
Am. J. Trop. Med. Hyg., 97(5), 2017, pp. 1289–1303
doi:10.4269/ajtmh.16-0761
Copyright © 2017 by The American Society of Tropical Medicine and Hygiene

Review Article
Experimental and Clinical Treatment of Chagas Disease: A Review

PolicarpoAdemar Sales Junior,1* IsraelMolina,2,3 SilvaneMaria FonsecaMurta,1 Adrián Sánchez-Montalvá,2 FernandoSalvador,2
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Abstract. Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi that infects a broad range of
triatomines and mammalian species, including man. It afflicts 8 million people in Latin America, and its incidence is
increasing in nonendemic countries owing to rising international immigration and nonvectorial transmission routes such
as blood donation. Since the 1960s, the only drugs available for the clinical treatment of this infection have been
benznidazole (BZ) and nifurtimox (NFX). Treatment with these trypanocidal drugs is recommended in both the acute and
chronic phases of CD. These drugs have low cure rates mainly during the chronic phase, in addition both drugs present
side effects that may result in the interruption of the treatment. Thus, more efficient and better-tolerated new drugs or
pharmaceutical formulations containing BZ or NFX are urgently needed. Here, we review the drugs currently used for CD
chemotherapy, ongoing clinical assays, and most-promising new experimental drugs. In addition, the mechanism of
action of the commercially available drugs, NFX and BZ, the biodistribution of the latter, and the potential for novel
formulationsofBZbasedonnanotechnology arediscussed. Taken together, the literature emphasizes theurgent need for
new therapies for acute and chronic CD.

INTRODUCTION

Chagas disease (CD) or American trypanosomiasis is a
potentially life-threatening zoonosis with the flagellate pro-
tozoan Trypanosoma cruzi as its etiological agent. An esti-
mated eight million people in Latin America are infected with
thisparasite,1 and100million living in endemicareas (i.e., 25%
of the total population in Latin America) are at risk of infection.2

Human infection also occurs in nonendemic areas because of
growing international immigration and nonvectorial trans-
mission routes such as blood transfusion, organ trans-
plantation, and congenital infection.3 In addition, orally
transmitted CD has been detected in endemic areas such as
the Brazilian Amazon because of food carrying T. cruzi that
originated from sylvatic triatomines.4

Trypanosoma cruzi has four developmental stages: the
replicative epimastigote and amastigote stages, and the
infective nonreplicative metacyclic and bloodstream try-
pomastigote stages. Infection begins when metacyclic try-
pomastigotes in the excreta of reduviid insects penetrate the
bite wound; after entering the host cell, they transform into
amastigotes that after several cycles of binary division in the
cytoplasm differentiate into bloodstream trypomastigotes.5

When released from the host cell on rupture of the cell mem-
brane, the bloodstream trypomastigotes infect neighboring
cells and, owing to their dissemination throughout the blood,
cells at other locations in the body. Amastigotes can also in-
fect cells. Innate and acquired immune responses are critical
for the control of T. cruzi and involve macrophages, natural
killer cells, natural killer T cells, T and B lymphocytes, and the
production of pro-inflammatory Th-1 cytokines such as in-
terferon-γ (IFN-γ), tumor necrosis-α, and interleukin-12.6

CD has two clinical phases. The short acute phase is mainly
oligosymptomatic but sometimes involves flulike symptoms
and is defined by patent parasitemia. The chronic phase is
characterized by fluctuating parasitemia, although most pa-
tients remain asymptomatic after several months and even
decades, characterizing the indeterminate form of CD. Ap-
proximately 30–40% develop clinical symptoms characteris-
tic of this phase, with themajority experiencing different levels
of cardiac and/or digestive tract pathologies7,8 (cardiac and
digestive forms of CD), which might be attributable to auto-
immunity initiated by molecular mimetization.9

Adrawbackof the studies assessing theefficacyofBZ in the
chronic phase of CD is the lack of a marker to define cure.
Current recommendations rely on the switch of serology from
positive to negative; however, this may take many years,
precluding its use in clinical trials. Detection of T. cruzi DNA in
peripheral blood allows having a rapid result, but it cannot be
used to define cure. Trypanosoma cruzi DNA only serves as a
tool to identify treatment failure because a negative result
does not mean absence of infection. Moreover, long pro-
spective studies to assess the value of a persistent negative
polymerase chain reaction (PCR) after treatment are lacking.
CD treatment has been explored using two approaches: de-

velopment of a preventive vaccine and identification of new ef-
fective drugs. Currently, no vaccines for CD are available or
undergoing clinical tests. The present treatment of CD, used
for > 40 years, is based on the nitroheterocyclic compounds
nifurtimox (NFX; 3-methyl-4-[59-nitrofurfurylideneamine]
tetrahydro-4H-1,4-tiazine-1,1-dioxide; Bayer 2502; Bayer,
Leverkusen, Germany) and benznidazole (BZ; N-benzyl-2-
nitroimidazole acetamide; RO7-1051; Laboratório Farmacêutico
do Estado de Pernambuco (LAFEPE), Recife, Brazil and Lab-
oratorio ELEA, Ciudad Autónoma de Buenos Aires, Argentina),
which have trypanocidal activity against all parasitic forms.
Because of the side effects, which can interrupt the therapeutic
protocol,10 and limited cure efficacy (acute phase, 50–80%;
chronic phase, 8–20%), they are considered far from ideal.11–16

In addition to the CD phase, other factors influencing the cure
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efficacy of both drugs include the treatment period, dose,
age and immune system of patient, and geographical patient
origin.11 Moreover, the existence of T. cruzi strains naturally
resistant to both drugs may partly explain the low cure rates
detected in treated chagasic patients.17

According to the World Health Organization (WHO), the
ideal drug for CD treatment should have the following char-
acteristics: parasitological cure during the acute and chronic
phases, efficacy in onedoseor a fewdoses, lowcost, absence
of side effects or teratogenic effects, and no induction of re-
sistance. However, no drugmeets all these requirements then
new, more effective, and better-tolerated compounds are ur-
gently needed.
In thepresent review,weanalyze thecurrentdata regarding the

development of new drugs for CD and discuss current treat-
ments, clinical trials, and the testing of new compounds. In ad-
dition,we review thepharmacokinetics andbiodistributionofBZ.

METHODS

We searched the Medline database for articles published in
English from 1952 to 2017 using the terms “Chagas disease”,
“benznidazole”, and “nifurtimox”. Ongoing and completed
clinical trials were queried at ClinicalTrials.gov. Google was
used for additional queries of specific references freely avail-
able on the internet.
Currentdrugsused for the treatmentofChagasdisease.

