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Abstract

We introduce a computationally efficient structured low rank algorithm for the reconstruction of 

two-dimensional infrared (2D IR) spectroscopic data from few measurements. The signal is 

modeled as a combination of exponential line-shapes, which are annihilated by appropriately 

chosen filters. The annihilation relations result in a low-rank constraint on a Toeplitz matrix 

constructed from signal samples, which is exploited to recover the unknown signal samples. 

Quantitative and qualitative studies on simulated and experimental 2D IR data demonstrate that the 

algorithm outperforms the discrete compressed sensing algorithm, both in uniform and non-

uniform sampling settings.

Two dimensional infrared (2D IR) spectroscopy is an emerging modality that provides 

detailed information about the dynamic molecular interactions at femtosecond and 

picosecond timescales [1, 2]. Its ability to probe the molecular vibrational coupling, 

vibrational and orientational relaxation, as well as chemical exchange and spectral diffusion 

makes it an attractive tool to investigate systems from dilute solutions to membranes. 

However, the main challenge with traditional Fourier scanning methods is long acquisition 

time, which limits the range of investigations. Some applications require measurement of 

spectra at multiple waiting times further increasing the measurement time. Recently, we and 

other groups have investigated the use of compressed sensing (CS) algorithms to minimize 

the sampling burden [3–6]. These methods assume the spectrum to be sparse in the Fourier 

basis (i.e. signal with few spikes in frequency domain) [4] or piece-wise smooth [7] to make 

the recovery from sub-Nyquist sampled measurements well-posed. However, the vibrational 

spectra of many systems often consist of broad peaks. Since several spikes are required to 

represent a single broad peak, the Fourier representation is non sparse; use of sparsity based 

CS algorithms to recover the signal from highly undersampled data is challenging. Similar 

behavior has also been reported in multi dimensional NMR [8], when the peaks are broad.

We propose to represent the spectrum as a sparse linear combination of damped 

exponentials, each with different frequencies and damping coefficients. Note that this is a 
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richer representation than the Fourier basis (undamped exponentials), which is essentially a 

subspace of our representation. We observe that a broad peak can be efficiently 

approximated as a linear combination of a few damped exponentials (Lorentzians in 

frequency domain) with possibly different damping rates. The approximation of smooth 

functions as a linear combination of few Lorentzians is well-studied. For example, several 

authors have shown that the Voigt lineshape can indeed be well approximated by three or 

four Lorentzians [9, 10].

We recently introduced an algorithm that uses a dictionary of damped exponentials with 

continuously varying parameters [11–13]. This method significantly reduces discretization 

errors that are prevalent in CS schemes, where discrete dictionaries with parameters sampled 

on a uniform grid are used. The proposed algorithm exploits the property that damped 

exponentials can be annihilated by a filter, parameterized by the frequencies and damping 

factors [14, 15]. This annihilation property implies that a block Toeplitz matrix (convolution 

matrix) constructed from the signal samples is low-rank [16]. We formulate the recovery of 

the time domain samples of the signal from its non-uniform samples as a Toeplitz structured 

low-rank recovery problem. We re-engineer our recent algorithm termed Generic Iteratively 

Reweighted Annihilating Filter (GIRAF) [12, 17] to solve the optimization problem in a 

reasonable computation time.

In this paper, we use simulated 2D IR data to demonstrate the qualitative and quantitative 

performance of the algorithm. The results clearly show the benefit of GIRAF over 

conventional CS methods. We also show that non-uniform undersampling provides lower 

errors than the uniform sampling setting for GIRAF, consistent with prior results for the CS 

method. Finally, we also apply the method to experimental measurements of cyanate anion 

in methanol where the GIRAF algorithm enables nearly exact recovery of experimental data 

from only 12.5% of the samples that were collected in the original data set.

