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Aggregation of huntingtin protein arising from expanded
polyglutamine (polyQ) sequences in the exon-1 region of
mutant huntingtin plays a central role in the pathogenesis of
Huntington’s disease. The huntingtin aggregation pathways are
of therapeutic and diagnostic interest, but obtaining critical
information from the physiologically relevant htt exon-1
(Httex1) protein has been challenging. Using biophysical tech-
niques and an expression and purification protocol that gener-
ates clean, monomeric Httex1, we identified and mapped three
distinct aggregation pathways: 1) unseeded in solution; 2)
seeded in solution; and 3) membrane-mediated. In solution,
aggregation proceeded in a highly stepwise manner, in which
the individual domains (N terminus containing 17 amino acids
(N17), polyQ, and proline-rich domain (PRD)) become ordered
at very different rates. The aggregation was initiated by an early
oligomer requiring a pathogenic, expanded Gln length and N17
�-helix formation. In the second phase, �-sheet forms in the
polyQ. The slowest step is the final structural maturation of the
PRD. This stepwise mechanism could be bypassed by seeding,
which potently accelerated aggregation and was a prerequisite
for prion-like spreading in vivo. Remarkably, membranes could
catalyze aggregation even more potently than seeds, in a process
that caused significant membrane damage. The N17 governed
membrane-mediated aggregation by anchoring Httex1 to the
membrane, enhancing local concentration and promoting colli-
sion via two-dimensional diffusion. Considering its central roles
in solution and in membrane-mediated aggregation, the N17
represents an attractive target for inhibiting multiple pathways.
Our approach should help evaluate such inhibitors and identify
diagnostic markers for the misfolded forms identified here.

Huntington’s disease (HD)2 is an autosomal dominant disor-
der caused by polyglutamine (polyQ) expansions in the exon 1

region of mutant huntingtin protein (Httex1) (1). Mutant
Httex1 is expressed in disease, readily misfolds into amyloid
fibrils, and is sufficient to cause toxicity in cell and animal mod-
els of HD, suggesting that the exon1 fragment plays a central
role in pathogenesis (2–7). The length of the polyQ expansions
is important for pathogenesis, as increasing polyQ lengths
enhance aggregation and cause earlier disease onset (8 –12).

Because of its role in disease and its potential importance
in the development of therapeutics, the mechanism of Httex1
aggregation has been of significant interest (13–18). Httex1 has
three domains, an N terminus containing 17 amino acids (N17),
a polyQ region of variable length (polyQ), and a C-terminal
proline-rich domain (PRD). EPR and solid-state NMR experi-
ments have revealed some of the structural features of Httex1
fibrils (19 –23). Although the N17 forms the �-helical structure,
the polyQ takes up a cross-�-structure (12, 14). According to
the “bottle-brush” model, the PRD forms bristled polyproline II
helix-rich structures that project away from the fibril core (20).

Studies using small Httex1-mimicking peptides reveal that
the N17 can accelerate the overall aggregation propensity (15,
17, 21). A potential mechanism is N17 helix bundle formation
that could bring polyQ regions from different proteins into
close proximity (20, 21, 24 –26). Other studies, however, have
challenged such a mechanism as substituting the N17 with a
coiled-coil helical bundle reduced aggregation (27, 28). In con-
trast to the N17, the PRD generally seems to retard aggregation
(15, 29, 30), but the molecular underpinnings of this inhibitory
function remain poorly understood. Compared with the body
of work on Httex1-mimetic peptides, little is known about the
aggregation of intact Httex1 protein. Such studies require seed-
free, monomeric Httex1 as starting material, but typical aggre-
gation protocols start with a fusion protein and trigger aggre-
gation by enzymatic cleavage of the solubilizing fusion partner.
Unfortunately, this in situ generation of monomeric Httex1
produces monomers in an unsynchronized manner over an
extended period of time, and it is also prone to contaminations
from oligomers and other misfolded species. An additional
problem has been the highly repetitive sequence of Httex1 that
has complicated site-specific spectroscopic analyses.

These issues have also hampered efforts to evaluate the
potential effects of aggregation modulators, such as lipid mem-
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branes. Studies from other amyloid proteins revealed that lipid
membranes (31–34) as well as lipid-like risk factor molecules
(33) can strongly promote aggregation. Httex1 can interact
with membranes via an amphipathic helix formed by N17 (35–
38), and huntingtin has several membrane-mediated functions,
including intracellular vesicle trafficking and autophagy (39,
40). Interestingly, Httex1 has been shown to co-aggregate with
lipids in transgenic mouse models (39, 41). Considering the
prevalence of Htt membrane interaction in health and disease,
it is important to understand whether membranes modulate
the aggregation of Httex1.