Nifurtimox. NFX was the first drug used for CD treatment.
Packchanian18 was the first to experimentally demonstrate
that nitrofurans were promising for CD treatment. Later,
Brener19 used nitrofurazone to cure chronically infectedmice.
Although important results were reported regarding treatment
with nitrofurazone,20–23 the unfavorable side effects and tox-
icity ceased its use. Clinical trials with NFX started in 1965 in

South America, and the results differed based on the disease
phase, treatment duration, patient age, and geographical
area, with the best results obtained during the acute phase in
children and patients with a recent infection (8–10 mg/kg/day
for 60–90 days)10,11; negative xenodiagnosis was achieved in
88–100% of acute phase patients who completed the treat-
ment schedule. The treatment effectiveness in adult patients
with chronic disease was low, with a cure rate of 7–8% in the
chronic indeterminate phase; however, in children < 14-years
old in the chronic asymptomatic phase, the cure rate was
significantly higher, reaching up to 85.7%.11,24 Table 1 de-
scribes the studies in which NFX was used to treat CD.
The most frequent side effects are anorexia, weight loss,

paresthesia, drowsiness or psychic excitability, and gastro-
intestinal symptoms such as nausea, vomiting, and occa-
sional intestinal cramps. Treatment with NFX, even at low
doses, hasmore intensesideeffects thanBZ; ahighnumberof
treatment attempts were interrupted because of severe di-
gestive intolerance.28 Incomplete treatment was recently
shown to lead to NFX resistance.37

Benznidazole. Near the end of the 1970s, Grunberg et al.38

showed for the first time that BZwas active against T. cruzi. BZ
was shown to have similar efficacy as nitrofurazone in both the
acute and chronic phases but with less toxic effects.39 There-
after, several experimental and clinical CD treatments using BZ
werepublished.40–43Numerousclinical studies showed thatBZ
had significant activity during the acute phase (all parasitolog-
ical and conventional serological tests had up to 80% negative
results).14,44 Although several reports have demonstrated its
effectiveness, the major limitation of BZ is the low cure rate
during the chronic phase. In 2002, Cançado15 observed cure in
76% of patients with acute phase CD (13–21-year follow-up)
and only 8% of patients with chronic phase CD (6–18-year
follow-up), supporting previous studies demonstrating the lack

TABLE 1
Summary of the studies in which nifurtimox was used to treat Chagas disease

Reference no. Year Country No. of patients Age (years)* Treatment protocol Follow-up* Results at the end of the study

25 1977 Argentina 42 Not shown 8–10 mg/kg 60–120 days ³ 12 months 27/29 negative XD
25 1977 Chile 15 Not shown 8–10 mg/kg 60–120 days ³ 12 months 12/14 negative XD
25 1977 Brazil 52 Not shown 8–10 mg/kg 60–120 days ³ 12 months 35/44 negative XD
26 1990 Brazil 50 Not shown 10–15 mg/kg 60–120 days 2 years 50% negative XD, 6% negative

serology
27 1990 Argentina 39 < 17 8–10 mg/kg 60 days 139 months 11–14% negative serology, 15%

negative XD
28 1997 Brazil 27 Not shown 5 mg/kg 30 days 1 year 100% positive serology, 8/83 positive

XD
29 1998 Chile 28 < 10 7 mg/kg 60 days 6 months 100% negative XD, 35.8% negative

PCR
30 2000 Argentina 32 13–52 5–8 mg/kg 60 days 14 years (8–23) 100% positive serology, 100%

negative XD
31 2000 Brazil 28 Adults 10 mg/kg 60 days 10 years 100% positive serology, 100%

positive PCR
32 2001 Chile 66 Children Not shown 3 years 34/36 positive serology, 100%

negative XD and PCR
33 2002 Brazil 10 38 (25–48) 8–9 mg/kg 60 days 303 months 100% positive serology, 9/10 positive

XD
34 2003 Chile 99 Children 10 mg/kg 30 days 3 years 100% negative XD, 100% negative

PCR
24 2004 Argentina 7 < 14 12–15 mg/kg 45–60 days 21 years (median) 6/7 negative serology
35 2013 Chile 21 38 (23–50) 6 mg/kg 60 days 13 months Four patients positive PCR†
36 2013 Switzerland 37 44 (22–59) 10 mg/kg 30–60 days 4 years 100% positive serology, one patient

positive PCR
PCR = polymerase chain reaction; XD = xenodiagnosis.
* The data are expressed as mean except where noted otherwise. In some instances, the range is shown in parentheses.
†PCR was performed in both the patient’s blood and fecal samples of Triatoma infestans nymphs.
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ofeffectduring thechronicphase.Table2describes thestudies
in which BZ was used to treat CD.
Drug efficacy is dependent on the susceptibility of different

T. cruzi strains to the compound.41,55,56 The existence of
strains that are naturally resistant to BZ and NFX has been
previously described and poses a major challenge to the de-
velopment of new anti-T. cruzi drugs.56 Geographical differ-
ences of T. cruzi strain might affect cure efficacy because of
parasite genetic variability. More than 80% of CD patients in
the acute or chronic phase from Chile, Argentina, and
Southern Brazil (state of Rio Grande do Sul) treated with NFX
showed a high percentage of cure based on xenodiagnosis
and serology.28 By contrast, only 40%of curewas detected in
the treated patients with CD from Brazilian states of São
Paulo, Minas Gerais, Bahia, and Goiás.
Patient age is also an important factor for BZ efficacy. In

children with CD aged 6–12 years, treated with BZ for 60 days
had a cure efficacy of approximately 56%46 and 62%,47

similar to children aged 6–12 years with an indeterminate CD
phase in Argentina,47 in which negative seroconversion was
observed in 62% of the treated group.
According to current recommendations for CD treatment

from the I Latin American Guidelines for the Diagnosis and
Treatment of Chagas Heart Disease,57 BZ chemotherapy is
indicated for children, acute cases (congenital transmission
included), laboratory accidents, and reactivation (pharma-
cologically immunosuppressed and human immunodefi-
ciency virus (HIV)-infected patients). In adult patients with an

indeterminate phase or established chronic chagasic cardio-
myopathy, indications for parasite treatment remain contro-
versial.57 However, in the largest recent study49 to show that
BZ treatment slows the development and progression of
cardiomyopathy in adults with chronic infection,49,51 566
adults with chronic infection but without advanced heart
disease were chosen to receive BZ or no treatment. Signifi-
cantly fewer treated patients showed disease progression or
electrocardiographic (ECG) abnormalities despite serocon-
version in only 15% of these patients (median follow-up,
9.8 years).49

A recent retrospective study has shown that treatment with
BZprevents the occurrence of ECGalterations and decreases
serological immunofluorescence titers in patientswith chronic
CD.58

The most frequent adverse effects observed with BZ are
skin manifestations, paresthesia, peripheral neuropathy, an-
orexia, and weight loss; decreased bone marrow, thrombo-
cytopenic purpura, and agranulocytosis are the most severe
manifestations.10,59 Side effects have led to treatment in-
terruption in approximately 12–13% of patients.18,30,49 How-
ever, other studies have found higher levels of treatment
interruption, in 25%60 and 41.5%61 of patients. These differ-
encesmight be attributable to the treatment duration (30 days
in the former and 60 days in the latter studies).
Mechanisms of action of nifurtimox and benznidazole.

Figure 1 shows the mechanism of action of NFX, BZ, and
other trypanocidal drugs.

TABLE 2
Summary of the studies in which benznidazole was used to treat Chagas disease

Reference no. Year Country No. of Patients Age* Treatment protocol Follow-up* Results at the end of the study

45 1994 Argentina 131 9–66 5 mg/kg 30 days 5–13 years 21/110 negative
serology, 18/18
negative XD

46 1996 Brazil 64 7–12 7.5 mg/kg 60 days 36 months 37/64 negative serology
28 1997 Brazil 50 Not shown 5 mg/kg 30 days 12 months 24/26 negative XD
47 1998 Argentina 106 6–12 5 mg/kg 60 days 48 months 27/44 negative

serology, 40/42
negative XD

30 2000 Argentina 36 13–52 5 mg/kg 30 days 14 (8–23) years 100%positive serology,
100% negative XD

31 2000 Brazil 17 Adults 10 mg/kg 60 days 10 years 100%positive serology,
100% positive PCR

48 2000 Argentina 130 33 (10–79) 4–8 mg/kg 45–60 days 80 months 3/130 negative
serology, 3/46
negative PCR

