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Abstract

Purpose—MRI-based cell tracking has emerged as a useful tool for identifying the location of 

transplanted cells, and even their migration. Magnetically labeled cells appear as dark contrast in 

T2*- weighted MRI, with sensitivities of individual cells. One key hurdle to the widespread use of 

MRI-based cell tracking is the inability to determine the number of transplanted cells based on this 

contrast feature. In the case of single cell detection, manual enumeration of spots in 3D MRI in 

principle is possible; however, it is a tedious and time-consuming task that is prone to subjectivity 

and inaccuracy on a large scale. This research presents the first comprehensive study on how a 

computer based intelligent, automatic and accurate cell quantification approach can be designed 

for spot detection in MRI scans.

Methods—Magnetically labeled mesenchymal stem cells (MSCs) were transplanted into rats 

using an intracardiac injection, accomplishing single cell seeding in the brain. T2*- weighted MRI 

of these rat brains were performed where labeled MSCs appeared as spots. Using machine 

learning and computer vision paradigms, approaches were designed to systematically explore the 

possibility of automatic detection of these spots in MRI. Experiments were validated against 

known in vitro scenarios.

Results—Using the proposed deep convolutional neural network (CNN) architecture, an in vivo 
accuracy up to 97.3% and in vitro accuracy of up to 99.8% was achieved for automated spot 

detection in MRI data.

Conclusion—The proposed approach for automatic quantification of MRI-based cell tracking 

will facilitate the use of MRI in large scale cell therapy studies.

Introduction

Cell-based therapies are poised to make a significant impact across a broad spectrum of 

medical scenarios. In regenerative medicine, stem cell transplants are in various stages of 

clinical trials for treating or slowing a myriad of diseases, including Parkinson’s disease (1)
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(2), rheumatoid arthritis (3)(4) and multiple sclerosis (5)(6). Cell-based therapy in the form 

of cancer immunotherapy is also being tested in clinical trials (7)(8). It is well acknowledged 

that imaging the location of transplanted cells, both immediately and serially after delivery, 

will be a crucial component for monitoring the success of the treatment. Two important 

applications for imaging transplanted cells are:

1. to non-invasively quantify the number of cells that were delivered or that homed 

to a particular location, and

2. to serially determine if there are cells that are leaving desirable or intended 

locations and entering undesirable locations.

For multiple reasons, including image resolution, lack of radiation, and established safety 

and imaging versatility, magnetic resonance imaging or MRI has emerged as the most 

popular and perhaps most promising modality for tracking cells in vivo following transplant 

or delivery. In general, MRI-based detection of cells is accomplished by first labeling cells 

with superparamagnetic iron oxide nano- or microparticles, though some cell types can be 

labeled directly in vivo, such as neural progenitor cells. Following transplant, these labeled 

cells are then detected in an MRI by using imaging sequences where the signal intensity is 

sensitive to the local magnetic field inhomogeneity caused by the iron oxide particles. This 

results in dark contrast in the MRI (9) (10). In the case of a transplant of large numbers of 

magnetically labeled cells, large areas of dark contrast are formed. In the case of isolated 

cells, given sufficient magnetic labeling and high image resolution, in vivo single cell 

detection is possible, indicated by a well-defined and well characterized dark spot in the 

image (See Fig. 1).

Due to the rather complex relationship between iron content, particle distribution, iron 

crystal integrity, distribution of magnetic label and cells etc., it is difficult to quantify cell 

numbers in an MRI-based cell tracking experiment. This is especially the case for a single 

graft with a large number of cells. There are efficient methods of quantifying iron content, 

most notably using SWIFT based imaging (11), but the direct correlation to cell number is 

not straightforward, due to the reasons listed above. MRI-based detection of single cells 

presents a much more direct way of enumerating cells in certain cell therapy type 

applications, such as hepatocyte transplant (10), or for immune cells that have homed to an 

organ or a tumor (12). In this case, the solution is straightforward: if dark spots in the MRI 

are from single cells, then counting these spots in the MRI should yield cell number. While 

seemingly straightforward, performing such quantitative analysis on three-dimensional data 

sets is a difficult task that cannot be accomplished using traditional manual methodologies. 