2D IR is a third-order nonlinear spectroscopy technique that uses multiple femtosecond laser 

pulses to interact with a sample. The response of the sample depends on the timing and 

geometry of the interactions. We perform our experiments in the pump-probe beam 

geometry with the first two pulses, produced by pulse shaping, acting collectively as the 

pump pulse and the third pulse as the probe. The time delay between pump and probe pulses 

is denoted by T and is known as the waiting time. The probe also serves as the local 

oscillator, which we detect by upconverting into the visible and dispersing in a spectrometer 

for detection in the frequency domain by an array detector. Thus, the response in the ω3 axis 

is read off the spectrometer directly on every laser shot, and the coherence time is varied by 

programming the pulse shaper. A Fourier transform of the interfereogram in τ yields the 

response in the ω1 axis. Eq. 1 gives the 2D spectra where XT(τ, t) is the time domain signal 

at a specific waiting time T.

(1)
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In our experiments, 1024 points along ω3 are read off the array on every laser shot. Around 

160–170 different values of τ are collected, followed by apodization and zero-padding to 

acquire ω1, and we construct a 2D IR spectrum of size 512 x 1024. For a sample with a 

strong chromophore and high concentration, a single 2D IR spectrum at a given waiting time 

can be acquired in less than one second, though it is common to average thousands of these 

spectra to obtain a good signal-to-noise ratio (SNR). For many systems, these acquisitions 

are repeated several times for each T for signal averaging, and must be collected for various 

waiting times, leading to experiments that can take up to several days. We propose to 

undersample the τ axis and collect much less than 167 readings and recover the spectra 

using GIRAF, which should considerably reduce the total number of measurements required 

and thus the overall measurement time.

We will first explain the idea in the 1-D setting, before generalizing to 2-D. Consider the 

samples of a 1-D damped exponential signal x(n) = exp(βnS); n = 0, 1, ..N, where β is the 

exponential parameter and S is the sampling interval. We note that if the real part of β is 

zero, then the signal is an undamped exponential. The key observation is that x(n) is linearly 

predictable:

(2)

The above relation can also be expressed as x * hβ = 0, where * denotes discrete convolution 

and hβ is a filter with coefficients [1,−exp(βS)]. Since the filter kills the signal, hβ[n] is 

termed as the annihilation filter. When the signal is a linear combination of exponentials 

with parameters βk; k = 1, .., K, it still can be annihilated by the filter h = hβ1 * hβ2* …hβK. 

This annihilation relation can be compactly written as a matrix product

(3)

where K(x) is the structured convolution matrix. In reality, the number of exponentials in 

the signal are not known apriori. In this case, one can over-estimate K, when it can be shown 

that the matrix K(x) is low-rank. This low-rank compactness prior on the structured matrix 

K(x), which is derived from the signal x, is used to recover the signal from its 

undersampled measurements [11–13].

For a specific waiting time, we model the 2D IR signal as the sum of K two dimensional 

(damped) exponentials:
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(4)

sampled on the subset of a uniform grid [τ, t] of size M × N; τ = 0, λ, ..(M−1)λ; t = 0, η, ..

(N −1)η. Here, ck are the weights of the kth exponential, while αk and βk are the exponential 

parameters. Note that this model is equivalent to expressing the spectrum as a linear 

combination of K Lorentzian functions. As described earlier, smooth spectra such as Voigt 

profiles can be well-approximated as a linear combination of Lorentzian functions [9, 10].

Similar to the 1-D setting, the sk(τ, t) can be annihilated (sk * hk = 0) by convolution with 

the filter hk, where

(5)

Similar to the 1-D setting, this annihilation relation implies that the block Toeplitz matrix 

(XT), constructed out of the uniform samples XT(λm, ηn) is low-rank. We now use the 

above low-rank property to recover the unknown entries of XT, when only a few samples are 

available:

(6)

Here, sl ; l = 1, .., L are the measured samples of XT. In particular, we search for Y whose 

samples at sl match the measurements and the matrix  (Y) has the Schatten p norm, which 

is a convex surrogate for the rank. We relax the combinatorial problem in Eq. (6) to obtain:

(7)

Here,  is an operator which extracts the samples of Y at the locations sl ; l = 1, .., L and b 
is the length L vector of measured samples. We use the iterative reweighted least squares 

algorithm [18] to solve the above problem. The final spectrum is obtained by Fourier 

transformation of the reconstructed Y.