15 2002 Brazil 113 9–69 5–10 mg/kg 40–60 days 6–18 9/113 negative serology
24 2004 Argentina 64 < 14 5 mg/kg 30 days 13 years (median) 23/37 negative serology
49 2006 Argentina 283 39 (30–50) 5 mg/kg 30 days 9.8 years 32/218 negative

serology
50 2006 Brazil 27 49 (23–88) 5 mg/kg 60 days 24 months 24/27 negative blood

culture
51 2007 Argentina 27 17–46 5 mg/kg 45–60 days 20.6 years 9/27 negative serology,

100% negative XD
52 2009 Honduras 232 < 12 5–7.5 mg/kg 60 days 36 months 215/232 negative

serology
52 2009 Guatemala 124 < 15 5–7.5 mg/kg 60 days 18 months 18/31 negative serology
52 2009 Bolivia (Entre Rı́os) 1,409 < 15 5–7.5 mg/kg 60 days 60 months 42/1007 negative

serology
52 2009 Bolivia (Sucre) 1,040 < 18 5–7.5 mg/kg 60 days 9–27 months 0 negative serology
53 2014 Spain 26 40 300 mg/day 60 days 10 months 100%positive serology,

16/17 sustained
negative PCR

54 2015 Colombia, El Salvador,
Brazil, Argentina

1,431 55 (44–61) 300 mg/day 40–80 days 7 years 59.5% PCR+ after
treatment

PCR = polymerase chain reaction; XD = xenodiagnosis.
* The data are expressed as mean values except where noted otherwise. In some instances, the range is shown in parentheses.
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The mechanisms of action of BZ and NFX are not entirely
clear. BZ reportedly acts via reductive stress involving co-
valent modification of macromolecules such as DNA, pro-
teins, and lipids.62 In addition, BZ and its metabolites can
affect the trypanothione metabolism of T. cruzi.63 BZ also
improves phagocytosis,64 increases trypanosomal death
through IFN-γ induction,64 and inhibits T. cruzi NADH-
fumarate reductase.65

The reduction of NFX to a nitro anion radical followed by the
autoxidation of this radical produces highly toxic oxygen
metabolites.62 Its deficient metabolic detoxification mecha-
nisms for oxygen render T. cruzi highly susceptible to partial
reduction products of oxygen, particularly hydrogen peroxide;
therefore, it is more sensitive to oxidation than the vertebrate
cells.62,66

Previous studies suggest that the nitroheterocyclic com-
pounds BZ and NFX are prodrugs and require activation by
nitroreductases for cytotoxic activity.67 Interestingly, the de-
letion of copies of genes encoding two different nitro-
reductases, namely, old yellow enzyme (TcOYE, also named
prostaglandin synthase)68 and trypanosomal type I nitro-
reductase (NTR-1),67 has been associated with the resistance
of T. cruzi to NFX and BZ in vitro. A functional analysis asso-
ciated reduced NTR-1 levels in T. cruzi and T. brucei with

resistance to nitroheterocyclic compounds, whereas over-
expression of this enzyme resulted in hypersensitivity.67

NTR-1 is absent frommammals, is selective, andcatalyzes the
two-electron reduction of nitroheterocyclic compoundswithin
the parasite, producing toxic metabolites.69 Interestingly, a
recent study using a metabolomic analysis showed that the
covalent bindingofBZwith thiols aswell as protein thiols is the
majormechanismof BZ toxicity against T. cruzimetabolites.70

Although the mechanism of drug resistance in this parasite
remains poorly understood, differences in susceptibility to BZ
and NFX between T. cruzi strains17,56,71 and/or the genetic
diversity of the host56 might explain, in part, the variations in
the efficacies of these antiparasitic drugs.
In addition to its effects on T. cruzi, nitroreductive bio-

activation is also responsible for mammalian BZ toxicity be-
cause of the interaction between its reactive metabolites and
DNA, proteins, lipids, and other relevant cellular components.
Clinical trials and other studies for Chagas disease

treatment. Since the introduction of BZ and NFX, only allo-
purinol and the azoles itraconazole, fluconazole, ketocona-
zole, posaconazole (POSA), and ravuconazole (RAVU) have
been studied in clinical trials, observational studies, or clini-
cal cases.53,72–76 When designing novel drugs, specific tar-
gets of T. cruzi should be identified using cellular andmolecular

FIGURE 1. Schematic representation of the mode of action of the major drugs with trypanocidal activity. The green boxes represent drugs
currently used for treatment, the yellow boxes represent drugs in clinical trials, and the red boxes represent experimental drugs. (A) Bisphosph-
onates inhibit farnesyl pyrophosphate synthase, which reduces the levels of sterols and other essential poly-isoprenoids compounds, affecting cell
viability. (B) Nifurtimox (NFX) and benznidazole (BZ) are reduced by the parasite nitroreductase, resulting in the production of reactive oxygen
species (ROS), which directly damage the cells of the parasite. Trypanothione reductase helps relieve the oxidative stress, and inhibitors of this
enzyme, such as thioridazine and sulfoximine buthionine (SB), increase the amount of ROS in the intracellular space. (C) The ergosterol biosynthetic
pathway is essential for parasite survival. Blocking this pathway leads to loss of cell viability via depletion of essential sterols and accumulation of
toxic intermediates. Ergosterol inhibitors and fenarimol analogues target lanosterol C14 demethylase, and amiodarone and dronedarone partially
inhibit oxidosqualene cyclase. Phospholipid inhibitors block sterol synthesis, inhibit de novo phospholipid synthesis via Greenberg’s pathway, and
inhibit signal transduction enzymes such as phosphatidylinositol phospholipase C. (D) Amiodarone and dronedarone release Ca2+ from mito-
chondria and acidocalcisomes (ACs), which increases Ca2+ levels in the cytoplasmic space and compromises cell survival. (E) Cruzipain (CZ) is
typically located in the Golgi apparatus, flagellar pocket, and glycosomes and is an essential cysteine protease involved in parasite differentiation,
cell invasion, multiplication, and immune evasion. Inhibitors of cruzipain alter the Golgi apparatus, owing to the accumulation of unprocessed
cruzipain precursors. This figure appears in color at www.ajtmh.org.
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approaches to achieve both high efficacy and low toxicity.77,78

Currently, the main experimental/preclinical approaches for
anti-T. cruzi drugs are based on the inhibitors of ergosterol,
trypanothione metabolism, cysteine protease, pyrophos-
phate metabolism, protein and purine synthesis, lysophos-
pholipid analogues (LPAs), and natural drugs.79 Unfortunately,
only a few clinical trials for CD treatment are ongoing or were
performed recently (Table 3).
Ergosterol biosynthesis inhibitors. Posaconazole. POSA

(SCH 56592; Schering-Plough Research Institute) is a potent
and selective inhibitor of fungal and protozoan CYP51, a cy-
tochromeP-450 familymember. It is commercially available for
the prophylaxis of invasive fungal infections and treatment of
azole-resistant candidiasis.80 POSA also has potent trypano-
cidal activity in vitro81 and in vivo82,83 against T. cruzi strains
naturally resistant to nitrofurans, nitroimidazoles, and conven-
tional antifungal azoles.83 More importantly, POSA was more
active than the reference drug, BZ, against drug-resistant
T. cruzi strains in murine models of acute and chronic CD.83

However, recent studies have demonstrated an advantage of
BZ over POSA. In an in vitro study comparing the activity of
nitroheterocyclics with the activity of POSA and RAVU against
intracellular T. cruzi amastigotes representing all current dis-
crete typing units (DTUs), the nitroheterocyclics showedbroad,
but less potent, efficacy against all T. cruzi DTUs tested,
whereas POSA and RAVU showed variable activity and were
unable to eradicate intracellular infection even after 7 days of
continuous compound exposure.84 In an in vivo study, POSA
failed as single treatment and incombinationwithBZ toclear an
infection with a BZ-resistant strain and was less effective in
curing infections with BZ susceptible strains.85

