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Abstract

Optical resonator sensors are an emerging class of analytical technologies that use recirculating 

light confined within a microcavity to sensitively measure the surrounding environment. Bolstered 

by advances in microfabrication, these devices can be configured for a wide variety of chemical or 

biomolecular sensing applications. The review begins with a brief description of optical resonator 

sensor operation followed by discussions regarding sensor design, including different geometries, 

choices of material systems, methods of sensor interrogation, and new approaches to sensor 

operation. Throughout, key recent developments are highlighted, including advancements in 

biosensing and other applications of optical sensors. Alternative sensing mechanisms and hybrid 

sensing devices are then discussed in terms of their potential for more sensitive and rapid analyses. 

Brief concluding statements offer our perspective on the future of optical microcavity sensors and 

their promise as versatile detection elements within analytical chemistry.
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1. Introduction

Advances in micro- and nanofabrication methods have played key roles in advancing 

analytical measurement technologies. Many of these capabilities have their genesis in the 

microelectronics industry, which has followed Moore’s Law towards continuously 

miniaturized complementary metal oxide semiconductor (CMOS) transistors (1). A 

byproduct of improved CMOS processing is the reliable and scalable fabrication of micro- 

and nanoscale sensing devices (2). Though the principal focus of the microelectronics 

industry has been the manipulation of electrons on microchip devices, light can also be 

manipulated on slightly longer scales by the fabrication of photonic structures such as 

waveguides and other resonant microcavities (3). These photonic circuits are most typically 

fabricated from semiconducting materials and often operate at standard telecommunication 

wavelengths (4–6). Such devices have many applications beyond the realm of traditional 

optical sensing, including optical interconnects, signal routing and processing, and long 

range telecommunications (7–10). Leveraging the ability to precisely and sensitively 

manipulate light on such small scales, optical resonators are playing an increasingly 

important role in analytical chemistry, finding applications to a multitude of analyte classes 

(11–14). While impressive results have been reported, the promise of optical resonators will 
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only be realized through the translation of devices beyond proof-of-concept demonstrations 

and their application to real-world molecular detection challenges, ranging from on-site 

environmental monitoring to personalized medicine.

Microcavity sensors share the common property that they confine light into a circular path 

and enhance the local electromagnetic field through a constructive interference resonance 

condition. Owing to similarities in interference-based modes that can satisfy propagating 

resonance conditions, these sensors are commonly called whispering gallery mode (WGM) 

resonators, referring to the acoustic phenomenon first described by Lord Rayleigh at the 

beginning of the 20th century (15). In microcavity resonators, light couples into the 

microcavity only at specific wavelengths, λr, under conditions of optical resonance, as 

defined by:

where L is the circumference of the cavity, neff is the effective refractive index sampled by 

the optical mode, and m is an integer representing the azimuthal quantum number. Changes 

in the effective refractive index at the sensor surface result in shifts in resonant wavelength 

coupled into the cavity. Light coupled into the resonant cavity results in a drop in the 

intensity of the light transmitted through the linear coupling waveguide as it propagates past 

the sensor and measurements are most commonly reported as changes in relative shift of the 

resonance wavelength (Δλr) (Figure 1).

A defining factor used to compare optical microcavities is the quality (Q) factor, defined as 

the ratio of the resonant wavelength λr to the spectral linewidth of the resonance (δλ):

The Q-factor is related to the photon lifetime within the cavity and is proportional to the 

number of times the light circulates within the microcavity. The high sensitivity of optical 

resonators derives from the repeated sampling of analytes near the sensor surface as light 

continuously propagates around the optical microcavity, drastically increasing the effective 

path length. Q-factors ranging from 103 to 1010 have been reported in the literature (16, 17), 

correlating to effective path lengths in excess of a centimeter.

More than a decade has passed since the first demonstrations of sensing with optical 

resonators (3, 18–20); however, their rapid growth in recent years is the culmination of 

advances in new sensor designs, increasing speeds of signal readout, and low-cost 

microfabrication, as well as key developments in supporting technologies (e.g., lasers, 

photodetectors, precision optics, microfluidics). The end result is a group of technologies 

that is beginning to make substantive impacts throughout analytical chemistry and related 

fields.
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Given the existing literature available for optical resonator sensors, there are a number of 

excellent reviews already available, and we point the reader to other resources with more 

comprehensive coverage of topics only briefly mentioned in this review (12–14, 21–29). 

This review seeks to highlight key developments in optical resonator sensing with a focus on 

the practical implementation of these devices to solve challenging analytical problems. First, 

we survey recent technological improvements in device fabrication, as well as discussing the 

major criterion in designing an optical resonator. We then survey notable applications of 

optical resonators as sensors, such as biomolecule and gas detection. We follow the 

discussion of applications by addressing the practical limits of optical resonators with an eye 

towards what is likely to come in the near future. Included in this discussion is the 

emergence of hybrid sensors that seek to combine the benefits of optical sensors with that of 

other existing measurement technologies, ranging from plasmonic materials to 

optomechanical devices and on-chip lasing.

2. Design of Optical Resonator Sensors

Optical resonator sensor design often involves a compromise between improved sensor 

sensitivity and scalable sensor fabrication. Rigorous micro- and nanofabrication methods, 

precise manipulation of high performance optical components, and advanced data 

processing methods enable sensors to push toward high Q-factors and more robust 

performance. Conversely, many of these improvements to an individual sensor’s 

performance come at the cost of scalable manufacturing and facile sensor operation within 

practical analytical environments (e.g., benchtop, point-of-care, field analysis).

2.1 Device Geometry

The common feature of WGM sensors is a circular path that defined an optical microcavity 

through which light is confined. Many early resonator geometries were simple structures 

such as spheres (16, 20, 30–33), toroids (17, 34), discs (19, 35–37), and rings (38–40). More 

recently, geometries including tubes (41–43), capillaries (44–48), bubbles (49), and knots 

(50) have also found utility. Figure 2 provides an overview of established sensor geometries.