Manual analysis and enumeration of cells in MRI is tedious, laborious, and also limited in 

capturing patterns of cell behavior. In this respect, a manual approach cannot be adopted to 

analyze large scale datasets comprising dozens of research subjects. Various commercial 

software that are currently available for MRI can only assist a medical expert in conducting 

manual analysis. The problem is further compounded in the case of eventual MRI detection 

of single cells at clinical resolution, which is lower than that achieved on high field small 

animal systems. At lower image resolution, the well-defined, well-characterized dark spot 

loses shape and intensity and can be difficult to manually define in a large number of MRI 

slices.
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These hurdles highlight the pressing need to develop an automatic and intelligent approach 

for detecting and enumerating transplanted cells in MRI, meeting all the aforementioned 

challenges. An automatic and intelligent approach can allow researchers to efficiently 

conduct large scale analysis of transplanted cells in MRI, facilitating the exploration of new 

transplant paradigms and cell sources. Such generalized intelligent tools will find use across 

a broad spectrum of biomedical pursuits. However, the unique challenges of designing such 

a tool has not been addressed in any prior literature, especially in the context of detecting 

cells in MRI.

To design and evaluate an intelligent and automatic approach for cell spot detection in MRI, 

ground truth definitions, i.e., labels, that annotate spots in MRI images, are required. In (14), 

authors recognized the need for automation and adopted a threshold based strategy for 

automatically detecting spots in MRI. However, their approach was not evaluated using a 

ground truth. Although such threshold reliant approaches are not known to be intelligent for 

handling variations and diversity in data, their study in fact highlights the need for 

automation (13) (15). Automatic ML approaches have been successfully used in a wide 

range of image analysis applications (16)(17)(13). However, it is unexplored how such 

approaches can be appropriated to the problem of MRI spot detection. Further, state-of-the-

art ML approaches rely on a large volume of training data for accurate learning. 

Unfortunately, due to practical limitations, generating large scale annotated data is 

challenging in both preclinical and the clinical arenas. Annotation can also be prohibitively 

time-consuming and can only be performed by a medical expert. Hence, crowd sourcing 

approaches such as the use of Amazon’s Mechanical Turk (28), cannot be adopted for 

annotation in such applications. Therefore, the problem of spot detection using a limited 
amount of annotated training data, is an additional unaddressed challenge. In summary, the 

problem of 3D spot detection in MRI presents the following key challenges:

1. Candidate region extraction: Given an MRI scan, how can all the candidate 

regions that can potentially contain a spot be effectively and efficiently 

extracted?

2. Feature design: What will be the best feature representation to accurately 

capture the inter-class appearance variations of spots in MRI?

3. Dataset collection: Intelligent ML approaches will require annotated (labeled) 

MRI datasets for spot detection. Therefore, a diverse set of MRI scans need to be 

collected and labels must be obtained on them.

4. Learning with limited data: Further, how can state-of-the-art ML approaches 

learn to detect spots in MRI despite using very limited MRI data for training?

This paper addresses these challenges of automated spot detection in MRI and presents the 

first comprehensive study to investigate how different ML approaches encompassing three 

different paradigms, can be utilized for this purpose. Experimental results of the approaches 

proposed in this paper show that spots can be automatically detected using ML techniques in 

unseen in vivo MRI scans with an accuracy of up to 97.3%.
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Methods

Datasets

As shown in Tab. 1, a diverse set of 33 in vitro MRI scans of gel samples and 7 in vivo MRI 

scans of rat brains with transplanted stem cells were utilized in this study. More than 19, 700 

manual ground truth labels were collected on 15 of these scans (GA − GD). A flexible 

software tool (with image pan, zoom, slice advance, contrast manipulation, etc.) was 

specifically designed to allow our medical expert to put a mouse cursor over a spot in an 

MRI and click the mouse button to record that spot. These clicked points are taken as our 

ground truth (labels) on spots in MRI. In addition, theoretically computed cell numbers on 

25 scans were also utilized as ground truths during the approach evaluation.

In vitro—Imaging phantoms were constructed consisting of a known number of 4.5 micron 

diameter, magnetic microparticles with 10 pg iron per particle, suspended in agarose 

samples. Each microparticle approximates a single magnetically labeled cell with 

appropriate iron content for MRI-based single cell detection (18). T2*-weighted gradient 

echo MRI was then performed on these samples at a field strength of 7T.

As can be seen in Tab. 1, these scans have variation in resolution, matrix sizes, and amount 

of spots (labels). GE has 25 data sets, collected from 5 samples under 5 different MRI 

conditions. These conditions were variations in TE from 10 – 30 ms (signal to noise > 30:1), 

and images with low signal to noise ratio (~ 8:1) at TE = 10 and 20. The effect of increasing 

TE is to enhance the size of the spots. The higher the TE, the larger the spot (18). The 

downside of higher TE is that the physics which governs enlargement of the spot, the 

difference in magnetic susceptibility between the location in and around the magnetic 

particles and the surrounding tissue, also causes the background tissue to darken. The 

rationale to collect images with both high and low signal to noise ratio is to test the 

robustness of our spot detection procedure in two potential in vivo scenarios. Manual ground 

truths were collected from experts on 8 in vitro MRI scans of GC and GD. These sets were 

used for training and evaluating ML approaches. For GE, the theoretically computed ground 

truth was known. This set was used for a direct comparison between the automatically 

detected spots and the theoretically expected.