ThesuccessdemonstratedwithPOSA inapatientwithchronic
CD and systemic lupus erythematosus86 encouraged the initia-
tion of two phase II clinical trials in CD patients (ClinicalTrials.gov
Identifiers: NCT01377480 and NCT01162967). One of these
clinical trials (CHAGASAZOL) concluded in August 2012 and
was an independent study financed by the Spanish Ministry
of Health and performed by Vall d’HebronUniversity Hospital

and the International Health Program of the Catalan Health
Institute (PROSICS).53 This multicenter, randomized, open-
label clinical trial compared BZ (5mg/kg/day for 60 days) and
twoschedulesofPOSA (100mg/12hoursand400mg/12hours
for 60 days) in 78 chronic CD patients. During the follow-up, a
greater proportion of patients had treatment failure with
POSA than BZ, as measured by positivity with real-time PCR
of T. cruzi in peripheral blood. The other study, STOPCHAGAS
(ClinicalTrials.gov Identifier: NCT01377480), was completed in
2015. The successful response, which was defined as a neg-
ative qualitative PCR value at the day 180 follow-up were the
following: POSA (13.3%), Placebo (10%), POSA + BZ (80%)
and BZ + Placebo (86.7%); P = 0.69 for POSA versus Placebo;
P < 0.0001 for POSA versus POSA + BZ. These data reinforce
the idea that BZ monotherapy is superior to POSA either as
monotherapy or as combination therapy.87

In addition, POSA is an extremely expensive drug, and its
cost can hinder its use in developing countries.88

Ravuconazole. It is a triazole derivative with potent and
broad-spectrum antifungal activity. In murine models of acute
CD, RAVU had high parasitological cure activity against
nitrofuran/nitroimidazole-susceptible (CL strain) and partially
drug-resistant (Y strain) T. cruzi strains, but no curative activity
inmice infectedwith the fully drug-resistantColombiana strain
in a model of chronic CD.89 In a canine model of acute CD,
RAVUhad potent suppressive, but not curative, activity.90 The
short terminal half-life of RAVU in mice (4 hours) and dogs
(8.8 hours) may explain these results. The longer half-life in
humans (4–8 days) encouraged its use for chemotherapy in
human CD. One advantage is the need for less frequent use
of RAVU than BZ and NFX.
Themajor advantages of RAVU include its simpler chemical

structure and low price compared with POSA.91 In 2009, the
Drugs for Neglected Diseases initiative (DNDi) collaborated
with Eisai Co. Ltd., a Japanese pharmaceutical company that
discovered E1224, to develop a new chemical entity for CD.
E1224 is aprodrug that converts toRAVU, leading to improved
drug absorption and bioavailability.76 A phase II randomized,

TABLE 3
Current status of the drugs used to treat Chagas disease

Drug Drug development In vitro assay In vivo Assay Phase I studies Phase II studies Phase III studies Phase IV/approved

BZ U U U U U U U
NFX U U U U U U U
POSA U U U U U – –

RAVU U U U U U – –

ITRA U U U U U – –

KETO U U U U X – –

VORI U U U U – – –

ALBA U U U U – – –

DO8701 U U U – – – –

TAK-187 U U U – – – –

K-777 U U U X – – –

FENARI U U U Planned – – –

FEXINI U U U U U – –

MILTEFO U U U U – – –

EDELFO U U – – – – –

ILMOFO U U – – – – –

NANO BZ U U U – – – –

SELENIUM U U U U U In progress –

ALOPU U U U U X – –

AMIO U U U U In progress – –

SCYX-7158 U U U In progress – – –

ALBA=albaconazole; ALOPU=allopurinol; AMIO=amiodarone; BZ=benznidazole; EDELFO=edelfosine; FENARI = fenarimol; FEXINI = fexinidazole; ILMOFO= ilmofosine; ITRA= Itraconazole;
KETO = ketoconazole; MILTEFO = miltefosine; NANO BZ = benznidazole nanoformulated; NFX = nifurtimox; POSA = posaconazole; RAVU = ravuconazole; SCYX-7158 = oxaborole; VORI =
voriconazole; X = interrupted.
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multicenter, placebo-controlled study evaluated the safety
and efficacy of three oral E1224 dosing regimens (high dose
for 4 or 8weeks; lowdose for 8weeks) andBZ (5mg/kg/day) in
231 adult patients with chronic indeterminate CD who were
recruited from research centers in Tarija and Cochabamba,
Bolivia (ClinicalTrials.gov Identifier: NCT01489228). E1224
showed good safety and was effective in clearing the T. cruzi,
but 1 year after treatment, only 8–31%of patients treatedwith
E1224 maintained parasite clearance compared with 81% of
BZ-treated patients, demonstrating that E1224 has low par-
asite eradication rates.76

Itraconazole. Itraconazole, a synthetic imidazole derivative,
has shown good efficacy against T. cruzi both in vitro and
in vivo.92 In a blinded study of itraconazole use (6 mg/kg/day
for 120 days) in 46 patients with chronic CD from an endemic
area of Chile, monitoring for ECG abnormalities and xenodi-
agnosis or real-time xenodiagnosis quantitative polymerase
chain reaction for T. cruzi infection was conducted before
treatment and annually for 20 years.93 The control group
consisted of 67 patients with chronic indeterminate CD who
were followed-up for 4 years, and for ethical reasons, this
group was treated after the experimental period. After the
20 years, only 10.86% of the patients had developed ECG
abnormalities, and 32.6% had negative xenodiagnosis test
results, indicating that itraconazole prevents ECG abnormal-
ities. The major limitation of this study is that xenodiagnosis
and PCRare not reliable indicators of cure because they show
low sensitivity for T. cruzi detection in chronic CD patients.14

Amiodarone/Dronedarone. Amiodarone is a class III anti-
arrhythmic agent frequently used for the treatment of symp-
tomatic patients with the clinical cardiac form of CD. It has
direct activity against T. cruzi, both in vitro and in vivo, and
potent synergistic activity with POSA.94 In addition to dis-
rupting Ca2+ homeostasis in T. cruzi by inducing Ca2+ release
from intracellular stores, specifically the single giant mito-
chondrion, amiodarone also blocks ergosterol biosynthesis.94

Treatment with amiodarone was associated with clinical im-
provement in at least one clinical case of human CD.95 An
observational study showed that cardioverter-defibrillator im-
plantation plus amiodarone reduced the risk of all-cause mor-
tality and sudden death compared with amiodarone alone in
chagasic patients with heart disease and life-threatening ven-
tricular arrhythmias.96 Currently, one clinical trial with amio-
darone is ongoing (ClinicalTrials.gov Identifier: NCT01722942),
in which the efficacy of an implantable cardioverter defibrillator
is compared with that of amiodarone in the primary prevention
of all-cause mortality in high-risk patients with chagasic car-
diomyopathy and nonsustained ventricular tachycardia; the
estimated study completion date is 2019.
The main advantage of amiodarone is its dual role; it is a

commonly used antiarrhythmic drug as well as a potent and
selective anti-T. cruzi agent.97 More recently, potent anti-
T. cruzi activity was demonstrated in vitro with dronedarone,
an amiodarone derivative designed to eliminate the thyroid
toxicity frequently observed with amiodarone treatment; im-
portantly, the 50% inhibitory concentrations against parasites
were lower than those previously reported for amiodarone.
These results suggest a possible future repurposing of dro-
nedarone for CD treatment.98

Benznidazole-new clinical trials. The BENEFIT. The most
important study in recent years was the BENEFIT project
(Benznidazole Evaluation for Interrupting Trypanosomiasis;

