3 and VIM expression is
typical for neural precursor cells; TUBB3 expression was
documented in neuronal precursor cells [44], whereas
vimentin is typical for radial glia, a primary progenitor cells
capable of both neuro- and gliogenesis [27]. Therefore, our
findings support the neuronal origin of DAOY cells, as well
as their dedifferentiated state, which is typical for cancer
cells. In the case of U373 cells, TUBB3 and VIM expression
also points to a dedifferentiated state (especially TUBB3 for
an ascending histological grade of malignancy). However,
the presence of GFAP supports their glial origin. Despite its
expression in radial glia, the presence of VIM in both cell
lines may also serve as a cancer marker, since the high
expression of VIM and CD44 results in an epithelial– mes-
enchymal transition that is typical for metastasis [45]. Rela-
tively low expression of MOG, a minor component of
myelin (0.05%) in both cell lines, could point to an ascend-
ing histological grade of malignancy, since this protein is
located in oligodendrocytes (a fully differentiated type of

expressed in at least one of the combinations over control (Benjamini Hochberg P-value �0.05 and fold change >1.5 or <�1.5; down-

regulated in red and up-regulated in green). To emphasize the up-regulation of IFN-l1, information for transcripts of IFN-a, IFN-b and

IFN-g was also included. (b) List of selected non-coding genes identified to be differentially expressed in at least one of the combina-

tions over control (Benjamini Hochberg P-value �0.05 and fold change >1.5 or <�1.5; down-regulated in red and up-regulated in

green).
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glia) [46, 47]. Importantly, to the best of our knowledge, our
data, as described below, also describe the innate immune
properties of this cell line for the first time in the context of
virus infection, and provide extensive transcriptome infor-
mation. This is important information for others in the field
who wish to make use of this particular cell line. It is often
desirable in virology to use such cell lines before primary
lines, which can be difficult to obtain, grow and infect. The
data supplied here provide information on the nature of
these cells, for example on how they compare to healthy
neurons for experiments in virus–host interaction studies,
drug screens, virus entry studies, etc.

Based on our transcriptome analysis, up-regulation of cyto-
kines/chemokines as described here would mostly result in
the activation/stimulation and chemotaxis of effector
immune cells. This correlates with TBEV-associated immu-
nopathogenesis in the brain [8, 9]. Transcriptome analysis
of LGTV-infected HEK 293 T cells revealed enhanced
expression of CCL5/RANTES, CXCL10/IP-10 and TNF-a
cytokines [48]. CCR5 (specifically the CCR5Delta32 allele)
has been associated with the severity of TBEV-induced dis-
ease, suggesting that differential regulation of CCL5/
RANTES, etc. may be clinically relevant [49]. We did not
observe up-regulation of IFN-a, which is intriguing and
may point to a defect in its regulation. In addition, we iden-
tified that RIG-I/DDX58 and MDA5/IFIH1 (RIG-I like
receptors, RLRs) are up-regulated upon TBEV infection.
The involvement of RLRs in sensing TBEV RNA was docu-
mented previously [50]. Viral dsRNA ‘hides’ in endoplasmic
reticulum-derived vesicle packets and thus prevents the acti-
vation of host receptors and subsequent IFN-mediated anti-
viral response [51]. Moreover, a recent study showed
enhanced mortality rates of IPS-1/MAVS (a downstream
factor involved in RIG-I and MDA5 signalling cascade)
knockout mice infected with TBEV or LGTV [22]. In addi-
tion, RLR signalling can induce type III IFN expression
[52]. Therefore, up-regulation of RIG-I and MDA5 in the
case of TBEV-infected DAOY cells may also contribute to
the observed induction of IFN-l1.