In vivo—Two different sets of in vivo MRI were collected from two different machines 

having different field strengths. Using one machine with a field strength of 11.7T, 5 MRI 

scans of rats were collected, which are represented by GA in Tab. 1. Three of them were 

injected intracardiac 1 – 1.5 hours prior to the scan with rat mesenchymal stem cells (MSCs) 

that had been labeled with micron sized iron oxide particles (MPIOs) to a level of ~14 pg 

iron per cell. This transplantation scheme delivers cells to the brain - an intravenous 

injection would deliver cells only to the liver and lungs. Two additional rats were not 

injected at all. Using another machine with 7T, 2 further brain MRI scans of rats were 

collected, similarly previously transplanted with MPIO labeled MSCs. GB represents these 2 

scans in Tab. 1. The rationale behind collecting these two different in vivo sets was to be 

able to validate the generalization and robustness of our learned algorithm against potential 

variations arising from different imaging systems. Note that a different amount of MSCs 
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were injected in different rats to achieve further variations in the data. All MRI were 3D 

T2*-weighted gradient echo. Further details regarding cell labeling, cell transplant, in vivo 
MRI and histology are in Supplemental Information.

Machine learning methods

In machine learning, a classification approach maps a real world problem into a 

classification task where two or more entities (classes) are to be intelligently distinguished 

from each other (see (19) for basic details). For example, classifying potential candidate 

regions in MRI as spots or non-spots will also be a classification task.

In the context of this work, classification paradigms can be categorized into three 

fundamental paradigms. In the first paradigm (P-1), discriminating information is extracted 

from the images using a pre-defined approach that is designed by an expert based on 

intuition and experience. This information may be in the form of a numeric array of values 

known as features. For each image such features along with their ground truth classification 

labels are then forwarded to another algorithm called classifier or classification technique 
which learns to distinguish between the classes. A classifier can be learned mathematical 

functions, set of if-then rules etc.

In the second paradigm (P-2), the feature representations are not manually designed by an 

expert but rather automatically learned from the data. Generally, both, feature 

representations and the classifiers are learned automatically in a single unified framework. 

Many neural network based approaches fall into this category which can take image datasets 

directly as input, along with the labels, and learn a classification model.

In a third classification paradigm (P-3), the model can be learned in the same manner as in 

P-1 or P-2. The difference here is that learning the model requires more than just the given 

task’s data (MRI data in this case). Available labeled data for other tasks such as face 

recognition, that may not be directly related to the given task, is exploited using a transfer 
learning approach. This approach is useful when collecting large scale annotated data is 

challenging.

The general architecture of this study and the differences between the ML paradigms are 

summarized in Fig. 2. Candidate regions  are located and extracted from an 

MRI scan G using the approach proposed in this study. Each candidate region xi may or may 

not contain a spot. Therefore, all candidate regions in X, along with their manual ground 

truth labels , yi ∈ {1, 0}, are then forwarded to each of the 3 machine learning 

paradigms for learning a model M. Depending on the paradigm, this model may be based on 

a set of if-then rules, mapping functions, a sequence of convolutional filters, etc. For 

example, in the context of CNN, the model M can take a candidate region as an input and 

apply a sequence of learned convolutional filters and transformation functions to finally 

output a value that either describes the candidate region as a spot or a non-spot. Thus, once 

M is learned, the proposed approach can automatically locate, extract and detect spots in any 

unseen MRI.
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Candidate Generation using Superpixels—The first challenge in this research is to 

define a candidate region. Processing each pixel as a candidate region can result in a huge 

computational burden. We addressed this issue by extracting superpixels as classification 

units from each MRI scan (15). A superpixel technique groups locally close pixels with 

similar intensities into a single unit. Since spots are usually darker than their surrounding, 

they are characterized as superpixels with lower average intensity than the surrounding 

superpixels. Based on this idea, a novel set of features based on the superpixel intensities, 

was designed. Experimental results show that these features provide superior performance 

for spot detection compared to the approach in (13). However, this approach has the 

following limitations: (1) The accuracy of the approach was dependent on the preciseness of 

the superpixel algorithms. (2) The approach assumes a superpixel based model for a spot in 

terms of its depth across consecutive MRI slices. This does not hold true for all spots in 

different MRI settings.