An ideal microcavity that perfectly confined light would have an infinite Q-factor. However, 

perfect cavities cannot be experimentally realized as small geometric imperfections or 

absorptive losses prohibit perpetual confinement. Higher Q-factors are due to stronger 

confinement of photons within the waveguide material, which is in turn is proportional to the 

mode volume (V). Sensor design often seeks to maximize the Q/V ratio by fabricating 

smaller resonant structures, but optical losses from higher bending radii reduce the Q-factor 

(51). Sensor development has now focused on improved sensor geometries with a bending 

radius >5 μm with improved fabrication practices to maximize Q-factor.

In order to achieve high Q-factors, microcavities must be fabricated with low surface 

roughness, thereby reducing waveguide scattering losses (17). Microtoroid fabrication 

includes a reflow smoothing process to limit scattering losses, but common reflow 

techniques are limited to small sensor sizes (<500 μm) and the sensor geometry itself is not 

easily integrated within a conventional semiconductor fabrication workflow (52, 53). To 

limit scattering losses, Lee et al (52) have utilized wedge-shaped waveguides. Since 
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propagating modes in a wedge geometry are pushed away from scattering surfaces, 

fabrication defects have a reduced effect on Q. This approach is also compatible with 

conventional semiconductor processing.

Goblet and conical geometries offer Q-factors ranging from 105 to 107 by processing a 

polymer layer directly on top of a silicon substrate (54–56). These devices cannot match the 

Q-factor of toroidal or wedge geometries, though they offer potential lower-cost fabrication 

that can be parallelized. Specifically, the goblet geometry is formed from the surface tension 

induced by a thermal reflow step. The polymeric material has reduced surface roughness 

compared to standard lithographic methods, and the material is compatible with replica 

molding, though this requires a mold from an ultra-high Q-factor device (55).

2.2 Sensor Interrogation

The ability to fabricate optical microcavities reproducibly with Q-factors >105 has now 

become routine. Therefore practical applications of these technologies now are intimately 

tied to the ability to reproducibly couple light into these ultra-high Q optical microcavities. 

An ideal coupling strategy for many downstream applications would be free from complex 

optical setups (e.g., floated laser table) and capable of operating under ambient conditions. 

The first generation of microsphere resonators coupled light into the microsphere by 

aligning an adiabatic fiber taper so that the fiber overlapped with the evanescent field of the 

microsphere (20, 57). While this method allows for efficient coupling into the resonator 

geometry, optical alignment can be tedious and complicates operation of these devices 

outside of a well-controlled laboratory setting. Additionally, multiplex measurements are 

difficult to achieve with this arrangement due to rigorous demands of optical alignment and 

the challenge of simultaneously or serially interrogating multiple microcavity sensors. 

Alternatively, some geometries are well-suited to coupling via chip-integrated planar 

waveguides, obviating the need for fiber extrusion and alignment (20, 58–61). For integrated 

waveguides, light is coupled onto the chip by fiber-optic to waveguide coupling, edge 

coupling from the tunable light source to the waveguide, or surface couplers (e.g., grating 

couplers) (51). Fiber-optic to waveguide coupling and edge coupling require precise optical 

alignment of either an optical fiber or laser with the waveguide, which poses similar limits as 

fiber taper coupling methods. Surface couplers have greater tolerances for optical alignment 

because the size of the surface couplers can be larger than the waveguide (62, 63). A 

disadvantage of free space coupling with grating couplers is that often only a fixed polarity 

of light can be used (24).

There are additional possibilities for coupling light into microspheres. For example, 

microspheres resting on a surface can be interrogated via a prims (32, 64, 65). Additionally, 

the use of fluorescent microparticles as the microcavity itself eliminates the need for optical 

waveguides or fiber-optics altogether, as the fluorescence generated by a focused laser spot 

can be confined within the microcavity (66–68). The approach has been termed whispering 

gallery mode imaging, and multiplexing can be achieved by using particles of difference 

sizes and fluorescent wavelengths. Mass transfer advantages also come into play with 

microparticles as analyte capture can be achieved in free solution prior to interrogation 
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bound to a planar substrate (64). Figure 3 illustrates several common methods of optical 

microcavity interrogation.

2.3 Sensor Materials

Beyond considerations in terms of ease of fabrication, the choice of material for optical 

resonator design is also guided by the ability of the resulting cavity to strongly confine light. 

The higher the refractive index contrast between the cavity and the surrounding material, the 

greater the optical confinement. The length evanescent field extending into the sensing 

region is inversely proportional to the strength of confinement. Lower index contrast 

between cavity and sensing region leads to a larger percentage of the evanescent field 

extending into the sensing region, which then samples the local environment. Evanescent 

field strength (I) decays exponentially from the sensor surface as described by:

where I0 is in the initial field strength at the sensor surface, z is the distance from sensor 

surface, and γ is an exponential decay constant that describes the rate of field fall off (30, 

69). Taken together, the choice of materials system effects not only the degree of optical 

confinement (Q-factor), but also the proportion of light that can interact with the sensing 

region. Therefore materials system selection should be considered as one balances Q-factor 

against evanescent field penetration depth, which may vary depending upon the ultimate 

application of the device.

Due to their general ease of fabrication, silicon-based materials systems have been well-

developed for microresonator sensing applications (13). In addition to silicon-on-insulator 

(SOI), materials such as silicon carbide (SiC) and silicon nitride (Si2N3) have been used for 

sensor fabrication due to their impressive near-infrared zero-phonon emission and strong 

refractive index contrast with SiO2, respectively (70, 71). Hydrogenated amorphous silicon 

(a-Si:H) has also been used due its high refractive index (~3.5), low loss compared to 

crystalline SOI, and versatility in fabrication, as it can be deposited at lower temperatures(≤ 

300°C) (72). Titanium oxide (TiO2) is a useful material for WGM sensors due to low 

absorption in the visible and infrared wavelengths, a low thermal expansion coefficient, a 

negative thermo-optic coefficient, biocompatibility, and compatibility with CMOS 

microfabrication (73). Barium-titanate (BaTiO3) microspheres have also been used for 

sensing, offering non-optical advantages in terms of being able to perform measurements in 

small volumes (10 μL), commercial availability, and facile surface functionalization methods 

(64, 65).

