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Abstract

Advancing age is accompanied by a number of clinically significant conditions arising in the 

hematopoietic system that include: diminution and decreased competence of the adaptive immune 

system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, 

and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic 

system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury 

or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem 

cell compartment significantly contribute to many of these pathophysiologies. Recent 

developments have shed light on how aging of the hematopoietic stem cell compartment 

contributes to hematopoietic decline through diverse mechanisms.

Introduction

Aging within tissue-specific stem cell compartments is believed to play a central role in the 

pathophysiology of aging in many tissues through a declining capacity to mediate normal 

homeostatic tissue maintenance and regenerative response [1•]. Hematopoietic stem cells 

(HSCs) mediate ongoing blood cell generation over the lifetime of the organism through 

their sustained ability to self-renew to preserve the stem cell pool, and to differentiate to give 

rise to all terminally differentiated blood cells. Owing to the short lifespan of many effector 

cells, blood cell production is an ongoing process with estimates suggesting the production 

of 1011 blood cells in adult humans daily. Despite the enormous proliferative and 

regenerative capacity of the hematopoietic system [2] aging is nonetheless accompanied by 

an overall reduction in hematopoietic competence [3].

Age-associated decline has been best characterized in the adaptive immune system and is 

driven, partly, by thymic involution, reduced T-cell production and function, and clonal 
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expansion of memory T-cells [4,5]. B-cell production and function is similarly attenuated, 

and as with T-cells, the B-cell pool is predominated by antigen-experienced memory cells in 

the elderly [6–8]. Compounding the deficiencies in adaptive and humoral response, 

diminished competence and integrity of epithelial barriers in the skin, lung, and gut leads to 

an increased pathogenic challenge to the innate immune system with age. As a result, 

activation of innate responses and elevated plasma levels of cytokines including IL-6, IL-1β, 

and TNFα can lead to a chronic, subclinical inflammatory state that is believed to contribute 

to the emergence and progression of a variety of age-related diseases [6,9].

The mechanisms underlying aging of the hematopoietic system are varied, and include 

intrinsic and extrinsic factors associated with the aging environment that combine to 

adversely influence hematopoietic effector cell production and function. However, 

increasing evidence suggests that age-dependent cellular and molecular alterations within 

the most primitive hematopoietic stem cell compartment may also contribute significantly to 

hematopoietic decline during aging.

Hematopoietic stem cell aging: numbers and function

A decline in the functional potential of HSCs with age is well documented in murine models 

[10–13]. Purified HSCs from young or old mice competitively transplanted against young 

whole bone marrow (WBM) cells have revealed that HSCs from old mice have a diminished 

overall reconstitution potential that may be primarily driven by age-associated DNA damage 

accumulation [14–18]. Murine HSCs also exhibit cell autonomous changes in lineage 

potential during aging showing attenuated lymphoid lineage output, whereas myeloid 

lineage potential is maintained or even increased (Figure 1) [10–13,19–21]. Consistent with 

this functional read-out, expression profiling of purified HSCs from young and old mice 

revealed that aged HSCs have decreased expression of gene programs associated with 

lymphoid specification and function, whereas genes involved in myeloid specification and 

function were upregulated [11]. These data suggest that molecular differences in the priming 

of lineage specification programs underlie the age-associated change in HSC lineage 

potential [11].

As with most tissues, aging in the hematopoietic system is associated with increased 

frequency of malignant transformation including elevated incidence of chronic and acute 

leukemias [22]. The fact that pediatric leukemias tend to involve lymphoid lineages [23], 

while myeloid leukemias become dominant in the older population [24] raises the possibility 

that age-associated changes in lineage potential of HSCs might directly influence the 

spectrum of diseases associated with hematopoietic aging [11]. In support of this, Dorshkind 

and colleagues recently evaluated the influence of age on disease outcome in an 

overexpression system utilizing BCR-ABL, the fusion gene associated with chronic 

myelogenous leukemia (CML) [24]. Enforced expression of BCR-ABL in the marrow of 

young mice led to both myeloproliferative disease (MPD) and B-cell leukemia upon 

transplantation, whereas transplantation of bone marrow from old mice expressing the fusion 

protein predominantly gave rise to MPD with rare lymphoid involvement [24]. This study 

provided compelling evidence that the age of the stem/progenitor cell compartment can exert 

profound influence on the spectrum of diseases arising during aging. Intriguingly, HSCs 

Beerman et al. Page 2

Curr Opin Immunol. Author manuscript; available in PMC 2018 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aging is accompanied by elevated expression of genes involved in the development of 

myeloid leukemia such as Aml, Pml, and Eto suggesting that upregulation of such proto-

oncogenes may be another mechanism predisposing the elderly to myelogenous disease 

development [11].