The strategy adopted in this paper is resilient to imprecisions in the superpixel extraction 

algorithms. Based on each superpixel unit, a representative patch is extracted from the MRI 

scan as explained in Fig. 3. Each patch is then taken as a candidate region and undergoes a 

feature extraction process. The approach is model-free and imitates the strategy adopted by a 

human labeler. All candidate patches are first detected in 2D MRI slices and then 

neighboring patches detected in consecutive slices are connected without imposing any 

restriction on their depth in 3D.

The spatial location of each patch in MRI is also recorded. Consequently, these extracted 

patches are forwarded to the machine learning algorithms as input data.

In summary, the first two paradigms focus on how to accurately and automatically 

distinguish spot patches from non-spot patches. Then using the 3rd ML paradigm, i.e., 

transfer learning, we investigated how the best approach out of the first two paradigms could 

be adapted to achieve better results despite using very limited training data.

Results

Spot detection with fixed designs (P-1)

This is the traditional and most widely adopted paradigm in computer vision and pattern 

recognition based studies (15)(13). In this paper, an elaborate set of feature extraction 

methods are utilized that extract shape, intensity, texture and context information about the 

entities in the candidate patches. In the attached supporting material, Fig. S2, Fig. S3 and 

Fig. S4 present a brief explanation on how hand-designed features can be extracted 

specifically for the task of capturing spot appearance in MRI.

Extracted features are finally concatenated to form a feature vector for each candidate patch 

xi. From this feature vector, the most useful features are selected and the irrelevant features 

are eliminated using a feature selection module that employs a correlation based feature 

selection algorithm (22). These feature vectors along with their corresponding labels are 

then forwarded to tune a classifier. In this study, a diverse group of classifiers such as 
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probabilistic (Naive bayes), functional (Multi-layer perceptron(MLP)), and decision tree 

(Random Forest), are utilized (see (23) for details).

Spot detection with learned designs (P-2)

Based on expert intuition and experience, features extracted in P-1 can be subjective. 

Therefore, the key goal of P-2 approaches is to automatically learn the most optimal spot 

feature representation from the data. Neural networks are a well-known example of P-2 

approaches.

Deep convolutional neural network (CNN) (26) (16) have been highly successful in many 

image based ML studies. Unlike P-1, these features are hierarchically learned in multiple 

layers in an automatic fashion and not hand-crafted by experts. Consider, M = f() as an 

overall classification model learned by a P-2 approach. In deep neural networks, f can be 

decomposed into multiple functional layers:

[1]

Each function, fj, j ∈ [1, u], can represent a (a) convolutional layer, (b) non-linear gating 

layer, (c) pooling layer, (d) full-connected layer (see (26, 27, 16) for more details). For a 

given task, weights for these convolutional filters are learned automatically using the 

training data. Different architectures of a CNN are created by utilizing different number of 

layers and also by sequencing these layers differently. CNN architectures also vary 

depending on the choice of the non-linear gating function. Filter sizes for convolutional 

layers are also determined depending on the application at hand. Well-known CNN 

architectures such as AlexNet (26) or GoogLeNet (32) cannot be utilized for spot detection 

in MRI. Therefore, a new CNN architecture, specifically designed for spot detection in MRI, 

is proposed here. The proposed CNN architecture has 3 composite layers and 1 fully 

connected layer (see Fig S5 in the supporting material). Each composite layer consists of a 

convolutional layer and a gating function. Note that in a conventional CNN architecture, a 

pooling layer is also used which reduces the dimensionality of the input data. However, a 

pooling layer is not utilized in this architecture due to the small size of the input patches (9 × 

9). Using a pooling layer, in this context, may result in the loss of valuable information 

which may be essential to be utilized by the next layers. Further, a gating function is usually 

added for introducing non-linearity into a CNN. Without non-linear gating, a CNN can be 

seen as a sequence of linear operations which can hinder its ability to learn the inherent non-

linearities in the training data. In conventional neural networks, a sigmoid function or a 

hyperbolic tangent function was generally utilized for this purpose. However, in recent 

studies, utilizing ReLU (Rectified Linear Units) has shown significantly superior results for 

this role (26). Therefore, the proposed architecture uses ReLU as a non-linear gating 

function.

Further customizing to the task at hand, the sizes of all the convolutional filters were kept 

small. However, their numbers were kept high. The goal was to provide a higher capacity to 

the CNN architecture for capturing a diverse set of local features of a patch. Filter sizes and 
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dimensions of resulting feature maps can be seen in Fig. S5 (of supporting material). For any 

task i, the proposed model (CNN architecture) can be written as

[2]

where γ represents a standard softmax function that can be applied to the output of the fully 

connected layer Lfc. β denotes the non-linear gating function and Cik represents the 

convolutional layer in the composite layer k.