Our study identified a wide panel of ISGs that were up-
regulated in response to TBEV infection. These ISGs were
found to inhibit a broad spectra of viruses [11, 53–57].
Viperin, encoded by the RSAD2 gene, was shown to inhibit
TBEV replication in infected HEK293T cells [58]. Although
various ISGs were up-regulated, high TBEV titres were
observed in DAOY cells. This suggests the presence of
counteracting measures by TBEV against host immune
responses, at least in the infected cells. TBEV antagonizes
type I IFN signalling in infected cells and NS5 protein inhib-
its JAK-STAT signalling [24, 59]. Although type I and type
III IFNs signal through different receptors, downstream sig-
nalling pathways converge and lead to the formation of the
ISGF3 transcription complex and subsequent expression of
ISGs [60]. Whether IFN-l1 signalling is antagonized via
TBEV protein(s) is not known. Strong up-regulation of
IFIT1, IFIT2 and RSAD2 transcripts in comparison to other

ISGs was detected. This could be a result of IFN-indepen-
dent transcriptional induction of either IRF1 or IRF3, as
IFN-independent ISG induction pathways were character-
ized for all three genes [61, 62].

We also identified a panel of genes that were down-
regulated upon TBEV infection in DAOY cells. These genes
are mostly involved in transcription and translation pro-
cesses, as well as the regulation of cell proliferation. Down-
regulation of effectors involved in either transcription
(POLR2A) or translation (RNA28S5, RN7SL2, RN7SL3)
suggests a possible TBEV-driven transcriptional or transla-
tional shut off in host cells. Both transcriptional and transla-
tional shut off are well-documented phenomena [63, 64].
Similar rates of RNA28S5, NOTCH3, COL1A1, BCL9L,
BCOR1, POLR2A, FAM71D, IGF2 and HSPG2 down-regu-
lation were also evident in IFN-b-pre-treated cells infected
with TBEV, where significantly lower viral titres were deter-
mined. Intriguingly, down-regulation of these genes was not
documented in only IFN-b-pre-treated cells. Therefore, the
down-regulation observed for these genes could be consid-
ered to be a hallmark of TBEV infection in DAOY cells.

Altered expression of host lncRNAs was described in the case
of influenza A virus and severe acute respiratory syndrome
coronavirus (SARS-CoV) infection [65]. Furthermore, a wide
panel of lncRNAs was found to be regulated by type I IFNs
[66]. Therefore it may be that lncRNAs play an important role
in IFN-stimulated host immune responses to viral infection.
This hypothesis was recently supported by the identification
of an IFN-l3 up-regulated lncBST2/BISPR that positively reg-
ulates expression of BST2/tetherin [67], an ISG with antiviral
effect in murine neurons against measles virus [68]. Further
studies are required to elucidate the possible involvement of
host lncRNAs in response to TBEV infection. The possible
function of RNA5-8SP6 remains unclear, since it is classified
as a 5.8S ribosomal RNA 6 pseudogene. RN7SK is involved in
the regulation of transcription by RNA polymerase II. Its
enhanced expression upon IFN-b treatment may increase the
expression of other ISGs. RMRP was shown to interact with
TERT, forming a complex with RNA-dependent RNA poly-
merase activity. This complex produces dsRNA that is proc-
essed into siRNAs in a Dicer-dependent manner [69],
suggesting a possible role for RMRP in the decrease of TBEV
levels by recruiting the RNA interference pathway. The phe-
nomenon of type I IFN-dependent expression regulation of
lncRNAs was recently described [66, 70]. We also report that
TBEV infection results in the differential expression of genes
coding for lncRNAs (Fig. 3b). No change in RN7SL3 expres-
sion was observed in IFN-b-pre-treated cells infected with
TBEV, although down-regulation of RN7SL3 took place in
TBEV-infected cells. This observation indicates a negative
effect of TBEV on RN7SL3 expression, however this effect
seems to be dose-dependent, since lowered titres of virus (as
IFN pre-treatment resulted in lower TBEV production) did
not affect the RN7SL3 expression at all. The biological rele-
vance of these data, however, needs to be investigated.
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With regard to IFNs, based on our data, DAOY cells seem
to exclusively activate the IFN-l1 (type III IFN) pathway
in response to TBEV infection; our data suggest a defect in
the recognition of viral RNA, given the inability the of the
RIG-I/MDA-5 ligand poly I:C to induce a type I IFN
reporter gene while type I IFN signalling itself is func-
tional. This is likely to account at least in part for these
observations. The unique pattern of IFN signalling in
DAOY cells might be virus- and cell-type-specific, since
previous work characterized IFN-l as an inducer of IFN-a
expression in HSV1-infected human neurons [17]. Fur-
thermore, high up-regulation of IFN-b in LGTV-infected
HEK 293T cells was also described [48]. However, DAOY
cells express the type I IFN receptor and are responsive to
IFN-b treatment. Furthermore, only IFN-b treatment
resulted in significant inhibition of TBEV production.
These results suggest that DAOY cells express IFN-l1 in
response to TBEV infection, however this endogenous
response does not restrict TBEV production. However, it
may be that TBEV does not inhibit the type III IFN path-
way, because it does not affect virus replication, despite
sharing elements of the signalling cascade [19, 20]. A com-
parable phenomenon was indeed observed for epithelial
cell infection with human rotavirus [71].