Various organic polymer materials have been used for optical microcavity fabrication (54, 

55, 67, 74–85). The principal advantage of these materials is low-cost, simple 

manufacturing, and many of the resulting devices, such as the polymer microgoblets, 

maintain remarkable optical qualities with Q-factors as high as 106 (54). Polymers doped 

with fluorescent dyes and quantum dots have also been used to coat the inner walls of 

optofluidic resonators (46, 47). Isolated conjugated polymers (ICPs) are a particularly 

interesting material for WGM sensing, as they possess the advantages of free-space coupling 
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(discussed above), inherent fluorescence (i.e., no doping needed), and simple synthesis/

fabrication methods (67). However, additional developments are needed to realize full 

functionality as optical resonator sensors. Specifically, at present ICPs have a Q-factor of 

only 600 and a low refractive index (1.6–1.8), which would make sensing in liquid 

environments challenging.

2.4 Sensing Mechanisms

Nearly all implementations of optical resonators incorporate some form of photodetector 

monitoring intensity over time. As discussed above, high Q-factor devices will support 

spectrally narrow resonances that will shift as the local refractive index is modulated (Eq. 1). 

That is to say that as Δneff changes at or near the sensor surface, spectral shifts in the 

positions of resonances can be monitored as a function of time. Often presented as a drop in 

intensity measured by a photodetector of light propagating through the linear waveguide past 

the microcavity, these resonances have a Lorentzian line shape that follows:

where I(λ) is the photodetector current as a function of wavelength, I0 is the is the measured 

current under non-resonant conditions (100% transmission—maximum current) and β is the 

coupling efficiency. Importantly, sensing results can be reported in terms of a relative 

wavelength shift, Δλr, as opposed to an absolute wavelength value.

One limiting factor in the ability to precisely determine shifts in resonance wavelength is the 

tuning precision of the tunable lasers used to interrogate microcavities. Wavelength 

uncertainties as high as 20 pm can be encountered due to frequency jitter and non-ideal 

scan-voltage control. One method to improve the noise floor while still using a tunable laser 

is to scan a large spectral window (>12 nm) through multiple free spectral ranges (FSRs) in 

order to track multiple λr within a single transmission spectrum. This method can reduce the 

noise for optical resonators with moderate Q-factors (104) from >10 pm to as little as 0.1 

pm, corresponding to a limit of detection (LOD) on the order of 10−7 refractive index units 

(RIUs) (58). While higher Q-factors would assist in lowering the noise floor even further, Lu 

et al (86) achieved significant improvements in the noise floor by incorporating a thermally-

stabilized interferometer and successfully resolved a 0.1 fm shift above background. Aside 

from laser-induced noise contributions, thermal fluctuations are a major contributor to noise. 

To circumvent thermal noise, controls can be integrated onto a sensor array by coating some 

of the sensors within an inert polymer (58, 87). The coated sensors should readily respond to 

thermal changes but are shielded from bulk RI changes or surface binding events.

As an alternative to measuring shifts in resonance wavelengths, resonance broadening and 

mode splitting can also be monitored for sensing applications. Linewidth broadening refers 

to the increase in δλ, which represents a loss in Q-factor. This type of sensing is particularly 

useful for monitoring nanoparticle binding, which causes a loss of Q due to absorption and 

scattering losses (88, 89). Mode splitting occurs do to scatter-induced coupling between 

degenerate, counter-propagating spectral modes and results in the splitting of a single 
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resonance peak into two resonances. This is most commonly observed when a relatively 

large object, such as a nanoparticle, enters the evanescent field and splits a single resonance 

mode into two via scatter-induced coupling (90). A significant benefit of a mode splitting-

based detection experiment is that noise from thermal fluctuations is effectively canceled 

out, as the susceptibilities of degenerate propagating modes are identical, and while the 

absolute wavelength of resonances might shift, the degree of spectral splitting is temperature 

insensitive. These methods have been employed primarily in simultaneous detection and 

sizing of nanoparticles (90–92); however, this approach is limited to applications in which 

the target(s) being detected have substantial enough scattering properties to generate a split 

resonance. Monitoring the intensity of back-scattered light from the resonator instead of 

transmittance can be used to improve the noise floor of WGM sensing below what can be 

achieved with monitoring of mode splitting alone. Proof-of-concept experiments using an 

AFM tip to simulate the presence of a biomolecule on a microtoroid resonator surface 

demonstrated a reduction of frequency noise by seven dB and a noise floor of 76 kHz (93).

Another interesting measurement approach that demonstrated utility of microcavity 

resonators beyond simply measuring the presence or amount of bound target involved the 

simultaneous interrogation with transverse magnetic (TM) and transverse electric (TE) 

propagating modes. When the resonator material is birefringent (i.e., refractive index of the 

material is dependent on polarization of the light), each mode will have a distinct resonance 

response, which in turn can be used to extract biomolecular orientation on the sensor surface 

(94).

3. Applications of Optical Resonators

The simplest implementation of an optical resonator sensor is for bulk refractive index 

sensing using an unmodified sensor surface (46, 47, 95, 96). Unmodified sensors can also be 

used to monitor adsorption and/or desorption of an analyte onto the sensor surface, such as 

bovine serum albumin (BSA) (20, 30, 55, 57). That said, the greatest value of optical 

resonators in analytical chemistry lies in leveraging the exquisite surface sensitivity of the 

devices when functionalized with target-specific capture agents. Capture agents having high 

binding affinities and target specificities can be bound to the sensor surface—many times 

using standard covalent coupling reactions with chemically-modified sensors. Without 

question, the most extensively explored application of microcavity resonators has been for 

biosensing applications, and that will be the focus of the following sections. However, other 

applications to gas sensing, liquid chromatographic eluent detection, and heavy metal 

detection are also discussed. Other intriguing measurement modes that take advantage of 

unique electromagnetic field, force, pressure, and temperature effects of microcavity 

resonators are beyond the scope of this review; however, interested readers are referred 

elsewhere (12).

3.1 Biosensing

The biosensor community has placed a large emphasis on the development of label-free 

detection strategies. Herein, we use the phrase “label-free” to broadly describe detection 

without chemical modification to the analyte molecule. However, this does require that the 
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sensor surface be modified with a target-specific capture agent (e.g., DNA, antibody). This is 

often achieved by derivatizing the surface with a reactive functional group and then using 

standard bioconjugation techniques (97), though other methods have been utilized (26, 97).