Performance of the two paradigms

Experiments were performed to answer the following main questions: (1) Which of the two 

ML technique results in the best detection accuracy for in vivo spots in MRI? (2) How does 

the best approach perform on in vitro evaluation studies? (4) Can a ML approach learned on 

in vivo data be tested for spot detection on in vitro data? (5) How is the performance 

affected if the MRI is conducted at low resolution? (6) Is the proposed approach robust to 

the differences in MRI machines in terms of field strength, make and model etc.? 

Importantly, it is also of interest to investigate how the theoretically computed number of 

spots for in vitro MRI scans compares with the automatically detected spot numbers.

In vivo evaluation studies—In this study, the spot classification performance of a 

diverse set of approaches was evaluated using the two sets of in vivo MRI scans i.e GA and 

GB. First, experiments and results are discussed for GA that has 5 different MRI scans 

obtained from one MRI machine and labeled by one expert. Three of these in vivo scans 

contain spots that were manually labeled by experts whereas the remaining two were naive. 

Six combinations of testing and training pairs are created such that two scans are always 

present in the testing set of each pair, where one of the scans is a naive and the other 

contains spots. The remaining 3 out of the 5 scans are used for training the ML algorithms. 

Area Under the Curve (AUC) is utilized as a standard measure for classification accuracy. 

Experimental results for all the algorithms are listed in Table 2.

It was observed that the best results were achieved by a CNN, with a mean accuracy of 

94.6%. The superior performance of CNN can be mainly attributed to its ability to 

automatically explore the most optimal features using training data rather than relying on 

hand-crafted features utilized in traditional machine learning. Second, CNN learn features in 

a deep hierarchy across multiple layers. Recent research shows that such a hierarchy 

provides a superior framework to CNN for learning more complex concepts, unlike 

traditional machine learning approaches which learns in a shallow manner (26)(32)(27).

The second best results were observed with the simple MLP approach when it takes the 

carefully designed, handcrafted features as an input, rather than the raw data X. This MLP 

can be viewed as a mixed paradigm approach (P-1/2). However, the deep learning CNN that 

inherently extracts hierarchical features without using any hand crafted features resulted in 

the overall best performance. CNN detected a total of 5246, 5719 and 16048 spots in the 3 

labeled rats of GA.
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Probabilistic Naive bayes, using P-1, shows the worst detection performance with an average 

accuracy of 82.8%. This can be because naive bayes assumes complete independence 

between the features which in many practical problems may not be true. Further, it can be 

seen in Tab. 2 that J2 and J5 testing sets proved to be the most challenging with low mean 

accuracies of 87.1% and 86.3%, respectively, from all algorithms. Dataset J4 resulted in the 

overall best performance with mean accuracy of 92.5%. When investigating this, it was 

found that both J2 and J5 contained MRI scan GA1 in their test set accompanied with a 

different naive scan. It was seen that the labeled patches in GA1 were significantly more 

challenging in terms of morphology and intensity than those extracted from other scans.

The best two approaches, i.e., MLP(P-1/2) and deep CNN(P-2), were then further compared 

using another set of in vivo scans i.e GB. This data was collected from a different machine 

having a different field strength and was also labeled by a different expert. In this study, all 

the previous 5 scans of GA were used for training both approaches (creating a larger training 

set), and then the learned spot detection models were tested on the in vivo scans in GB = 

{GB1, GB2}. Note that despite the differences in machine, its field strength, and also the 

labeling expert, CNN performed best with an accuracy of 97.3% whereas the mixed 

paradigm MLP (P-1/2) achieved 95.3%. We show the ROC curves for this test in Fig. 4. In 

GB, the total number of spots detected by CNN was 4930.

In vitro evaluation studies—It can be observed that CNN yields the best result on the 

in-vivo datasets despite the simplicity of its approach. In this study, its performance is 

evaluated on the in vitro data in set GC and GD. Its performance is first tested on GC that has 

4 in vitro MRI scans each with a 100µm resolution creating a 3D matrix of (128 × 80 × 80). 

Using these 4 scans, 3 different testing and training pairs were developed. Each testing and 

training pair has 2 MRI scans. The naive MRI scan was always kept in the test set, thereby 

generating 3 combinations with the remaining other sets. It was observed that CNN 

performed with a mean accuracy of 99.6% on in vitro scans. The individual ROC plots for 

these tests are shown in Fig 4.