We compare the performance of the proposed method against standard CS methods as in our 

previous work [3]. We consider both the uniform sampling setting, where data is collected 

for a few consecutive values of τ, and the algorithm aims to recover it at a higher resolution, 

and the non uniform setting where the same number of τ samples are collected but with 

pseudorandom delays. Previous studies have looked at recovery of exponentials using 

structured low rank matrices [14–16] from uniformly sampled data; in this work we compare 
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the performance of GIRAF for uniform and non-uniform sampling. We use two different 

datasets for our comparison: 1) simulated data using a Kubo lineshape model, 2) 

experimental 2D IR data for cyanate anion in methanol.

We simulate a purely absorptive 2D spectrum of a 3-level system with a Kubo lineshape 

model [1], where the fluctuation amplitude is 2 ps−1, the anaharmonicity is 10 ps−1, the 

correlation time is 1.5 ps and the peak is centered at 10 ps−1 which is later frequency shifted 

by 1800 cm−1. The waiting time is chosen to be 0 ps.

We perform two studies of the simulated data: uniformly and non-uniformly undersampled 

reconstruction. We also test the robustness of GIRAF in presence of artificially added noise. 

We added gaussian noise to the time domain data before performing reconstruction. Three 

different noise levels of SNR 20, 25 and 33 dB are tested. We performed 100 noise 

realizations at each SNR level and performed fits on them. In each case, we compare the 

results for GIRAF and conventional CS algorithm [3].

We collected 2D IR data from a sample of 50 mM sodium cyanate in methanol held in a 

sample cell with a 50 μm path length. The apparatus has been described in detail previously 

[19], but the most important features are that we have approximately 1 μJ of pump light at 

the sample and the pump and probe pulses focus to a spot size of approximately 60 μm. At a 

waiting time of T = 0 ps, we scan τ from 0 – 4 ps with 24 fs size steps, which is a fully 

sampled signal because we use phase-increment frequency shifting in our pulse shaper to 

work in the rotating frame, resulting in 167 τ values. The fully sampled data is then 

retrospectively, non-uniformly undersampled. We compare the reconstructed experimental 

data using the proposed method and the conventional CS recovery.

The reconstructed spectra for the simulated data with uniform and non-uniform sampling 

patterns are shown in Fig. 1 and Fig. 2, respectively. The true spectrum in Fig. 1 & 2(a) is 

obtained by Fourier transforming the fully sampled data. Example masks for undersampling 

factor 9 are shown in Fig. 1 & 2(b) for uniform and non-uniform sampling where the 

sampled locations are marked in red. Reconstruction using CS and GIRAF are shown in the 

first (c) and second (d) row, respectively. The CS method strives to recover the fewest non-

zero spectral intensities, thus resulting in distorted lineshapes at higher undersampling rates, 

mainly due to the inability of the representation to capture the signal with few data points. 

GIRAF recovers the line shapes with high fidelity. The performances of both methods are 

superior in the non-uniform sampling case as is expected, because the coherent 

undersampling artifacts from uniform sampling are much greater than the incoherent 

artifacts from pseudo-random undersampling. We fit the results to a 2D Gaussian lineshape 

for quantitative comparison (the fitting model is explained in ref [3]). In Fig.3 we 

demonstrate the ability of GIRAF and CS to recover lineshape details at different 

undersampling factors and SNR levels. We experimented on 100 noise realizations for every 

undersampling factor and SNR level and have reported the mean and standard deviation of 

the line fit parameters. Peak amplitudes are suppressed with increasing undersampling, 

which is much worse for CS. The center and width of peaks are reported only for the 

dimension that is undersampled. The fit results reveal GIRAF has superior performance to 

CS. Even in presence of noise we observe the performance of GIRAF is highly reliable 
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especially for non-uniform undersampling. The correlation parameter, in case of GIRAF, 

slightly increases before decreasing at higher undersampling for uniform setting and shows 

more stable behavior in the nonuniform setting, in contrast to CS where it monotonically 

decreases. Thus it can be concluded that the proposed method is quite robust even in the 

presence of noise. It quantitatively recovers lineshapes up to undersampling factor of 26 i.e. 

only 3.8% of the samples. Even at undersampling factor of 65, i.e. only 2 τ lines, the GIRAF 

reconstruction results in only a 15% error in the correlation parameter.