Counter-intuitively, the loss of functional activity of stem cells from old mice is concomitant 

with substantial elevation in the frequency of phenotypically defined HSCs in the bone 

marrow of common strains of laboratory mice [11–13,25]. This expansion of the HSC pool 

with age is not dictated by the age of the bone marrow microenvironment; HSCs from old 

mice maintain an increased expansion potential compared to young HSCs even upon 

transplantation into young recipients [11,26]. These results raise the possibility that a 

feedback mechanism regulating stem cell numbers may operate to compensate for the per-

cell loss in HSC function during aging by leading to an increase in the size of the stem cell 

pool.

Much less is known about the maintenance of the primitive stem cell pool during aging in 

humans. Current dogma holds that declining marrow frequencies of hematopoietic stem cells 

accompany aging and in such a way contribute to the decline of the human hematopoietic 

system with advancing age. This postulate has been supported by the observation of reduced 

cellularity in the bone marrow of the elderly [3], and by analysis of CD34+ bone marrow 

cells that showed a decrease in numbers with age in one study [27]. However, since CD34+ 

bone marrow cells are extremely heterogeneous, we sought to quantify the bone marrow 

frequency of human HSCs during aging more precisely [28–32]. To this end, we isolated 

mononuclear cells from the bone marrow of 19 consented, healthy individuals of different 

ages and stained them with a panel of 12 antibodies to identify and quantify HSCs (Figure 

2a). Strikingly, and in contrast to the previously reported age-dependent decrease of CD34+ 

BM cells, we observed a significant age-associated increase in frequency of lineage− CD34+ 

CD38− CD90+ cells (Figure 2b), a surface phenotype most rigorously used to define HSCs 

[28]. Consistent with these results, Taraldsrud et al. recently reported a significant age-

associated increase in CD34+CD38− bone marrow frequency [33••]. Thus, counter to the 

prevailing view that hematopoietic stem cell frequency diminishes during aging, these 

results suggest that the frequency of primitive human HSCs in bone marrow increases with 

advancing age. It remains to be addressed, however, whether a per-cell loss in stem cell 

activity, similar to that which has been reported in mice, also accompanies human HSC 

aging.

Hematopoietic stem cell subtypes: influence on aging

Transplantation studies evaluating whole bone marrow in limiting dilution [19,34], or using 

purified stem cell populations [35,36••,37••] have revealed the existence of functionally 

distinct HSC clonal subtypes that reconstitute irradiated recipients with distinct lineage-

biases. The fact that the defined lineage potentials of these clonal subtypes can be 

maintained through successive recipients indicates that the epigenetic marks underwriting 

the functional differences between distinct HSC subtypes are relatively stable [19,34,35,36••,

37••]. The recent demonstration that such lineage biased HSCs can be prospectively isolated 

and purified based on differential expression of Slamf1 (CD150) [36••,38••] or by differences 
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in dye efflux activity [37••] has opened the possibility of evaluating different HSC clonal 

subtypes at the molecular level. Such analysis has revealed that the functional potential 

associated with distinct clonal subtypes is underwritten by differences in lineage priming 

[36••], and that they are differently regulated by TGF-β signaling [37••].

The ability to identify HSC subtypes has also provided an opportunity to evaluate changes in 

the clonal composition of the stem cell pool during aging. Such analysis has revealed that 

HSCs clones primed toward myeloid differentiation progressively predominate the stem cell 

pool with advancing age [36••]. The mechanism propelling the age-associated predominance 

of myeloid-biased clones with age was proposed to be a more robust self-renewal potential 

compared to the lymphoid-biased stem cell subtype [36••], possibly combined with 

differential response to the aged cytokine milieu [37••]. Collectively, these studies provide 

evidence that selective expansion of myeloid-biased HSC clones with age underlies the 

change in stem cell lineage potential from lymphopoiesis to myelopoiesis associated with 

aging. These studies also raise the possibility that age-dependent changes in clonal 

composition of the stem cell compartment might ultimately be important for dictating the 

types of hematopoietic malignancies manifested at young or old ages. It remains to be 

determined if the human HSC compartment is also composed of clones with distinct 

functional potentials, and if so, how aging impacts the clonal composition of the stem cell 

pool.