ClinicalTrials.gov Identifier: NCT00123916), which was a
multicenter, double-blind, placebo-controlled trial of trypa-
nocidal treatment of BZ for patientswith chronicChagas heart
disease in 54 study centers in Argentina, Bolivia, Brazil,
Colombia, and El Salvador. The objective was to evaluate the
effect on the clinical progression of Chagas’ cardiomiopathy
(mortality and other major cardiovascular clinical outcomes
in patients with chronic Chagas heart disease). Moreover, it
was intended to investigate whether etiologic treatment
significantly could reduce parasite burden, as assessed by
PCR-based techniques, and to determine the safety and
tolerability profiles of the trypanocidal drug in this chagasic
population.99,100 BZ was administered as a fixed daily dose of
300 mg for 40–80 days; the time period was adjusted
according to body weight, with a total minimum dose of 12 g
(corresponding to 40 kg) and total maximum dose of 24 g
(corresponding to 80 kg). BZ was able to reduce significantly
the detection of parasites in the circulation, but they failed to
demonstrate a reduction in the progression of cardiomyopa-
thy in the overall chagasic patients.54 However, a recent ret-
rospective study has shown that the treatment with BZ
prevents the occurrence of ECG alterations and decreases
serological immunofluorescence titers in patientswith chronic
CD.58 The different follow-up period (5.4 years and two de-
cades for BENEFIT and for the retrospective study, re-
spectively) and the clinical manifestation (patients with
established heart disease in BENEFIT and patients with a
previous normal ECG in the retrospective study) may explain
this discrepant outcome between the BENEFIT assay and the
latter as well as other studies such as the ones performed by
Viotti and coworkers.17

The TRAENA. The TRAENA (treatment in adult patients;
TRAtamiento EN pacientes Adultos [in Spanish]) study is
a clinical, randomized, double-blind, phase III study con-
ducted at Instituto Nacional de Parasitologı́a “Dr. Mario
Fatala Chaben” and aimed at determining if BZ is capable of
changing the natural evolution of chronic CD in adult patients
(ClinicalTrials.gov Identifier: NCT02386358). Treated patients
will be followed-up for 7–11 years after treatment. Because the
study currently remains blind, the present serum and parasi-
tology data refer to the total patient population, irrespective of
assignment (BZ or placebo).101

Pediatric formulation. Until recently, the only formulation
available for children (Laboratorio ELEA) was not ideal be-
cause it provided 50 mg BZ per tablet. Therefore, a phase IV
study sponsored by DNDi in collaboration with Pernambuco
State Pharmaceutical Laboratory (LAFEPE) in Brazil was
launched to respond to theneed for anage-adaptedandeasy-
to-use pediatric formulation102 (ClinicalTrials.gov Identifier:
NCT01549236) for children weighing < 20 kg (12.5 mg BZ per
tablet). All children showed complete parasitic clearance after
treatment and 12 months later. Importantly, the children had
lower blood levels of parasites than previously documented in
adults. The pediatric formulation was registered in Brazil in
2011 andwas includedon theWHO’sEssentialMedicines List
for children in 2013.
After the formulation was available, a second objective was

describing the pharmacokinetic parameters of BZ in children
with acute or early chronic indeterminate CD. Another clinical
trial (ClinicalTrials.gov Identifier: NCT00699387) with pediatric
CD patients demonstrated lower BZ concentrations in chil-
dren < 7-years old compared with older children and adults,
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indicatingmore rapidBZelimination in the former.Nevertheless,
the efficacy of curewas equal or better in patients < 7-years old,
and the children had few adverse reactions to the drug.103

Newbenznidazole regimens/combos. Aproject ledbyDNDi
has as objective the development of a new BZ and RAVU
(E1224) combination treatment regimen for chronic CD.104 A
Phase I drug-drug interaction study assessed the safety and
pharmacokinetics interaction of E1224 and BZ administered
first separately and then in combination in healthy human
volunteers, and no major clinically relevant safety or tolera-
bility issues were identified. So, a proof-of-concept (PoC)
evaluation of new treatment regimensofBZ inmonotherapy or
in combination with E1224 (now denominated fosravucona-
zole) will be assessed versus placebo, for the treatment of
adult patients with chronic CD and recruitment started by the
end of 2016.104 The objective is to determine if the safety and
tolerability issues of BZ can be managed by reduced doses
and treatment duration.
Nifurtimox-newclinical trials.Aphase Istudy (ClinicalTrials.

gov Identifier: NCT01927224) sponsored by Bayer, with
chronic CDpatients aged 18–45 years, was launched in 2013
to evaluate the bioequivalence, safety, and tolerability of a
novel 30mgNFX tablet comparedwith themarketed 120-mg
tablet when administered after a high-fat/high-calorie test
meal. This studyaimed todevelop an age-appropriate pediatric
oral dosage for CD treatment. This clinical trial, completed in
2014, showed that the new 30-mg NFX oral tablet formula-
tion was bioequivalent to the marketed 120 mg NFX. In the
absence of differences in clinically relevant safety findings,
the pharmacokinetics data show that the 30-mg tablet is
a viable formulation for administration of NFX in children.
Thereafter, a second clinical trial, phase I, required as part of
the clinical development of an age appropriate pediatric oral
dosage form, was launched to evaluate the effect of food on
the absorption of the drug as well as the safety and tolera-
bility of the novel 30 mg in adults suffering from chronic CD
when administered after a high-fat/high-calorie test meal
compared with a fasting state (ClinicalTrials.gov Identifier:
NCT02606864).
The CHICAMOCHA 3-Equivalence of Usual Interventions

for Trypanosomiasis is a randomized, blind, parallel-group
phase II/III trial that will investigate if NFX is an effective try-
panocidal agent (by comparison with placebo) and equivalent
to BZ in terms of both parasite-related and safety outcomes in
patientswith CD fromColombia andArgentinawithout clinical
signs of dilated cardiomyopathy (ClinicalTrials.gov Identifier:
NCT02369978). The estimated study completion date is 2017.
Selenium. Selenium supplementation decreases heart dam-

ageduring acute105 and chronicT. cruzi infection106 inmurine
experimental models, by protecting the heart from inflam-
matory damage without protection from infection.105 More-
over, a positive correlation between cardiac insufficiency and
low selenium levels in patients with advanced chronic cha-
gasic cardiomyopathy has been observed.107

Based on these studies, the Oswaldo Cruz Foundation and
Conselho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico launched a phase III study, the Selenium Treatment
and Chagasic Cardiopathy study (ClinicalTrials.gov Identifier:
NCT00875173), with an estimated study completion in 2020.
By studying the rate of progression and comparing ventricular
ejection fractions, this clinical trial is investigatingwhether oral
selenium treatment can reduce the progression of heart

dysfunction in chagasic patients. The primary and secondary
endpoints are a 50% reduction in the progression rate of heart
dysfunction and partial or total reversion of electrocardiogra-
phy alterations, respectively.
Newnitroimidazoles. Fexinidazole is a 5-nitroimidazole with

potent trypanocidal activity that has been rediscovered
through extensive compound mining by DNDi. It can induce
high levels of parasitological cure in mice infected with BZ-
susceptible, partially resistant and resistant T. cruzi strains in
acute and chronic experimental CD, which is an important
improvement compared with the current standard treatment
with BZ.108 Importantly, a recent study demonstrated that
sulfoxide and sulfone fexinidazole metabolites were more ef-
fective than either fexinidazole itself or BZ in treating mice
acutely infected with the partially resistant T. cruzi Y strain.109