We identified two genes that were highly up-regulated in
IFN-b-treated DAOY cells, in the absence or presence of
TBEV, IFI6 and IFI27. They belong to the FAM14 family of
ISGs [72] and were documented as mitochondrial proteins
involved in apoptosis regulation [73–75]. Over-expression
of IFI6 inhibited DENV-induced apoptosis of endothelial
cells [74, 75] and restricted HCV replication in hepatocarci-
noma cells [76]. In addition, IFI6 was shown to block HCV
entry into hepatocarcinoma cells [77]. IFI27 overexpression
in human neurons resulted in decreased production of
WNV, SLEV and MHV [16], while over-expression of
murine IFI27 delayed Sindbis virus-induced encephalitis
and death in neonatal mice [78]. This suggests that IFI6 and
IFI27 are promising candidate proteinsthat may be respon-
sible for the inhibition of TBEV infection in DAOY cells.
Both IFITM1 and IFITM3 were documented to inhibit
HCV entry into hepatocarcinoma cells [79, 80]. However,
the antiviral effects of IFITMs seem to be RNA virus-
specific [81]. An antiviral role in the case of HCV infection
was also reported for EPSTI1, whose expression was
induced upon IFN-l2 treatment and resulted in a decreased
rate of viral replication, assembly and release [82]. More-
over, BST2/tetherin inhibits HCV and DENV in

hepatocarcinoma cells [83, 84], as well as measles virus in
murine neurons [68].

In summary, our results provide novel insights into the
response of neuronal cells to TBEV infection and the antivi-
ral effects of type I and III IFN. Importantly, we found a
partial overlap of host-induced genes for TBEV and type I
IFN. Whether genes induced by both pathways are particu-
larly important in restricting infection, or whether virus-
specific responses may have unique roles in pathogenesis,
remains to be investigated. Our findings should influence
and encourage further studies into the pathogenic effects of
infection, as well as inhibitors of TBEV that can be further
investigated and targeted.

METHODS

Cells, viruses and IFN pre-treatment

Human medulloblastoma (ATCC; DAOY HTB-186) and
human lung adenocarcinoma (A549; available at the Insti-
tute of Parasitology, Biology Centre of the Academy of Sci-
ences of the Czech Republic, Branišovsk�a) lines were grown
in low-glucose DMEM medium supplemented with 10%
foetal bovine serum (FBS), 1% antibiotic/antimycotic
(amphotericin B 0.25 µgml�1, penicillin G 100 units/ml and
streptomycin 100 µgml�1) and 1% L-glutamine. The
human glioblastoma line (U373 MG Uppsala; kindly pro-
vided by T. Eckschlager, Charles University in Prague) was
grown in IMDM medium supplemented with 10% FBS, 1%
antibiotic/-antimycotic (amphotericin B 0.25 µgml�1, peni-
cillin G 100 units/ml, and streptomycin 100 µgml�1) and
1% L-glutamine. The DAOY medulloblastoma cell line was
derived from desmoplastic cerebellar medulloblastoma [26],
and the U373 MG Uppsala glioblastoma cell line was
derived from malignant glioma/astrocytoma [29]. Porcine
kidney stable (PS; cell line as in [85]; available at the Insti-
tute of Parasitology, Biology Centre of the Academy of Sci-
ences of the Czech Republic, Branišovsk�a) cells were grown
in L15 medium with 3% newborn calf serum (NCS), 1%
antibiotic/antimycotic and 1% L-glutamine. All cell lines
were grown at 37

�
C and 5% CO2 (PS cells at 37

�
C without

additional CO2).