Myelodysplastic syndrome and epigenetic dysregulation of stem cells

The progression from HSCs to differentiated progeny involves coordinated control of 

sequential gene expression programs leading to activation or repression of lineage-specific 

genes, which has been shown to be under epigenetic control [39–42]. As changes in lineage 

potential are central to the aging of the stem cell compartment, it is perhaps not surprising 

that age-dependent changes to the epigenome and/or epigenetic dysregulation have been 

linked to the functional decline of HSCs [1•]. In humans, the most compelling evidence for 

epigenetic involvement in HSC aging is the elevated incidence of myelodysplastic syndrome 

(MDS) in the elderly. Encompassing a spectrum of related diseases, MDS is a clonal stem 

cell disorder affecting multiple blood lineages that results from both genetic and epigenetic 

deregulation [43]. Aberrant DNA methylation patterns are thought to play an important role 

in the emergence of MDS, and methyl-silencing of a number of genes is prognostic for 

progression of the disease [44,45]. For example, the tumor suppressor p15INK4B is 

inactivated by DNA methyl-silencing in a significant percent of MDS patients, with 70% of 

these patients going on to develop acute myeloid leukemia (AML) [46]. The mechanistic 

importance of gene silencing by DNA methylation in the pathophysiology of MDS has been 

confirmed in clinical trials using two potent inhibitors of cytosine methylation, 5-

Azacytidine and 5-Aza-2′-deoxycytidine (decitabine) [47–49]. Although the precise mode 

of action of these demethylating agents in MDS remains unclear, it appears to involve 

epigenetic reprogramming and re-establishment of normal stem cell function by de-

repressing genes silenced by DNA hypermethylation [50].
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Conclusions

Aging of many tissues and organs is invariably accompanied by a reduced capacity to 

adequately maintain normal tissue homeostasis, or regenerate after injury. Consistent with 

this, many age-related conditions observed in the elderly suggest an imbalance between cell 

loss and cell renewal. The hematopoietic system is no exception, exhibiting homeostatic 

imbalance in the production of multiple effecter cells, and a predisposition to certain 

hematological diseases during aging. As discussed herein, studies have pointed toward 

intrinsic deficits in HSC function, and epigenetic dysregulation as important contributing 

factors behind hematopoietic decline and malignancy during aging (Figure 3).
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Figure 1. 
In vivo reconstitution potential and lineage potential of young and old HSCs. 500 HSCs 

(LSKCD34−Flk2−) were isolated from 3 month-old CD45.1 or 24 month-old CD45.2 mice 

and injected in lethally irradiated CD45.1/CD45.2 (F1) mice along with a radioprotective 

dose of 300,000 F1 Sca-1-depleted bone marrow cells. Representative peripheral bleed data 

(17 weeks post-transplant) illustrate the point that HSCs from old mice exhibit a lower total 

reconstitution potential. Also, in the same microenvironment, HSCs from young donors 

yield lineage-balanced reconstitution, while a myeloid bias and reduced lymphoid 

reconstitution is observed from the stem cells of old donors.
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Figure 2. 
Human hematopoietic stem cell frequency increases with age. (a) Identification of 

hematopoietic stem cells (Lineage−CD90+CD38−CD34+) from a representative human bone 

marrow aspirate. Nineteen consented individuals ranging in age from 19 to 84 donated bone 

marrow aspirates for this study. Bone marrow mononuclear cells were first gated on size 

(FSC-A) and granularity (SSC-A), followed by doublet discrimination, lineage negativity 

(negative staining for a cocktail of antibodies against antigens found on differentiated blood 

cells including glycophorin A, CD11b, CD2, CD3, CD16, CD19, CD20, CD14, and CD56), 

and viability (propidium iodide (PI) negative). Finally, CD90 positive cells were gated for 

CD34 positivity and CD38 negativity. (b) Bone marrow frequency of HSCs (Lineage
−CD90+CD38−CD34+) bone marrow mononuclear cells plotted against donor age with 

Pearson correlation (r) and p-value (P) shown. Of note, analysis of bone marrow 

mononuclear cells indicate that a significant fraction of CD34+ cells stain positively for 

lineage markers and CD38 positive (not shown) stressing the importance of using a 

comprehensive marker panel when evaluating stem and progenitor cell populations.
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Figure 3. 
Model of aging in the hematopoietic stem and progenitor cell compartment and impact on 

the aging hematopoietic system. Schematic representation of hematopoietic differentiation 

from hematopoietic stem cells (HSCs) through multipotent progenitors (MPPFlk2−, 

MPPFlk2low) lymphoid-primed multi-potent progenitors (LMPP), common lymphoid 

progenitors (CLP), common myeloid progenitor progenitors (CMP), megakaryocyte-

erythrocyte progenitors (MEP), and granulocyte-monocyte progenitors (GMP), onto mature 

effector cells during aging, and proposed impact on the aged hematopoietic system. Steady 

state frequencies of stem and progenitor cells have been reported [11–13].
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