Importantly, the performance characteristics of the resulting sensors are almost always 

extremely dependent on the binding properties of the capture agent (affinity and specificity), 

as well as the matrix in which the detection was performed. Therefore, one must take 

caution when singularly comparing limits of detection from the literature to define the 

relative promise of a particular device. That is to say that for an identical device, the limit of 

detection for a biotin-streptavidin interaction (KD ~ 1 fM) should be 4-orders of magnitude 

lower than for even a very good antibody-antigen binding pair (KD ~ 10 pM) simply on the 

basis of binding affinity along—having absolutely nothing to do with sensor performance. 

This word of caution is provided as readers should be careful when interpreting the relative 

performance of different devices as applied to different targets and from within different 

complexities of sample matrix. One other caution for readers in this field is to be sure to 

appreciate the difference between moles and molar (moles/L) concentrations. These two 

units are commonly used in reporting limits of detection, though their significance is highly 

dependent upon the sampled volume. Specifically, the absolute number of molecules in a 

solution may be very small for a small volume analysis even though the relative 

concentration, which relates directly to the number of proportionally-bound analyte 

molecules through the equilibrium dissociation constant KD, is equivalent to other reports 

that simply detected from a larger volume.

As eluded to above, an extremely simplistic biomolecular binding system is biotin-avidin 

binding (39, 40). The assay can work by tethering either biotin or an avidin derivative (e.g., 

streptavidin, neutravidin, etc.) to the sensor surface and monitoring binding of the 

corresponding target to the sensor surface. The biotin-avidin interaction is the strongest 

known non-covalent binding interaction (98). Therefore, this biotin-avidin pair can almost 

effectively be considered as a covalent bond, and this binding affinity does not adequately 

represent typical receptor-target interactions. As a result, concentration-based LODs 

determined using this system are not correlative of real-world biosensing performance. 

Sensor validation efforts focusing on more realistic targets and more complex matrices 

should be viewed as more relevant within the biosensing community.

Nucleic acid detection relies on immobilization of capture strands of DNA onto the sensor 

surface (99, 100). Nucleic acids have strong selectivity for binding to specific 

complementary sequences, as dictated by Watson-Crick base pairing interactions. Using 

microcavity sensors, single nucleotide mismatch discrimination is often achievable under 

appropriate experimental conditions (99–101). Recently, Shin et al (102) used silicon 

microring resonators to detect single nucleotide polymorphisms (SNPs) of two commonly 

mutated genes in bladder cancer, FGFR3 and HRAS, in spiked urine samples. In cases 

where label free detection of nucleic acids does not provide sufficient signal output, 

amplification strategies, such as polymerase chain reaction (PCR) can be used. Sabaté del 

Río et al (103) designed an on-chip solid-phase recombinase polymerase amplification 

method capable of real time amplification of a DNA target with a LOD of 780 fM in buffer 

conditions. In an attempt to avoid the need for PCR-based or other amplification methods, 
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Wu et al (104) implemented a DNA strand displacement circuit for detection using a WGM 

sphere with an LOD of 32 fmol. Binding of the target sequence to its complement triggers a 

catalytic network amplification, where the binding of a single target molecule triggers the 

release of multiple sequences form a multi-stranded precursor complex. This represents a 

25-fold improvement over previous microcavity-based methods for DNA detection without 

PCR-based amplification. Detection of methylation patterns in DNA sequences also 

promises to provide insight into the epigenetic regulation of gene transcription, ultimately 

controlling cell and organismal phenotype (105). Hawk and Armani (106) reported a 

microtoroid cavity modified with methylation-specific antibodies and used it to detect 

methylated DNA in buffer without the need for PCR amplification or fluorescent tagging.

The aforementioned previous reports of nucleic acid detection serve as valuable proof-of-

concept demonstrations; however, further validation in the context of real biological systems 

have also been pursued using microcavity resonators. In a follow up to their earlier study, 

Shin et al (107) developed a novel signal amplification to detect mutant genes from non-

small cell lung cancer (NSCLC) cells. The method used isothermal solid-phase 

amplification/detection (ISAD) and a double mismatched primer (DMP) set to improve 

specificity. The assay took only 20 min to complete and successfully recognized mutant 

EGFR genes in a mixture of 1% mutant and 99% wild type cells. For the detection of longer 

sequences, secondary structures can introduce steric interference with capture agent binding. 

Consequently, most assay designs for nucleic acid detection have focused on shorter (<150 

bp) sequences. Kindt et al (108) used short sequences of DNA as chaperones to enable the 

detection or whole mRNA transcripts in isolated total RNA from HL-60 cells. The 

chaperones bound to flanking regions surrounding the target binding sequence of the mRNA 

transcript. By binding to these flanking regions, the secondary structure of the mRNA was 

disrupted, enabling the mRNA to bind to the capture region on the sensor surface. A bead-

based signal enhancement was then used to enable a LOD of 512 amol. Figure 4 provides an 

overview of the nucleic acid detection and amplification methods discussed above.

As an alternative to signal or analyte amplification methods for nucleic acid detection, 

decreasing the noise floor allows for detection of oligonucleotides reaching the single 

molecule limit. Unlike detection of other biomolecules, such as proteins and metabolites, 

commonly implemented nucleic acid isolation methods result in samples with similar off-

target binding as seen in buffer conditions (109, 110). These samples are sufficiently 

processed such that biological noise may no longer be the dominant contributor to the 

uncertainty of the measurement. Baaske et al (111) fabricated a WGM sensor capable of 

monitoring single molecule interactions of nucleic acids as small as eight nucleotides. The 

sensor is a glass microsphere with a gold nanoparticle attached to the sensor surface. The 

nanoparticle greatly enhances the optical field strength enabling the discrimination of single-

molecule binding events (Figure 5). To ensure that specific binding events only occurred on 

the nanoparticle surface, only the nanoparticle was functionalized with thiol-modified 

capture oligonucleotides. The ability to monitor single molecule binding events obviates the 

need for signal or target amplification methods, while also opening up possibilities for 

stochastic sensing (112). While the detection of an 8-mer DNA strand is an impressive 

analytical feet, it should be noted that practical implementation of such a sensor would likely 

utilize longer sequences that encode greater biological significance.
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Proteins are also a routinely targeted class of biomolecules for biosensor development. 