The low-passage TBEV strain Neudoerfl (fourth passage in
suckling mice brains; GenBank accession no. U27495) was
provided by Professor F. X. Heinz (Medical University of
Vienna, Austria) [86]. TBEV in growth medium was added
to the cells 1 day post-seeding. Cells were incubated with
the virus for 2 h, washed with PBS and then fresh pre-

with TBEV; IFN-b-pre-treated cells infected with TBEV). Total cellular RNA was isolated at 24 h p.i. and further processed for transcrip-

tome analysis. (a) Relative quantification of type I, II and III IFN mRNA levels in DAOY cells. The DD-ct method, using HPRT as a house-

keeping gene, was employed for relative fold-change calculation; the mean of three biological replicates with standard deviation is

shown. Significant differences to the control (mock-infected cells) were calculated by Student’s t-test (**P<0.01). (b) -D ct values of

type I, II and III IFNs normalized to the HPRT gene; the mean of three biological replicates with standard deviation is shown. The dotted

line represents the sensitivity of the qPCR. Significant differences were calculated by Student’s t-test (***P<0.001, ****P<0.0001). (c)

Schematic overview of the IFN-l (IFNL1) signalling network (as identified by IPA software). Identified up-regulated (red) transcripts in

TBEV-infected DAOY cells are displayed.
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warmed medium was added. Human INF-b 1a (RayBio-
tech) or IFN-l1 (Sigma Aldrich) were added to the A549 or
DAOY cells 12 h prior to infection.

Virus titration

Viral titres were determined by plaque assay [87], with
minor modifications. Briefly, PS cell monolayers (9�104

cells per well) were grown in 24-well plates and incubated
with 10� serial dilutions of viral samples for 4 h at 37

�
C.

The samples were then covered by a 1 : 1 (v/v) overlay mix-
ture of carboxy-methyl cellulose and 2� L15 medium
including 6% PTS, 2% antibiotics and 2% glutamine. After
5 days, the medium with overlay was removed, and the cells
washed and subsequently fixed and stained with 0.1%
naphthalene black in 6% acetic acid solution for 45min.
Virus-induced plaques were counted and the titres are
stated as p.f.u./ml; it should be noted that infection rates can
be different for other cell types.

IFN and antiviral activity assays

DAOY and A549 cells (1�104 cells well�1 and 2�104 cells
well�1, respectively) were seeded in 96-well plates 12 h prior
pre-treatment with recombinant IFN-b and IFN-l using
concentrations of 10, 100 and 1000 ngml�1. Cells were
infected at 12 h post-treatment with TBEV strain Neudoerfl
at an m.o.i. of 5 and incubated at 37

�
C and 5% CO2 for

5 days until virus-induced the CPE was observed in control
wells. Subsequently, an MTT assay with minor modifica-
tions was performed for the determination of cell viability
[88]. Briefly, after removal of the medium, the cells were
washed with PBS and 100 µl of fresh medium containing
MTT (3-[4.5-dimethylthiazol-2-yl]�2,5-diphenyl tetrazo-
lium bromide; Sigma Aldrich; 0,5mgml�1) was added to
each well. After incubation at 37

�
C for 2 h, the medium

with MTT was removed and 100 µl of DMSO was added to
each well. After shaking for 15min at room temperature,
the absorbance at 570 nm was determined using the micro-
plate reader Synergy H1 (BioTek).

IFN-b promoter activity assay

The in vitro activity of the IFN-b promoter was analysed in
DAOY and A549 cells using p125Luc reporter vector
expressing Firefly luciferase under the control of IFN-b pro-
moter [35] and pRL-CMV vector expressing Renilla lucifer-
ase as an internal control. Transfections were carried out
using the PolyJet transfection reagent (SignaGen) according
to the manufacturer’s protocol. Briefly, cells (1.2�105 well�1

and 1.6�105 well�1 for DAOY and A549 cells, respectively)
were seeded in 24-well plates 1 day prior to transfection.