A different study was then conducted to see the degradation in performance when each of 

the 4 in vitro scans are obtained with a much lower resolution of 200µm creating a matrix of 

(64 × 40 × 40). Such a study is desirable since in some practical applications it may be more 

convenient to rapidly obtain an MRI at a lower resolution, particularly in human 

examinations. Using the same procedure as before, three different testing and training pairs 

were created. It was noted that the mean performance decreased to 86.6% ± 5.6. However, it 

was also seen that when the number of learning layers for CNN was increased to 5 (4 

composite and 1 fully connected) the performance improves to 90.6% ± 7.1. The individual 

improvements on all the three sets are shown in Fig. 4.

Comparison with theoretically computed spot numbers—A comparison between 

the automatically detected number of spots with the theoretically computed number of spots 

was conducted using 25 in vitro MRI scans of set GE. This is an important experiment as it 

allows a direct comparison with the actual number of injected spots. All the available data 

from GA to GD was used for training a CNN and then the trained CNN model was used for 

testing on these 25 scans in set GE. Each scan is expected to contain about 2400 spots. 
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However, it is important to understand that due to the use of manual procedures, the actual 

number of spots may vary about 2400. The results of automatic spot detection are tabulated 

in Tab. 3 under different MRI conditions.

Model generalization studies—In this section, the generalization ability of the 

proposed approach is determined by testing it in different possible practical scenarios. In 

practice, in vivo scans might be collected with different MRI machines at different 

laboratories using different field strengths. GA and GB represent two such in vivo datasets. 

As discussed before in the in vivo evaluation studies, and as shown in Fig. 4, the CNN based 

approach demonstrates robustness to such variations and achieves 97.3% accuracy despite 

such differences. Further, it is necessary to know how the performance would be affected if 

in vivo data is used for training but the in vitro data is used for testing. Therefore, an 

experiment was conducted where a CNN was trained using GA (in vivo) and then tested it 

using GC (in vitro). CNN still performed with an accuracy of 96.1%. An in vivo and in vitro 
MRI slice with automatically detected spots is shown in Fig. 5.

Spot Detection with Transfer Learning (P-3)

The success of deep learning methods for a specific application depends on the availability 

of large scale annotated datasets. Unfortunately, in many applications, especially those 

related to medical imaging and radiology, obtaining a large scale annotated (e.g., labeled) 

dataset can be challenging. Therefore the focus here is devising a strategy to improve the 

accuracy of a CNN trained only on limited samples.

The concept of transfer learning (29)(27), or inductive transfer, entails the transfer of 

knowledge from a source task (e.g., document classification) to a target task (e.g., voice 

recognition). In this paper, transfer learning is exploited in the context of stem cell detection 

in MRI data (i.e., spot detection), where there is scarcity of labeled training data. Here, 

transfer learning is implemented via CNNs and involves transplanting network layers from 

one CNN (derived from the source task) to another (spot detection - known as the target 

task). The proposed approach is explained below and the basic architecture of this approach 

is shown in Fig. 6.

First, in addition to the target data, i.e., the given MRI data X, the data of unrelated 20 

different real world source entities were collected from publicly available databases (30). 

These include images of entities such as soccer ball, cherry, egg, cat, bananas etc. (see Fig. 

S6 for all names in the supporting material). The data of each source i is denoted as Xi 

where i ∈ {1, 2, …, 20}.

Second, the data from these source tasks were geometrically transformed to ensure 

compatibility with the target task patches. Therefore, the images in Xi for each source i were 

transformed to 9 × 9 patches. This transformation is functionally denoted as T(Xi). It was 

observed that many of the down-sampled images display a spot-like pattern (as shown in 

Fig. S7 of the supporting material). However, these spots exhibit differences in their shape, 

size and intensity and, therefore, present completely different distributions.
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Third, for each Xi, a two class dataset Xib = {T(Xi), T(Bg)} was developed. T(Xi) consists of 

samples of one class (positive), while T(Bg) consists of samples of the second class 

(negative). Images for the negative class, Bg, were selected using a popular search engine by 

querying the following entries: (a) texture and patterns, (b) sky and ocean, (c) grass. It was 

observed that the transformed images of these categories show visually rough or uniform 

characteristics similar to that of the non-spot patches. Collectively, all the obtained datasets 

can be denoted as X = [X, X1b, X2b, …, X20b].

Fourth, based on each 2 class dataset Xib, a binary classification task was defined. The goal 

of this task was to learn a CNN Mi that can distinguish between patches in T(Xi) and T(Bg). 

Generally, to learn a CNN, the weights in all of its layers are first randomly initialized. Let 

this be denoted as MR. Given a dataset Xib, these weights are iteratively changed. This 

learning can be functionally denoted as Mi = Θ(MR, Xib).