Common capture agents utilized in microcavity-based protein detection include antibodies 

(60, 77, 113) and aptamers (114, 115). The limiting step in development of protein detection 

assays for new protein targets is often validation of high affinity and specific capture probes. 

The lack of formulaic antibody generation methods (i.e. not simply sequence 

complementarity as in nucleic acid detection) is a significant barrier faced by all antibody-

based detection schemes, as is antibody cross-reactivity, which limits the potential for 

multiplexing. Antibodies also suffer from narrower working conditions (e.g., pH range, 

buffer composition) and a tendency to denature and degrade more quickly than nucleic acids. 

Aptamers are another alternative that hold potential to avoid many of the drawbacks of 

antibodies, but generation of high affinity aptamers for a wide range of protein targets has 

proven challenging. In recent years, alternative capture agents have been used for 

biomolecule detection such as phage proteins (116) and genetically modified virus-like 

particles (117), which could offer improvements in stability and even self-assembly. As an 

alternative to standard immunoglobulin antibodies, single domain antibodies have enhanced 

stability and resistance to denaturation, and Shia and Bailey (118) previously incorporated 

these capture agents into a microcavity-based detection platform.

Many recent developments in protein detection using microcavity resonators have focused 

on performing multiplexed measurements while improving signal enhancement methods to 

measure ultra-low analyte concentrations and to perform measurements in complex matrices 

(e.g., serum). De Vos et al (77) demonstrated multiplexed detection of antibodies using 

microring resonators capturing parallel readout of all sensors using an infrared camera 

reporting a mass sensitivity of 3.4 pg/mm2. Dunn and coworkers (66, 68) applied WGM 

imaging detection of established biomarkers, including tumor necrosis factor α (TNF-α), 

cancer antigen 125 (CA-125), and osteopontin. Using BaTiO3 microspheres of varying sizes, 

they performed multiplexed measurements from serum samples of these cancer biomarkers 

with a detection limit below 100 pg/mL, an improvement upon enzyme-linked 

immunosorbent assays (ELISA). In an impressive display of sensor detection limits, 

Dantham et al (119) demonstrated the label-free detection of a single protein molecules, 

including thyroglobulin (Tg) and bovine serum albumin (BSA), corresponding to masses of 

1 ag and 0.11 ag, respectively. To gain the exquisite sensitivity necessary to observe single 

molecule binding events, a gold nanoshell was used to enhance the optical signal in similar 

manner as discussed above for single nucleic acid detection (111).

A major challenge in developing protein detection platforms is addressing biological noise. 

In contrast to nucleic acid analysis that often involves sample isolation or sequence-specific 

amplification, relevant protein detection applications often involve sensing within complex 

matrices. These matrices, such as serum, present many off-target protein species that are 

present at substantially higher concentrations than the target of interest. There have been 

efforts to minimize off-target binding onto the sensor surface (120, 121), but these 

approaches have yet to be extended to multiplex sensor operation in clinically relevant 

samples, such as serum, plasma, and other bodily fluids/tissue homogenates.

Various signal enhancement strategies have been developed to reveal analyte specific sensor 

responses within complex media. Luchansky et al (122) used sandwich antibody pairs to 
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enhance signal from protein binding from cellular secretions with limits of detection near 

100 pM with an analysis time of only 5 min. Bead-based amplification methods can further 

extend limits of detection below 100 pg/mL and can be incorporated within an assay scheme 

giving a total dynamic range of over six orders of magnitude (123, 124). Another method of 

signal enhancement is the use of enzymatic labels. By attaching an enzyme to tracer 

antibodies in a sandwich immunoassay, the signal from binding events on the sensor surface 

can be amplified by rapid turnover of an enzymatic substrate. This method can results in 

assays with sub-pg/mL detection limits (125). This enzymatic amplification methods was 

subsequently enabled multiplex phosphoprotein measurements with LODs of 0.6 pM in 

buffer conditions (Figure 6) (126). The 12-plex phosphoprotein measurements were 

performed on cell lysate and tumor tissues homogenate of primary glioma samples.

Aside from nucleic acid and protein detection, optical resonator sensors have been applied to 

other classes of biomolecule detection. Examples of this work include phospholipid 

modification of microgoblet arrays for investigating lipid binding or other lipid-biomolecule 

interactions (80, 127). Lipid bilayer assembly dynamics were observed by monitoring 

bilayer formation in real time (128). This experimental scheme was also used to observe 

detergent solubilization of lipid bilayers. Microspheres bonded to glass using a modified 

calcium-assisted glass bonding method have been used to study lipid membrane dynamics 

with embedded gangliosides (65). For this study, lipid bilayers were transferred onto the 

sensor substrate using a Langmuir-Blodgett trough.

Beyond in vitro methods for biomolecule detection, free-floating microsphere resonators 

offer exciting possibilities for in vivo biomolecular imaging. Polystyrene-divinylbenzene 

(PS-DVB) microspheres can be reproducibly fabricated with radii ranging between 5 and 10 

μm, and these microspheres are readily incorporated into eukaryotic cells via endocytosis 

(85). These particles maintain high Q-factors of up to 108 and maintains a 104 Q-factor even 

when engulfed by a single cell (Figure 7). By doping the polymer microspheres with dye, 

intracellular lasing can be achieved from pumping with 1 nJ pulse energy. Lasing 

wavelength and pump energy threshold is dependent on microsphere size, refractive index 

contrast, and dye dopant, and variants in lasing wavelength can be used for specific tagging 

of individual cells. The narrow spectral linewidth of both the WGM resonance and lasing 

line provide unambiguous cell barcoding at plexities of 100s to 1000s of unique probes, 

which is a major improvement over competing labelling methods such as fluorescent dyes 

and proteins, quantum dots, or plasmonic nanoparticles. Dye-doped microspheres composed 

of soft materials, such as injected oils or endogenous lipids, can also be used for intracellular 

lasing (81). Polyphenyl ether (PPE) mixed with Nile red and injected into cells forms small 

droplets ranging from 4–20 μm in diameter, and lasing occurs upon pulsed excitation with 

droplets larger than 7 μm. Doped PPE droplets can be used for monitoring the dynamics of 

cytoplasmic internal stress with sensitivities of 20 pN μm−2. Beyond injected PPE lipids, 

endogenous lipids present in adipocytes for spherical droplets can support lasing, though at 

higher excitation energies (Figure 7). Injection of collagenase and a lipophilic dye into the 

subcutaneous fat layer of porcine tissue releases adipocytes from the tissue matrix, allowing 

adipocytes to form more spherical shapes. Using an optical fiber inserted through a needle 

puncture to excite the released adipocytes enabled lasing within tissues (Figure 7).
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3.2 Micro-Gas Chromatography

Due to the higher refractive index contrast between sensor and sensing medium, simple 

sample composition, and improved mass transfer, gas phase sensing is an attractive 

application for optical resonator sensors, particularly in the realm of gas chromatography. 