The first co-transfection of p125Luc (500 ng) and pRL-
CMV (2 ng) was followed by a second transfection of poly I:
C (1 or 10 µg well�1) after 24 h. Cells were lysed after a fur-
ther 24 h in passive lysis buffer (Promega). The Firefly and
Renilla luciferase activities were determined using a Dual
Luciferase assay kit (Promega) in an H1 Synergy luminome-
ter (BioTek).

RNA isolation

For transcriptome analysis, RNA from DAOY cells was
extracted by using Trizol (Life Technologies). Briefly, cells
were washed with phosphate buffer saline (PBS) and lysed
in 1ml Trizol. Chloroform (0.2ml) was added, and the sam-
ples were mixed intensively and incubated for 5min at
room temperature. The upper aqueous phase was trans-
ferred to a new tube after centrifugation (12 000 g, 15min,
4

�
C) and mixed with 0.5ml of isopropanol. After incuba-

tion at 4
�
C for 10min, the precipitated RNA was pelleted

by centrifugation (12 000 g/15min/4
�
C) and washed with

75% ethanol. The RNA pellet was dissolved in 20 µl of
RNase-free water. The RNA was stored at �80

�
C until fur-

ther use.

For qRT-PCR analysis, total cellular RNA was isolated using
the NucleoSpin RNA Plus kit (Macherey-Nagel).

Transcriptome analysis

RNA integrity was checked before sequencing using a 2200
TapeStation (Agilent). Five-hundred ng of total RNA from
each sample was enriched for poly(A) RNA, and then frag-
mented and prepared for sequencing using a TruSeq
stranded mRNA preparation kit (Illumina). Index-tagged
libraries were pooled and single-end datasets with a read
length of 76 nucleotides were generated on a NextSeq500
sequencer (Illumina). On average, 48million reads were
acquired for each sample.

FastQC software (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc) was used to check the RNA-Seq read
quality. In order to check for possible contamination in the
analysed samples we employed Kraken [89]. It is a system
for assigning taxonomic labels to short DNA sequences,
usually obtained through metagenomic studies. We mapped
k-mers to a pre-built 4 GB database constructed from com-
plete bacterial, archaeal and viral genomes in RefSeq. On
average, only ~0.5% reads aligned to the MiniKraken data-
base constructed from bacterial, archaeal and viral genomes
in RefSeq. TopHat2 [37], a fast splice junction mapper for
RNA-Seq reads, aligns RNA-Seq reads to mammalian-sized
genomes using the ultra high-throughput short-read aligner

deviation from three independent experiments are shown. Cell lysates were further used for detection of the TBEV protein NS3 levels

by Western blot. GAPDH was used as a loading control. A representative blot of three independent experiments is shown. (d) Total

RNA isolated from DAOY cells 12 h post-IFN-l1 treatment (10 ngml�1; 100 ngml�1) was used for relative quantification of the indicated

ISG mRNAs. The DD-ct method, using HPRT as a housekeeping gene, was used for relative fold-change calculation; the mean of three

independent experiments with standard deviation is shown. Significant difference from control was calculated by Student’s t-test

(****P<0.0001). (e) -D ct values of type I and III IFN receptor subunits normalized to the HPRT gene; the mean of three biological repli-

cates with standard deviation is shown. The dotted line indicates the sensitivity of the assay.
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Bowtie2, and then analyses the alignment results to identify
splice junctions between exons. In the present research, we
aligned the short reads to the Homo sapiens genome
(GRCh37) downloaded via the Ensembl genome browser.

Cuffdiff was used to identify differentially expressed genes
[38]. Cuffdiff is a program in the Cufflinks package (version
2.2.1). It adopts an algorithm that controls cross-replicate
variability and read-alignment ambiguity by using a model
for fragment counts based on a beta negative binomial dis-
tribution. It can identify differentially expressed (DE) tran-
scripts and genes, differential splicing and promoter
preference changes, and returns far more statistically signifi-
cant differentially expressed genes than microarray analysis.

After identifying the DE genes, the software IPA was
applied for the function annotation and pathway analysis.
Sequencing data were deposited in EBI (study accession
number: PRJEB14767).