Fexinidazole is already in phase II and phase III clinical de-
velopment for human African trypanosomiasis (ClinicalTrials.
gov Identifier: NCT01685827). Recently, a phase II PoC study
sponsored by DNDi was launched to evaluate if the treatment
with fexinidazole will lead to a better sustained clearance of
theparasites at 12monthsof follow-up inpatientswith chronic
indeterminate CD (ClinicalTrials.gov Identifier: NCT02498782).
High efficacy rates of fexinidazole encouraged the design of a
new PoC study that will be started in 2017.110

Experimental new drugs. Drug development for tropical
diseaseshas largely relied on three strategies: label extension,
piggyback discovery, and de novo drug discovery.111 Label
extension consists of extending the indications of existing
treatments for other human and animal illnesses to tropical
diseases. Piggyback discovery is used when a molecular
target present in parasites is being pursued for other (com-
mercial) indications to facilitate the identification of chemical
starting points. De novo drug discovery relies on the iden-
tification of new chemical entities as novel antiparasitic
drugs and is more long-term and expensive than the other
approaches.111

Advances in knowledge of the metabolic pathways of
T. cruzi, including the differences in themetabolismof parasite
andmammalian cells,11,112–114 have allowed the identification
of rational targets for the development of safe and more ef-
fective drugs for CD treatment. Murine models have been
used to evaluate the therapeutic efficacy of different agents
during infection with T. cruzi. Currently, protein targets are
being selected for the development of new anti-CD drugs
because of their direct involvement in the survival and rep-
lication of the parasite, as well as in disease progression.
Some compounds have trypanocidal activity in vitro and
in vivo,115 further reducing inflammation and subsequent
tissue damage.116,117

Inhibitors of trypanothione metabolism. Several studies
have identified the enzymes involved in trypanothione me-
tabolism as potential chemotherapeutic targets.118,119 Try-
panothione reductase (TR) plays an essential role in the life of
T. cruzi because it maintains the intracellular reducing envi-
ronment.119 This biochemical pathway is unique to kineto-
plastid protozoa. The structural differences between TR and
its human counterpart glutathione reductase also make TR a
promising target; whereas glutathione reductase has a nar-
row, positively charged active site to accommodate the gly-
cine carboxylates of its substrate glutathione, TR has a wider,
noncharged, and more hydrophobic active site.120 Inhibitors
of the TR pathway have recently received the attention of
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many research groups, anda variety of compounds havebeen
identified as TR inhibitors.121–124 Thioridazine, an in vitro TR
inhibitor,121 increased survival and reduced parasitemia and
cardiac injury in murine models of acute infection,125,126 al-
though parasitological cure was not observed. Inhibitors of
trypanothione metabolism, such as sulfoximine buthionine,
are potential candidates, either alone or combined with drugs
that produce free radicals such as NFX and BZ.114 Although
promising, more than 20 years of research have failed to
identify any feasible clinical candidates from these classes of
compounds.
Inhibitors of cysteine proteases. Cruzain, also known as

cruzipain, is the major cysteine protease (gp57/51) of T. cruzi
and is expressed inall developmental formsofdifferentT. cruzi
isolates.127,128 Protease inhibitors blocked amastigote and
epimastigote proliferation and metacyclogenesis in vitro,
significantly reduced parasitemia, and increased animal sur-
vival in a murine model in both CD phases.129 In the CD acute
phase, treatment of mice with irreversible cruzain inhibitors
reduced the number of cardiac lesions and intracellular
amastigotes and the levels of inflammatory infiltrates. Al-
though it is a good target, its short half-life needs large doses
and continuous administration to achieve its effect.
K-777, which was originally characterized by the Sandler

Center for Research in Tropical Parasitic Disease at the Uni-
versity of California, San Francisco, was the most promising
cysteine protease inhibitor. It is a vinyl sulfone that effectively
blocks cruzain activity and has rescued mice from the acute
phase of a lethal experimental T. cruzi infection and cleared
parasitemia in chronically infected mice without toxicity to the
mammalian host.128 It promotes the accumulation of un-
processed cruzain precursor molecules in the Golgi cisterns,
leading to parasite death.129 In an acute model of infection in
dogs, K-777 did not promote parasitological cure but signifi-
cantly reduced parasite-induced heart damage.117 Preclinical
safety and toxicology studieswere performed to complete the
investigational new drug package for clinical evaluation of
K-777 for CD treatment. Unfortunately, the development of
this compound was interrupted because of tolerability find-
ings at low dose in primates and dogs.130

Lysophospholipid analogues (LPAs). LPAs were designed
approximately four decades ago as both potential immuno-
modulators and antimetabolites of phospholipid metabo-
lism.131 The alkyl-lysophospholipids are synthetic derivatives
of LPAs that comprise a new class of compounds that are
promising for chemotherapy of diseases caused by kineto-
plastids and have in vitro and in vivo effects against T. cruzi
strains that are susceptible (Tulahuen strain), partially resistant
(Y strain), and naturally resistant to nitrofurans/nitroimidazoles
(Colombiana strain).132–134 Several studies have described
their mechanism of action against T. cruzi.135,136 In murine
models, the alkyl-lysophospholipids ilmofosine, miltefosine
(hexadecylphosphocholine), and edelfosine had suppressive
activity but did not cure the infection with T. cruzi Y strain, and
ilmofosine andmiltefosine had suppressive activity but did not
cure the infection with T. cruzi Tulahuen strain.132 In another
murine study, miltefosine promoted survival and reduced the
parasitemia of Y strain-infectedmice to levels as effectively as
BZ. Four months after treatment, no parasites were detected
in the blood or spleen tissue sections maintained in culture;
however, more sensible methods to assess a cure were not
used.133 The development of LPAs as anti-cancer agents

enables knowledge of their pharmacology, toxicology, and
tolerance in humans and reduces the drug development cost
for tropical diseases.132

Ergosterol biosynthesis inhibitors. TAK-187. TAK-187 is a
triazole with potent activity against T. cruzi in vitro and in vivo.
In a murine model of acute CD using T. cruzi strains with dif-
ferent susceptibilities to the currently available drugs, TAK-
187 treatment resulted in complete protection against death
and high levels (60–100%) of parasitological cure against all
strains. In chronic disease models, TAK-187 resulted in
80–100% survival, with parasitological cure in 80–100% of
survivors.137 Importantly, no toxic side effects were observed
in any of the experimental protocols. Another study has
demonstrated that TAK-187 is more effective than BZ in pre-
venting cardiac damage in experimental CD.138

D0870. The bis-triazole derivative D0870 has in vivo activity
against a variety of T. cruzi strains, including nitroimidazole/
nitrofuran-resistant strains, in both acute and chronic disease
murinemodels.139 D0870 treatment cured 30–45%of chronic
infections with various strains in animals, including the
Colombiana strain, whereas no cure was obtained with BZ.
Importantly, the trypanocidal activity of D0870 was largely
retained even in immunosuppressed hosts. Unfortunately,
AstraZeneca, a proprietary biopharmaceutical company,
interrupted the development of this compound because
D0870 promoted QT prolongation at modest serum concen-
trations and led to adverse cardiac events in a HIV-positive
patient receiving the drug for fluconazole-resistant oropha-
ryngeal and esophageal candidiasis.140