Shopova et al (129) developed the first optical sensor that functioned as a micro gas 

chromatography detector using a capillary-based optical ring resonator. Here, the 

microcavity localizes light onto the interior surface of the capillary allowing gas molecules 

for this detector to be simply flowed as in a standard gas chromatography detection 

experiment. Scholten et al (76) developed an improved detector from the capillary-based 

system for microscale gas chromatography by using an optofluidic ring resonator with an 

optical fiber taper. The system had integrated fluidic connections, and signal response was 

due to swelling of a 300 nm PDMS layer lining the sensor cavity. The LOD for steady-state 

sensing was 0.5 ppm for m-xylene and ethylbenzene and <10 ppm for all analytes tested. In 

a follow-up study (78), the authors further developed the microscale gas chromatography 

system, using a multilayer film composed of polyether doped with gold nanoparticles cast 

onto the inner wall of the resonator structure to improve the system response. Baseline 

separation of five volatile organic compounds (VOCs) was achieved in less than 2 min with 

a detection limit <100 ng. In addition to capillary-and ring-based gas detection systems, 

porous glass microspheres are also promising for gas detection applications (43).

3.3 Other Sensor Applications

Though the major focus of WGM sensor development in the liquid phase sensing has been 

on the detection of biomolecules, the sensors are generally applicable to any type of analyte 

that can be localized to the sensor surface. Panich et al (130) designed a novel sensor for 

Pb(II) detection in aqueous samples. Glass microsphere resonators coated with aminopropyl 

trimethoxysilane (APTMS) were subsequently functionalized with glutathione-coated gold 

nanoparticles. Exposure to Pb(II) resulted in a shift in the resonance peak. The sensor was 

able to quantitate Pb(II) concentrations ranging from 2 – 50 nM, and operated in the 

presence of potentially interfering alkaline and heavy metal species. An additional 

application of interest is the use of microcavity sensors as bulk refractive index detectors for 

the detection of liquid chromatographic separations. Unlike differential refractometers, 

microring resonators arrays are compatible with both isocratic and gradient separations 

methods. Proof-of-concept experiments have been performed on small molecule therapeutics 

(e.g., ibuprofen) (131). Optical resonators can also been integrated with other analytical 

tools, such as scanning probe microscopy. Using a 45 μm BaTiO3 microsphere attached to 

an atomic force microscopy (AFM) cantilever, Wildgen and Dunn (132) performed scanning 

resonator microscopy. Measurements from this hybrid sensor provide topographical 

mapping as well as a WGM spectrum that is sensitive to changes in refractive index 

occurring in the solution as well as on the substrate surface. The method was able to resolve 

a 36 nm high feature on a glass substrate, and image contrast was derived from refractive 

index measurements that did not couple with sample tomography. Other proof-of-concept 

experiments were performed on polymer films and protein-coated surfaces. While not 

utilized in this study, future applications of scanning resonator microscopy (SRM) could 

functionalize the surface of the BaTiO3 microsphere with capture agents specific for an 

analyte of interest on a given substrate, enhancing the utility of the technique.
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4. Alternative Sensing Mechanisms

As an alternative to passive microcavities, a new class of active resonator devices that utilize 

optical gain strategies to achieve detection have recently emerged (133). Much like 

nanoparticle-induced mode splitting for passive resonators, the splitting of laser emission 

from active resonators can be used to monitor binding events at the sensor surface, and the 

pattern of splitting can be detected as a heterodyne beat note, with the beat frequency 

corresponding to the level of frequency splitting for the lasing modes. Active resonators with 

low lasing thresholds can be fabricated by doping a SiO2 microcavity with erbium (Er:SiO2) 

(134). An Er3+ ion dopant concentration of 5 × 108 ions cm−3 produces continuous-wave 

laser operation, enabling several impressive measurements: 30 nm polystyrene and 20 nm 

gold nanoparticles in air and a single influenza A virus in water. Unfortunately, doping 

active resonators with rare-earth ions introduces substantial challenges for generating 

scalable, robust devices due to increased cost of materials and incompatibility with standard 

CMOS fabrication. Özdemir et al (135) avoided the use of Er3+ doping by using Raman gain 

within a silica microtoroid to create on-chip microlasers. Raman gain is derived from 

stimulated Raman scattering that occurs with high power pumping, though the necessary 

input power can be dramatically reduced when coupled with optical microcavities (136). 

Raman microlasers have the chief benefit of not requiring any dopant for low-threshold 

lasing, translating into significantly reduced fabrication cost. Using this experimental 

scheme, nanoparticles as small as 10 nm were detected. Though all experiments were 

performed in a dry environment, Raman lasers have been demonstrated in liquid 

environment, making this an intriguing strategy for future sensor development efforts (137).

On-chip lasing and back-scattered light detection can provide substantial reductions in 

baseline noise, significantly improving LOD over passive optical resonators with 

wavelength-shift or conventional mode-based sensing mechanisms, but measurement 

timescales for these devices have been limited to milliseconds or longer. Cavity ring-up 

spectroscopy (CRUS) can be used with optical resonator sensor to achieve ultrafast sensing, 

reducing the timescale of measurements to as little as 16 ns (138). The working principle of 

CRUS derives from the abrupt turn-on of far-detuned probe pulses. The probe pulses are 

coupled into the optical microcavity with a tapered optical fiber, and since the pulse are 

detuned away from resonance wavelengths, almost all of the light continues propagating 

down the optical fiber. The short rise time of the pulse results in large spectral broadening, 

which overlaps with the resonance conditions and introduces a small field strength in the 

optical cavity. The electromagnetic field within the resonator constructively interferes with 

the propagating light creating a ring-up signal. Potential applications of measurements on 

such precise levels include biological processes such as protein folding or enzyme kinetics 

(139).