Real-time qPCR

For qPCR validation of gene expression from samples used
for transcriptome analysis, 1 µg of total RNA was first
treated with DNase using the TURBO DNA-free kit (Life
Technologies) and then reverse-transcribed by SuperScript
III reverse transcriptase (Life Technologies) with 500 ng of
oligo d(T)15 primer according to the manufacturer’s proto-
col. For qPCR reactions, 2 µl of 5� diluted cDNA reaction
was used for the detection and amplification of selected
genes; Fast SYBR Green Master Mix (Life Technologies)
was used according to manufacturer’s protocol.

For qPCR analysis of the IFN-l1 treatment effect on DAOY
cells, total RNA was first treated with dsDNase (Life Tech-
nologies) and 80 ng per reaction was used for RT-qPCR
using the FAST Universal One-Step qRT-PCR kit (Kapa
Biosystems) according to the manufacturer’s protocol.

All data were analysed using the relative quantification DD

Ct method and HPRT as the reference gene. A full list of
primers is outlined in Table S8.

Western blotting

Cells were washed with PBS and subsequently lysed on ice
for 15min in 1� cell lysis buffer (Cell Signalling Technol-
ogy) including protease and phosphatase inhibitors (Life
Technologies). Lysate was sonicated and centrifuged at 4

�
C

for 15min at 14 000 g to eliminate cellular debris, and then
analysed by BCA assay for protein concentration quantifica-
tion. Using SDS-PAGE, 8–12 µg of protein extract per well
was separated. The proteins were then subsequently
transferred to a PVDF membrane (GE Healthcare). For
TBEV NS3 detection, chicken polyclonal primary antibodies
in 1 : 5000 dilution ratio were used (kindly provided by
Dr M. Bloom, National Institute of Allergy and Infectious
Diseases, USA). Goat polyclonal antibodies (Abcam) for the
detection of GAPDH were used at 1 : 500 dilution. For NS3/
GAPDH detection, anti-goat and anti-chicken alkaline
phosphatase-conjugated secondary antibodies (both 1 : 1000
dilution ratio; Vector Laboratories) were used and immuno-

labelled proteins were visualized by chemiluminescence
assay using Novex AP chemiluminescent substrate (CDP-
Star) reagent (Life Technologies).

Immunofluorescence analysis

DAOY and U373 cells were seeded on a chamber slide
(0.3 cm2 well�1; 1�104 cells well�1). For the detection of
CNS markers, cells were fixed after 24 h post-seeding,
and in the case of TBEV NS3 detection, cells were infected
with TBEV at an m.o.i. of 0.1, 1 or 5, and fixed at
24 h p.i. Fixation was carried out by using 4% paraformal-
dehyde for 15min; cells were subsequently rinsed in PBS
and permeabilized with 0.1% Triton X-100 for 15min. Cells
were also treated with 50mM NH4Cl in 1% BSA in PBS to
block formaldehyde auto-fluorescence. Following this, cells
were blocked in 3% BSA in PBS and incubated with chicken
polyclonal anti-NS3, goat polyclonal anti-MOG (Abcam),
rabbit polyclonal anti-TUBB3 (Abcam), rabbit polyclonal
anti-VIM (Abcam), or rabbit polyclonal anti-GFAP (Dako)
antibodies at 1 : 5000, 1 : 200, 1 : 200, 1 : 1000 and 1 : 500
dilutions, respectively. After washing with PBS, primary
antibodies were labelled using DyLight488/594-conjugated
secondary antibodies (Vector Laboratories) at a 1 : 1000
dilution. For MOG immunodetection, the Tyramide ampli-
fication signal kit (Life Technologies) was used according to
the manufacturer’s instructions. Subsequently, the cells were
mounted in Vectashield (Vector Laboratories). Analysis of
NS3-labelling was carried out on an Olympus BX-51 fluo-
rescence microscope equipped with an Olympus DP-70
CCD camera. For CNS marker expression imaging, an
Olympus Fluoview FV10i confocal microscope was used. In
order to analyse the numbers of cells expressing NS3 or one
of the CNS markers, four–nine images (100� magnifica-
tion) were taken for NS3 or markers in two independent
experiments. Subsequently, the total number of NS3 or CNS
marker expressing cells (as indicated in figures) were
counted and transformed to percentages relating to the total
number of cells. Average values and standard deviations
were calculated from two independent experiments.
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