Due to the superior performance of non-uniform sampling, we restrict our analysis to this 

setting for the experimental data. The true spectrum is shown in Fig. 4(a) and an example 

sampling mask for factor 10, with sampled locations in red, is shown in (b). Similar to the 

simulated case, the performance of CS method (c) is compromised at high compression 

factors. GIRAF (d) recovers the lineshapes with almost no distortion up to an undersampling 

factor of 8, i.e. only 12.5% of the fully sampled measurements, thus performing reasonably 

even at higher undersampling.

Fig. 5 shows a quantitative comparison of CS and GIRAF 2DGaussian fit parameters. 

GIRAF lineshape parameters are within ±10% of the true data up to an undersampling factor 

of 20. CS fits, however, significantly deviate from the true fits beyond an undersampling 

factor of 5. For experimental data, which has more complicated lineshape than simulated 

data, GIRAF exhibits superior recovery.

In summary, we introduced a novel method to reconstruct 2D IR data from few 

measurements. The proposed algorithm models the signal as a linear combination of damped 

exponentials. The algorithm exploits the low rank structure of a Toeplitz matrix, whose 

entries are samples of the linear combination of exponentials, and is capable of recovering 

the missing samples in the signal from heavily undersampled measurements. Our results 

show that the lineshapes are adequately preserved for quantitative analysis, with as few as 

3.8% and 8% samples for the simulated and experimental data respectively. This letter 

introduces a very promising method with the potential to accelerate 2D IR considerably. 

However detailed analyses of the method and applications are crucial and would be 

addressed in a follow-up study in a later publication.
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Fig. 1. 
Uniformly sampled recovery of simulated data: (a)True 2D spectrum. (b) Example uniform 

sampling mask for undersampling factor 9; sampled and non-sampled locations are marked 

in red and blue. (c) Reconstructions using compressed sensing (CS) algorithm and (d) 

GIRAF at various undersampling factors.
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Fig. 2. 
Non-uniformly undersampled recovery of simulated data: (a)True 2D spectrum. (b) Example 

non-uniform sampling mask for undersampling factor 9; sampled and non-sampled locations 

are marked in red and blue. (c) Reconstructions using compressed sensing (CS) algorithm 

and (d) GIRAF at various undersampling factors.
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Fig. 3. 
Simulated Data 2D Gaussian fits at different noise levels: Fit parameters for uniform and 

non-uniform undersampling are shown for CS and GIRAF reconstruction. 100 experiments 

per noise realization were performed. Mean and standard deviation of the fit results are 

plotted. CS parameters degrade rapidly with increasing acceleration whereas the degradation 

of GIRAF fits is remarkably less. Note that the non-uniform setting performs better than 

uniform setting.
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Fig. 4. 
Non-uniformly undersampled recovery of experimental 2D IR data: (a)The fully sampled 2D 

spectrum is recovered from 167 τ points. (b) Example non-uniform sampling mask of 

undersampling factor 10 where sampled locations are marked in red and non-sampled 

locations in blue. (c) Performance of compressed sensing (CS) algorithm and (d) GIRAF at 

various undersampling factors.
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Fig. 5. 
Gaussian fit comparisons for experimental data: Fit parameters for CS and GIRAF 

reconstructions are shown. Error bars represent 95% confidence bounds. CS reconstruction 

for undersampling factor 20 are not reported in the plot because it could not be fitted to the 

model due to severe distortion of the lineshape. Lineshape fits for CS reconstruction degrade 

rapidly with increasing acceleration factor whereas the GIRAF results are within ± 10% of 

the true fits.
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