5. Hybrid Sensors

The observation of single binding events with optical resonators was first demonstrated for 

nanoparticles, using polystyrene beads or viruses as model analytes (33, 86, 91, 92, 134, 

140, 141). Novel device designs have recently emerged as method to push the detection 

limits to the level of single protein and single nucleic acid binding events by incorporating 
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plasmonic materials with existing WGM sensor designs, which can induce large increases in 

electric field strength through coupling with localized surface plasmons. This effectively 

enhances light matter interactions within the evanescent sensing region (142, 143). The most 

obvious method to combine WGM and plasmonic sensing would be to coat a WGM with a 

thin layer of noble metals (e.g., Au, Ag); however, large optical losses due to photon 

scattering substantially reduce the Q-factor for these devices (144). Instead of complete 

coverage of a sensor surface, single plasmonic nanoparticles bound to the surface of a 

microcavity sensor allow for signal enhancement by up to 1000-fold while maintaining high 

Q-factors. These devices have been used for detection of single nanoparticles, viruses, 

proteins, and nucleic acids. (111, 119, 143, 145). Baaske et al (111) were able to 

demonstrate discrimination of single base pair mismatches using such approach, as 

described above and highlighted in Figure 5. A theoretical investigation into WGM-

plasmonic hybrid sensors showed that the nanoparticle would exhibit ideal signal 

enhancement if placed at periodic locations around the equator of a microsphere resonator 

(145). While this configuration has yet to be experimentally realized, it provides further 

motivation for the development of this class of hybrid sensing devices.

Optomechanical devices are another type of hybrid sensor that places an optical resonator on 

a structure that allows for mechanical oscillations via radiation pressure (146). These devices 

are driven by Brownian fluctuations, which physically displace the resonator, resulting in a 

change in both the path length and resonant frequency of the microcavity. The sensitivities 

of these devices are exquisite, approaching the shot noise limit, but device operation in 

liquid mediums is challenging due to viscous dampening (146). One approach to avoid 

viscous dampening is to use hollow-core resonator geometries where the solution flows 

through the center of the structure (147, 148). Fong et al (149) used a suspended microwheel 

structure embedded in a microfluidic system that allows for stable sensor operation in an 

aqueous environment. The device is fabricated form 200 nm thick Si3N4 with microfluidic 

channels formed by etching the SiO2 cladding layer (Figure 8). Light is coupled into the 

optomechanical resonator via etched gratings and fabricated waveguides. The device 

impressively allowed for observations of thermal Brownian motion, giving promise for this 

device in aqueous detection applications. Another demonstration of stable optomechanical 

operation in liquid environments used GaAs disk resonators placed atop an AlGaAs pedestal 

(Figure 8) (150). Light coupling was achieved with tapered waveguide structures, and as 

many as 100 sensors were fabricated on a single 1 mm by 3 mm chip. The devices were 

stably operated while immersed in water as well as in three perfluorinated liquids with 

dynamic viscosities measuring 3.5, 9, and 30 mPa s, again allowing observations of thermal 

Brownian motion.

While not necessarily a hybrid sensor geometry, the Goldsmith group has uniquely utilized 

microtoroidal resonators in concert with an orthogonal pump bead to perform single particle 

absorption measurements (151). Silica microtoroids were coated with multi-walled carbon 

nanotubes. Resonances of the toroid (~1560 nm) were determined via a tapered fiber 

waveguide while an orthogonal optical pump probe beam at 640 nm was focused and 

rastered across the surface of the microtoroid. When the probe beam was swept over the 

nanotube, the absorption and heat dissipation cause shifts in the toroid resonance due to the 

thermooptic modulation of refractive index. This photothermal microscopy technique hold 
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promise for the analysis of non-luminescent single particles and molecules. Separately, they 

showed that in the absence of a chromophore the probe laser itself could be used to heat the 

silicon pillar, which in turn could be used to tune the resonance wavelength in a controllable 

fashion (152). However, pillar heating is potentially problematic for single molecule 

absorption measurements. Accordingly, the same group recently developed a wafer-scale 

approach to creating silica-, as opposed to silicon, pillared toroidal resonator, and because 

silica does not absorb light in the visible range, is insensitive to the pump beam (153). While 

this approach still requires the individual coupling of light into each resonator via a tapered 

waveguide, the robust process of thermal reflowing, as opposed to laser-based reflowing, 

seems generally promising for the fabrication of high Q-factor microtoroids.

6. Conclusion

Throughout this review, we have highlighted many examples of applying optical microcavity 

sensors to a variety of challenging analytical problems. Sensor development has reached the 

point where fabrication of ultrahigh Q-factor devices capable of detection biomolecules at 

nanomolar concentrations or below has become routine. Given the breadth of cavity designs 

and measurement approaches reported to date, it is our opinion that the future of microcavity 

optical sensors lies in the application and deployment of these devices to real world 

analytical challenges. Fundamental developments certainly remain to be achieved, but the 

field is sufficiently mature that these devices should now be expected to emerge as robust 

tools that can be applied to important chemical and/or biomolecular analysis problems. 

Given that many of the cavity designs described are realized through microfabrication, one 

key area for expansion is the creation of multiplexed sensing arrays, which have broad 

applications ranging from clinical diagnostics to environmental monitoring. The future for 

microcavity-based devices is bright and their integration within robust analytical 

instrumentation will facilitate their transition from the optical table and into real-world-

deployable systems that will be powerful tools in the ever-evolving analytical arsenal.
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Figure 1. Overview of Sensor Operation
(A) The transmission spectrum from a tunable laser interfaced with a whispering gallery 

mode resonator results in characteristic dip in transmittance under resonance conditions. 