Albaconazole. Albaconazole (UR-9825; Uriach y Cia) is an
experimental triazole derivative with potent and broad-
spectrum antifungal activity. Its in vitro activity against
T. cruzi is comparable with that of the highly active POSA and
ketoconazole.141 However, its extremely short terminal half-
life precluded studies of in vivo trypanocidal assays in murine
models. In an acute murine model using Y strain–infected
mice, treatment with free albaconazole showed lower efficacy
than treatments with POSA, ketoconazole, and RAVU be-
cause no cure was observed. However, survival was similar to
that with ketoconazole and RAVU.142 Interestingly, Y strain–
infected mice treated with albaconazole in nanocapsules
(120 mg/kg/day administered subcutaneously) had 100%
survival and 60% negativation during a period > 120 days,
although no parasitological cure was observed.142 In a dog
model, which is more appropriate for albaconazole as-
says,143 the compound resulted in cure in 100% of animals
inoculated with T. cruzi strain Y when they were treated for
long periods (90 days). Unfortunately, although it was very
effective in suppressing parasite proliferation in animals
infected with the Berenice-78 T. cruzi strain, no parasito-
logical cure was observed (150 days of treatment). Alba-
conazole is a good candidate for the treatment of humanCD
because of its remarkably long half-life in humans and the
ability for long-term treatment (60–150 days) with minimal
toxicity.
Voriconazole. Voriconazole, an antifungal triazole derivative,

has demonstrated in vitro and in vivo activity in a murine model
of acute T. cruzi infection,144 significantly reducing the peak of
parasitemia, increasing lifespan, and decreasing mortality
compared with nontreated mice. Unfortunately, treatment with
voriconazole proved significantly less effective than the refer-
ence drug BZ in parasitemia reduction. However, the use of
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voriconazole for CD treatment is still possible because only
insignificant adverse events have been reported, and its low
toxicity profile allows potentially higher doses to overcome the
relatively low potency.
Fenarimol analogues. Fenarimol, a nontoxic plant fungicide,

haspotent activity againstT. cruzi inwhole-cell in vitro assays.
Lead compounds suppressed blood parasitemia to virtually
undetectable levels after one daily oral dose in murine models
of T. cruzi infection.145 An immunosuppressive model of
subchronic T. cruzi infection showed that the efficacy of two
fenarimol analogues was comparable with POSA and better
than BZ.146 A lead optimization consortium headed by DNDi
aimed to characterize two preclinical candidates from the
fenarimol series showing curative efficacy inmurinemodels of
CD.147 The project was in its nonregulatory preclinical phase,
with further profiling of candidates necessary before nomi-
nating one candidate for further regulatory preclinical devel-
opment. The objective was to perform good laboratory
practice safety studies and chemical, manufacturing, and
control studieswith the selected candidate compound to file a
formal investigational new drug application and to move the
candidate to first-in-man studies. Unfortunately, this project
was stopped because of the lack of sustained efficacy with
azoles (E1224 and POSA) in clinical trials for CD.
Oxaborole derivates. Anacor Pharmaceuticals (Palo Alto,

CA) has collaborated with DNDi, Murdoch University, and
Epichem (Perth, Australia) to identify a new class of oxaborole
compounds for CD treatment. The in vitro screening of T. cruzi
against the boron-containing compound collection, provided
by Anacor Pharmaceuticals, identified a number of com-
pounds more potent than BZ,148 and a recent study demon-
strated that Oxaborole SCYX-7158 cured 100% of mice
infected with the susceptible strain Brazil when administered
for 40 consecutive days.85 The phase I clinical study with
SCYX-7158 for treatment of human African trypanosomiasis
was completed in 2015, and and the phase II/III trial started in
2016.149

Inhibitors of polyphosphatemetabolism (Bisphosphonates).
Bisphosphonates are used to prevent bone resorption in hu-
mans. Risedronate, a potent bisphosphonate, has in vitro150

and in vivo activity againstT. cruzi.151 Bisphosphonates inhibit
the enzyme farnesyl pyrophosphate synthase of T. cruzi.150 A
murine model of acute CD using the Y strain demonstrated
that treatment with risedronathe reduced parasitemia and in-
creased survival.151 Another murine study investigated the
role of this drug in the development of chronic chagasic car-
diomyopathy using the nitrofuran/nitroimidazole-susceptible
strains of T. cruzi Brazil and Tulahuen152 and found a signifi-
cant reduction in the mortality of mice infected with the Brazil
strain but no effect on the survival of mice infected with the
Tulahuen strain. Unfortunately, no cure was reported in these
studies.
Purine synthesis inhibitors (Allopurinol). Allopurinol (4-

hydroxypyrazolo[3,4-d]pyrimidine) is used for treatment of
hyperuricemia in humans. The in vitro153 and in vivo154 anti-
T. cruzi activities of allopurinol were described three decades
ago. In a murine study, the compound induced highly signifi-
cant reductions in parasitemia and mortality rates and in-
creased survival time. In humans, the data regarding
allopurinol efficacy are conflicting. One study involving pa-
tients with chronic CD demonstrated that oral allopurinol was
as effective as treatment with nitrofurans, without the side

effects.27 However, other studies found that allopurinol was
ineffective in patients with acute155 or chronic CD.74,75 The
differences in T. cruzi strain susceptibility to drugs could ex-
plain the discrepancy and still need to be evaluated.
Amidine compounds and analogues. Recent research at

Fundação Oswaldo Cruz, Brazil, addressed the effects of
several amidine analogues againstT. cruzi. In vitro and in vivo
activities were found for arylimidamides156–160 and dia-
midines using experimental murinemodels of acute T. cruzi
infection.161,162 The most potent arylimidamide, DB766, ex-
hibits strong trypanocidal activity and excellent selectivity for
bloodstream trypomastigotes and intracellular amastigotes
(Y strain).159 DB766 also exerts striking effects on strains sus-
ceptible and naturally resistant to BZ and displays higher ac-
tivity in vitro than the reference drugs. In in vivo assays, DB766
effectively reduces the blood and cardiac tissue parasite load
and has similar efficacy to BZ in murine models of T. cruzi in-
fection employing the Y (partially resistant) and Colombiana
(resistant) strains. DB766 ameliorates ECGalterations, reduces
hepatic and heart lesions induced by T. cruzi, and provides
90–100% protection against mortality, similar to BZ.
Inhibitors of the kinetoplastid proteasome. Recently, a se-

lective inhibitor of the kinetoplastid proteasome (GNF6702)
with unprecedented in vivo efficacyagainstCD, leishmaniasis,
and sleeping sickness was described.163 This compound
cured mice in all three models of infection through a non-
competitive mechanism. It is well-tolerated in mice, has good
pharmacokinetic properties, and does not present activity in
panels of human receptor, enzyme, and ion channel assays.
Importantly, the dose used in experimental chronic CD was
significantly smaller than the dose of standard drug (twice-
daily at 10 mg/kg to inhibitor versus 100 mg/kg once-daily to
BZ). This inhibitor is currently being evaluated in preclinical
toxicity studies. However, because the CL susceptible strain
was used, it is very important to analyze the activity of
GNF6702 inhibitor against T. cruzi strains resistant to BZ and
NFX.164