Consequently, a set of 20 different source CNNs  can be learned. Using this 

approach, a CNN M = Θ(MR, X) can also be learned to differentiate between spot and non-

spot patches. Collectively, the set of learned CNNs can be denoted as M = [M, M1, M2, …, 

M20]. On the other hand, CNNs can also be learned without using a randomly initialized 

network. For example, a CNN Mxi that can distinguish between spot and non-spot patches 

can also be learned, i.e., Mxi = Θ(Mi, X). This means, that the weights already learned for a 

source task i are transferred to initialize another CNN whose goal is to learn to distinguish 

between spot and non-spot patches (target task). This transfer provides a more useful starting 

point in learning a target CNN and, thus, results in better generalization of the learned CNN. 

However, previous research shows that transferring from some source tasks may be 

significantly more beneficial than that from others (27).

Therefore, as a fifth step, the proposed approach automatically determines which source 

CNN would be the most beneficial for transfer. There is no previous literature that shows 

how to automatically rank the available source CNNs based on their predicted benefit to the 

target task. Note that this is not a learning problem where an objective function can be stated 

and then optimized using the training data. Instead, it requires a zero-shot prediction which 

is a challenging task. The approach adopted here automatically measures the potential 

usefulness of each source CNN, Mi, by measuring its characteristic Ei prior to conducting 

transfer, where:

[3]

Ji measures how different is the learned information (CNN weights) of a source CNN Mi 

from the target CNN M whereas Ui measures how discriminating is a source CNN Mi for the 

target task. For details on computing Ji and Ui, see the supporting material on source CNN 
selection.

To the best of our knowledge, this is the first attempt at ranking source CNNs for a given 

target task. Note that λ is simply a weighting parameter. In this study, λ = 0.8 was used in 
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all the experiments. Finding an optimal value of λ is not the focus here; however, a more 

optimal value may result in even better performance.

As a final step, either the top CNN Mi or a group of the top q ∈ {2, …, 20} sources can be 

selected for transfer. The selected top q sources makes a group Z ⊂ M. When using a group, 

the predictions of the multiple models are fused using a standard probabilistic approach by 

utilizing the corresponding Ei for each source CNN Mi as a prior in a bayesian formulation.

Performance of P-3—In this section, experiments were conducted to answer the 

following questions: (1) Does the spot detection benefit from transfer learning when the 

annotated training data is very limited? (2) Is the ranking of source CNNs prior to transfer, a 

beneficial procedure? (3) Why is it useful to combine information from CNNs learned from 

different sources?

In Fig. 7(A,B,C), using all of the three labeled datasets of GA, three different testing 

scenarios are shown. On the x-axis, the amount of training data was varied and on the y-axis 

the performance of differently trained CNNs was observed. The baseline method is a CNN 

that did not undergo any transfer learning and only used the target data for training. The 

remaining two CNNs underwent transfer learning with the best ranked (RS1) and worst 

ranked (RS20) sources, respectively. We observed that the performance gain due to transfer 

from the best source is significantly higher when the training data from the target dataset is 

small. For example, in Fig. 7(B), using only 5% of the training data, the accuracy 

substantially improved from 52% to nearly 78% on the test set. Such an increase is highly 

encouraging in the clinical arena where there is scarcity of data and, where, the proposed 

approach would be highly relevant.

Next, we noted that the source which was ranked the “best” significantly outperforms the 

source which was ranked the “worst”. Thus, our strategy to rank each source prior to 

invoking the transfer learning paradigm is clearly of importance. Further, we observed that 

choosing a group of top ranked CNNs can be more useful than simply choosing one. In one 

scenario, the proposed approach mistakenly ranked one source as the second best as shown 

in Fig. 7(D). However, it can be seen that the decision weighting of multiple sources resulted 

in a performance that was significantly better than the worst source when there is limited 

target training data. In fact, at many points along the x-axis, we find that the resulting 

performance was higher than the other two sources as well.

Discussion

Automated spot detection presents a set of unique challenges that were carefully considered 

while designing computer vision and machine learning based approaches.

First, for thorough evaluation and training, an annotated MRI database needed to be 

developed. Therefore, a diverse database consisting of 40 MRI scans was assembled and 

more than 19, 700 manual labels were assigned.

Second, given an MRI scan, a set of candidate regions needed to be extracted effectively. 

Each candidate region must represent a region in MRI that can potentially contain a spot. 
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This paper discussed how a superpixel based strategy can be designed to extract relevant 

regions. The proposed approach has clear advantages over some traditional alternatives.

Third, spots have high intra-class variation due to their diverse appearances in terms of shape 

and intensity. Therefore, for machine learning approaches to work effectively, a set of robust 

feature descriptors needed to be extracted from the candidate regions. A novel CNN 

architecture was designed to automatically extract the most useful spot features. The 

performance of these features was systematically compared against those extracted by 

appropriating hand-crafted feature extraction techniques. Results show that automatically 

learned features performed better with an accuracy of up to 97.3% in vivo.