Changes to the local refractive index at the sensor surface cause a shift in the resonance 

wavelength (solid red vs solid blue traces). In addition to wavelength shifts, changes in the 

quality (Q) factor can occur, with a lower Q-factor resulting in a broadening of spectral 

linewidth (δλ, dashed blue trace). (B) Plotting relative wavelength shifts versus time 

produces a characteristic Langmuir binding curve. (C) One example of optical resonators as 

sensors is in protein detection, and the schematic shows a protein (white) binding to 

antibodies (blue) bound to a sensor surface.
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Figure 2. Microcavity Resonator Sensor Geometries
Many circular geometries have been used for fabrication of whispering gallery mode 

sensors. Some of the more common designs include microtoroids (A), microrings (B), 

microdisks (C), microgoblets (D), microspheres fabricated with (F) or without (E) attached 

optical fibers, microcapillaries (G), and microbubbles (H).
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Figure 3. Sensing Mechanisms for Optical Microcavity Resonators
(A) Fiber optic taper coupling requires the precise alignment of an optical fiber with 

microcavity sensor. Output can be monitored with a photodetector, measuring current over 

time. Though the alignment can be arduous, this method allows for highly efficient coupling 

[e.g., Refs (106, 120)]. (B) Grating couplers allow for on-chip coupling without the demands 

of precise fiber alignment, though at the cost of lower coupling efficiencies. Output is very 

similar to fiber optic coupling [e.g., Ref (58)]. (C) Prism coupling can be used in cases 

where sensors (e.g., microspheres) are attached directly to a surface. The presented example 

shows fluorescent microspheres that can be used for whispering gallery mode imaging [e.g., 

Refs (65, 68).]
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Figure 4. Amplification of Nucleic Acids for Detection in Complex Media
(A) A schematic of the double mismatch primer (DMP) method is shown for detection of 

mutant sequences with a background of wild type DNA strands. Amplification occurs with 

greatest efficiency when the mismatched forward mutant primer binds to the matched 

mutant target [Ref (107)]. (B) Amplification is performed on DMP modified sensor chips 

with the addition of recombinase (yellow) and polymerase (green), and detection was 

achieved in spiked urine samples. (C) An assay schematic shows the sequential steps 

necessary for mRNA detection: (i) hybridization of chaperone DNA molecules with target 

mRNA, (ii) binding of biotinylated linker strands and blocking of the sensor surface, and 

(iii) introduction of streptavidin coated beads to bind to biotinylated linker strands. The 

representative spectrum (bottom) shows real time monitoring of binding events with a sharp 

increase in sensor response upon the introduction of beads. mRNA transcripts detected using 

this method were derived from RNA extracts from HL-60 cells [Ref (108)].
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Figure 5. Ultrasensitive Detection of Nucleic Acids
(A) The assay schematic shows incorporation light into the microsphere cavity via prism 

coupling and a single nanorod attached to the sensor surface. A PDMS microchamber was 

used as a flow cell for analyte introduction. (B) Image of a microsphere fabricated by 

melting the tip of an optical fiber. (C) An example transmission spectrum for the 

microsphere (without a nanorod attached) showing both transverse electric (TE) and 

transverse magnetic (TM) propagating modes. (D) The adsorption of 

cetyltrimethylammonium bromide (CTAB) stabilized nanorods occurs at a pH of 1.6. Top is 

the relative shift for the TM mode, and bottom is the change is a measurement of band 

broadening (δλ). The top inset shows an optical micrograph of an excited microsphere with 

a single nanorod (identified with the arrow) adsorbed to the microsphere surface with the 

nanorod dimensions shown in the bottom inset. Adapted from ref (111).

Wade and Bailey Page 27

Annu Rev Anal Chem (Palo Alto Calif). Author manuscript; available in PMC 2018 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Multiplex Phosphoprotein Detection in Cell Lysate and Tumor Tissue Homogenate
(A) Samples form primary surgical glioma samples or tissue culture were homogenized and 

lysed. (B) Cell lysate was flowed across a microring resonator array modified with 

antibodies specific for phosphoprotein targets. (C) Sample output from a single chip is 

shown with signal enhancement achieved using a sandwich immunoassay with enzymatic 

amplification. (D) Phosphoprotein expression profiling with the microring resonator 

platform was used to analyze primary surgical glioma specimens. Sorting with unsupervised 

hierarchical clustering separated two samples, and these specimens contained >50% necrotic 

tissues, as determined from pathology reports. Adapted from Ref..
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Figure 7. Intracellular Lasing with Polymer Microspheres and Oil Droplets
(A) A schematic of the intracellular laser with optical pumping and detection achieved 

through a common optical path from beneath the cell culture dish. (B) Time-lapse 

microscopy of polymer microspheres added to macrophage culture shows internalization of 

the microspheres. (C) Confocal microscopy of stained macrophages and microsphere 

resonators demonstrate that the microspheres are internalized in a variety of lines (85). Soft 

materials such as oil droplets (D) and endogenous lipid droplets (E) can also be used for 

intracellular lasing. (D) From left to right, lasing with injected oil droplets is shown with a 

schematic or oil injection, confocal fluorescence of a cell with an injected oil droplet (blue = 

nucleus, red = oil droplet), bright field and laser output from an oil droplet with optical 

pumping, and a plot of optical output as a function of pump energy. (E) Intracellular lasing 

can be similarly achieved with endogenous lipids as is shown (from left to right) by the 

illustration of a subcutaneous adipocyte, optical micrograph of adipocytes from porcine fat, 

two-photon confocal imaging of subcutaneous fat tissue after injection of a dye (yellow), 

and image of intracellular lasing within porcine tissue (81).
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Figure 8. Hybrid Optomechanical Sensors
(A) A scanning electron micrograph (SEM) of optomechanical microwheel resonator with 

an adjacent coupling waveguide shows the top view of the device. (B) An optical image 

demonstrates an array of microwheel resonators embedded in microfluidic channels (blue). 

(C) An angled view SEM shows the device structure positioned within the microfluidic 

channel (blue). (D) Top: Optical image of four disk resonators with adjacent tapered 

waveguides. Bottom: An angled view SEM of GaAs disk (red) resonators atop AlGaAs 

pedestal. The tapered optical waveguide (red) is behind the GaAs disk (also red). (E) A 

schematic depicts immersing the resonators in a liquid droplet. (F) Thermomechanical 

spectra acquired from optomechanical measurements demonstrates resonator motion before 

(blue) and after (red) immersion in liquid.
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