Benznidazole encapsulation in liposomes, nanoparticles,
and other microparticles. A promising way to increase the
activity and/or selectivity of drugs is to microencapsulate them
in biodegradable polymers that continuously release their
content over time. The few studies that have evaluated BZ
encapsulated in delivery systems, especially in liposome
vesicles,165–168 attempted to improve BZ pharmacokinetics to
decrease the therapeutic dose and diminish the side effects.
Another strategy to increase activity/solubility is to encapsulate
BZ inmicroparticles suchaschitosan.169Thenew formulations,
suchas liposomes, nanoparticles, andothermicroparticles, are
expected to improve the pharmacokinetics and pharmacody-
namics of actual CD therapies by decreasing the total dose of
drug used, minimizing the toxicity profile, reducing the ap-
pearance of resistance, and increasing the tissue concentra-
tion. The main limitation of the use of such technologies is that
the encapsulation burden it might not be sufficient to give a
dosage fully efficient.
The first study using a multilamellar liposomal formulation

for BZ was performed at the outset of the 2000s.165 Kupffer
cells in the liver and spleen macrophages are major natural
targets for multilamellar liposomes. In theory, BZ encapsu-
lated in multi-lamellar liposomes should increase the amount
of drug delivered to infected Kupffer cells, and hence, eradi-
cate the amastigote nests in the cytoplasm of Kupffer cells.167
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To test this hypothesis, free BZ or liposomal BZ formulations
(0.2 mg/kg BZ) were injected intramuscularly, subcutane-
ously, or intravenously in mice. Unexpectedly, the increased
liver uptake ofBZhadnoeffect onparasitemia levels; therefore,
the relationship between increased selectivity for an infected
tissue and therapeutic effect is not always straightforward. The
mainobstacles forBZviaadeliverysystem forCDtreatmentare
the disseminated localization of T. cruzi,170 low hydrosolubility
of BZ, and absence of weak acid-base behavior, which hin-
ders BZ retention in phospholipid bilayers on dilution and the
use of an active loading method to obtain a high drug/lipid
ratio.165 However, the development of parenteral BZ formu-
lations that are more water soluble may help to overcome
these limitations.171,172

The ongoing BERENICE project, a European-sponsored
and -funded project comprising eight public and private in-
stitutions in Spain, Portugal, France, Brazil, and Argentina
aims to obtain a more effective, better-tolerated, and cheaper
BZ formulation to cureCDusing nanotechnology (http://www.
berenice-project.eu/). The first approach is to develop novel
BZ lipid-based drug delivery systems; these include solid lipid
nanoparticles, which are particulate drug carrier systems able
to achieve a sustained release of the drug, thus minimizing its
adverse effects, and small unilamellar vesicles, which are
tailored according to size, morphology, supramolecular
structure, and response to external stimuli, to improve the
pharmacological properties of the active pharmaceutical in-
gredient. The second approach is to develop a new galenic
formofBZ for sublingual delivery to allow the drug to reach the
bloodstream directly, avoid hepatic first-pass effects, and
obtain an optimum concentration. The third objective is to
establish a clinical trial platform to evaluate the tripanocidal
efficacy of the new nanoencapsulated BZ alone or in combi-
nation with new ergosterol inhibitor candidates.
Pharmacokinetic and biodistribution of benznidazole.

BZ is administered orally (two or three daily doses) and is
rapidly absorbed from the gastrointestinal tract. On average,
peak plasma levels (2.5 μg/mL) are reached 3–4 hours after
drug administration in humans, and the average relative BZ
bioavailability is 91.7%.173–176 In dogs, peak plasma con-
centration was attained rapidly (1–5 hours), with complete
bioavailability. Similar bioavailabilitywas also observed inmice,
andpeakconcentrationwasusually achievedby30minutes.177

NFX presents a similar profile because after 1–3 hours after
oral adminstration of 15 mg/kg to man the peak plasma levels
of 2–3 μg/mL was found; in dogs, the maximum plasma
concentration 4.3 μg/mL is attained within the first 2 hours
and is similar to that found in rats.178

The BZ is readily metabolized by hepatic cytochrome P450
reductase to generate toxic products, and the half-life of BZ is
12 hours in humans.173,175,176 TheNFX is biotransformed via a
presystemic, first-pass effect, generating several unidentified
metabolites, and its half-life is 3 hours.175 In animal models,
the half-life of BZ is as follows: 90minutes inmice, 4–5hours in
sheep, and 9–11 hours in large crossbred dogs. The phar-
macokinetics of BZ in mice, sheep, and dogs showed con-
siderable binding of BZ to plasma proteins, at 39% in mice,
59% in dogs, and 42% in sheep,177 compared with 58%179

and 44%173 in human plasma. Since only 5% of administered
BZ is recovered unchanged in the urine, most of the drug
is eliminated through metabolic products, although other
mechanisms (e.g., biliary and fecal excretion) cannot be

excluded. It is likely that ring cleavage also occurs.177 To the
best of our knowledge, the more complete study about BZ
biodistribution was performed inmice by Perin et al.,180 which
BZ concentration ranged from 0.1 to 100.0 μg/mL for plasma,
spleen, brain, colon, heart, lung, and kidney and from 0.2 to
100.0 μg/mL for liver after oral administration of BZ. There
were similar times to maximum concentration in organs, with
means of 40 minutes. Pharmacokinetics studies of NFX,
showed that after oral administration this drug labeled with
radioactive sulphur-35S to rats, the drug is almost completely
metabolised.181 This finding is corrobored by a study that
demonstrated that only 0.5% of NFX is excreted in the urine
after oral administration.178

Despite the widespread use of BZ, important data regarding
pharmacokinetics and pharmacodynamics are still lacking.
Newproposals tobridge these gapswill be fulfilled in the future.
A pharmacokinetics study in adult patients was completed
in May 2015 (ClinicalTrials.gov Identifier: NCT01755403).182

This clinical trial show that in the standard regimenof 5mg/kg/day
of BZdivided into two doses (2.5mg/kg/12 hour), only 5.4%of
the observed BZ trough concentrations were below 3 mg/L;
20% of them were within the optimal range (3–6 mg/L), but
most of them (74.54%) were above 6 mg/L. Furthermore, re-
sults from simulations showed that the usual dose regimen
of 2.5 mg/kg/12 hour would allow achievement of the target
of 3 mg/L during the whole interdose interval in almost all of
the treated subjects. In addition, a phase I, open-label, non-
randomized pharmacokinetic study of BZ using eight healthy
adult volunteers, performed by the BERENICE project, show
similar results.183 These findings support the rationale of pro-
posing a lower BZ dose.

CONCLUSION

Because no safe and fully effective drug is available for
CD treatment, and few drugs are being evaluated in clinical
trials, research to find new treatments for CD is urgently
needed. Drug development is expensive and time con-
suming; therefore, until few years ago “Big Pharmas” had
little interest in the development of new drugs for CD, a
highly neglected tropical disease. Research for new anti-
T. cruzidrugs reliesmainly on existingdrugs for other diseases
(label extension and piggyback discovery strategies). An al-
ternative approach is modification of the current chemother-
apy drugs for CD to diminish their toxicity and/or increase their
trypanocidal efficacy. Another alternative is improving the
selectivity of current drugs for CD chemotherapy, as pro-
posed by the BERENICE project. Fortunately, there has been
increasing interest in research for new CD drugs, as evi-
denced by ongoing or recently completed clinical trials184

and the recent programs for development of new chemical
entities for the treatment of Tropical Neglected Diseases
launched by companies such as Novartis,185 GSK,186 Pfizer
(Anacor),187 Jhonson & Jhonson (Janssen),188 Sanofi,189 and
Merck & Co., Inc.190

It is also possible to decrease the total BZ or NFX dose to
reduce their toxicity and the subsequent effect on treatment
interruption. Bustamante et al.,85 using a combined, reduced
dosing treatment regimen and intermittent protocol observed
100% cure of mice infected with T. cruzi. In addition, this
finding enables the possibility of improve the effectiveness of
BZ and NFX through the increase of time treatment.
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POSA and RAVU, the two more promising drugs for CD
treatment recently evaluated in clinical trials, had disappoint-
ing results in phase II clinical trials. However, they remain
promising because they have low toxicity in humans and are
approved for use in humans, which can reduce the time and
investment for drug development. They could also be com-
bined with the drugs currently used for CD, i.e., BZ and NFX,
and with other trypanocidal drugs, mainly those with reported
synergic activity in in vitro and in vivo studies.
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