Fourth, machine learning approaches typically require a large training dataset for accurate 

learning. However, in applications in the medical domain, it can be challenging to obtain a 

large volume of training data. Therefore, this paper explored how automatic spot detection 

can be performed using a limited amount of training data. A novel transfer learning strategy 

for CNNs was developed, where the best source task is automatically selected from an 

ensemble of many tasks.

It is important to note that MRI-based cell tracking has remained largely phenomenological 

for its history, starting in the late 80s. Moving forward, automated spot detection for MRI-

based cell tracking would prove useful across a broad spectrum of research tracks. For 

example, Walczak et al, infused neural stem cells via the carotid artery in an effort to target 

stroke lesions (33). High resolution in vivo and in vitro MRI appear to show small clusters 

of cells, perhaps even single cells, distributed in the brain as a function of the intervention. 

Only qualitative analysis was performed on this imaging data; automated spot detection 

would have enabled quantitative metrics of cell numbers. Another application would be for 

the evaluation of transplanted islets encapsulated with iron oxide nanoparticles within 

alginate microspheres. These imaging features, typically are individual hypointensities, 

examples being (34) and (35). In both cases, only qualitative or semi- quantitative data were 

compiled, without a direct enumeration of transplanted and surviving grafts. A last example 

would be for enumeration of kidney glomeruli in conjunction with the use of cationized 

ferritin as a contrast agent (36).

The general use of MRI-based cell tracking and this specific approach to quantifying this 

data has some limitations. Still, MRI of magnetically labeled cells only detects the iron, not 

the cell itself, and this method is still unable to distinguish live cells from dead cells. Further, 

if more than one cell generates a particular spot in the MRI, then the calculated cell number 

would be inaccurate. In this work, only 67% of spots were resultant from individual cells, 

the other 33% from 2 or 3 cells. It remains an open question as to how accurate an 

automated spot detection algorithm for MRI-based cell tracking needs to be in order to 

provide useful clinical information. However, we do not feel that heterogeneous magnetic 

cell labeling is a significant problem. Indeed, cells with more internalized iron would have 

darker and larger spots on MRI, while cells with less internalized iron would have lighter 

and smaller spots. However, our automated quantification algorithm can account for 

differences in spot size and intensity to compensate for heterogeneous cell labeling.
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Conclusion

In summary, this paper presented a comprehensive study on spot detection in MRI using 

machine learning (ML) approaches. Challenges unique to spot detection in MRI were 

highlighted. Novel approaches were designed for spot detection using different ML 

paradigms and were then experimentally compared. For this study, a new labeled database of 

MRI scans was developed. Results show that features that are automatically learned using a 

deep-learning approach outperform hand-crafted features. It was also observed that the 

transfer learning paradigm can provide significant performance improvement when the 

training dataset is small. Further, using deep convolutional neural networks, the proposed 

approach achieved up to 97.3% accuracy in vivo and about 99.8% in vitro.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Three orthogonal MRI slices extracted from 3D data sets of the brain from animals injected 

with unlabeled MSCs (top row) and magnetically labeled MSCs (middle row). Note the 

labeled MSCs appear as distributed dark spots in the brain unlike unlabeled MSCs. The 

bottom row shows three different fluorescence histology sections from animals injected with 

magnetically labeled MSCs confirming that these cells were present in the brain mostly as 

isolated, single cells. Blue indicates cell nuclei, green is the fluorescent label in the cell, red 

is the fluorescent label of the magnetic particle (See the supporting information Fig S1 for 

details).
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Fig. 2. 
(Top) Basic architecture: Three different ML paradigms P-1, P-2 and P-3 are explored to 

learn a spot detection model. (Bottom) Fundamental design phase differences between the 

three ML paradigms.
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Fig. 3. 
(Left) Illustrating the generation of candidate regions. For each superpixel a candidate patch 

is extracted. The darkest pixel in the superpixel acts as the center of the patch. (Right) A 

mosaic of several 9 × 9 patches extracted from an MRI slice. It can be seen that all patches 

have a dark region in the center representing a spot in a 2D slice.
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Fig. 4. 
Comparison and results: (Top) in vitro results 100 micron, (Middle) generalization test using 

in vivo scans, (Bottom) in vitro results 200 micron.
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Fig. 5. 
Automatic spot detection and visualizations: (left) in vitro, (right) in vivo.
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Fig. 6. 
Architecture of the transfer learning based approach.
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Fig. 7. 
Results: D represent the case where information fusion provides robustness to ranking 

mistakes.
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