To study the aggregation of Httex1 in solution and on mem-
branes, we 1) developed a Httex1 expression and purification
protocol that does not require enzymatic cleavage to trigger
aggregation and that yields clean monomeric proteins. 2)
Moreover, we adapted a combination of biophysical tech-
niques, including EPR and fluorescence, to obtain site-specific
temporal information of the aggregation process. This
approach enabled us to map the stepwise aggregation land-
scapes in solution and on membranes, which, despite being
entirely different, are governed by the N17. Thus, the N17 is a
pivotal target for inhibiting multiple aggregation pathways.

Results

EPR kinetics reveal domain-specific aggregation behavior for
Httex1

Httex1 derivatives were first prepared as an N-terminal thi-
oredoxin fusion protein. The thioredoxin fusion partner was
then removed enzymatically, and the resulting Httex1 was puri-
fied using reversed phase chromatography (Fig. S1a). The pro-
tein gave rise to a single band on a gel (Fig. S1b) with a position
similar to that previously reported (42) and with its correct
molecular weight confirmed by mass spectrometry. According
to fluorescence correlation spectroscopy (FCS), freshly gener-
ated Httex1 with 46 Gln residues (Httex1(Q46)) was initially
monomeric at a concentration of 15 �M (Fig. S1c). This notion
was further supported by nearly superimposable FCS traces
obtainedatsub-saturatingHttex1concentrations(43).ThTfluo-
rescence indicated, however, that the monomer was only met-
astable at 15 �M, as Httex1(Q46) slowly misfolded over a period
of hours (Fig. S2a). These kinetics were not significantly
affected by incorporation of spin labels. In agreement with prior
studies (42, 44), we found that the aggregation of Httex1 can be
fitted to single exponential decay kinetics (see under “Experi-
mental procedures”). Such fits resulted in rather similar rate
constant (kf) ranging from 0.13 to 0.22/h. The mean kf (esti-
mated via averaging the kf for individual mutants) and the kf for
unlabeled Httex1(Q46) were nearly identical at �0.17 and
�0.18/h, respectively (Fig. S2b). Fibril formation was further
verified by electron microscopy (Fig. S2c).

To examine the structural changes of different regions dur-
ing aggregation, we monitored the EPR signals of Httex1(Q46)
derivatives with spin labels (Fig. 1a) either in the N17 (3R1, 9R1,
and 15R1), the polyQ (35R1 and 48R1), or the PRD (81R1 and
101R1). The readout was based on the reduction in EPR signal
amplitude that occurs as different regions of the dynamic mono-
mer oligomerize and become less dynamic (19). Representative

EPR spectra for different labeling positions at t � 0 min (blue)
and t � 20 h (orange) are shown in Fig. S3a. The time-depen-
dent line broadening and amplitude loss in these spectra are
consistent with a loss in mobility as the dynamic monomer (t �
0 min) aggregates over time. Overall, this effect was most pro-
nounced in the N17 and the polyQ, consistent with our prior
studies indicating that these regions are predominantly becom-
ing ordered upon oligomerization and fibril formation (19 –21).

Next we sought to time-resolve this process. As shown in Fig.
1b, the amplitudes decreased at different rates for the different
labeling positions. The fastest kinetics were observed for sites in
the N17 region, where detectable structural changes were
nearly complete after 4 h with rate constants (kf) from 0.36 to
0.38/h. In contrast, the slowest kinetics were seen for sites in the
PRD, where the spectral changes were still not complete during
the time scale of the measurements (20 h) giving rise to kf values
from 0.02 to 0.08/h. The kinetics for sites in the polyQ (kf values
from �0.16 to 0.19/h) were in between those of the N17 and the
PRD. Interestingly, the rates of the structural changes in the

Figure 1. Aggregation time course of Httex1(Q46) monitored via EPR
spectroscopy. a, schematic representation of the domain organization of
Httex1(Q46) highlighting the positions at which the spin-labeled side chain
R1 was introduced. b, time-dependent normalized EPR amplitudes for
R1-containing spin-labeled Httex1(Q46) derivatives are given as fraction of
initial amplitude. The traces for the N-terminal labeling sites, 3R1 (squares),
9R1 (triangles), and 15R1 (circles), are shown in blue and have a faster signal
decay than the polyQ sites, 35R1 (circles) and 48R1 (triangles), which are given
in orange. The slowest signal change is observed for labeling sites in the PRD
(green), 81R1 (circles) and 101R1 (triangles). c, corresponding rate constants
were obtained by fitting the kinetic traces in b to a single exponential decay.
The dashed line represents the rate constant of native, unlabeled Httex1
obtained from ThT measurements (Fig. S2a). Error bar represents standard
deviation.
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polyQ region are closest to those obtained from ThT measure-
ments which, according to the fits of the data in Fig. S2a, were in
the range of �0.13 to 0.22/h for all derivatives (Fig. S2b) and
�0.18/h for native, unlabeled Httex1(Q46) (dashed line in Fig.
1c). These data suggest that maturation of the polyQ region is
responsible for the structural changes that result in an
enhanced ThT fluorescence, in agreement with the notion that
the polyQ region harbors the �-sheet containing core of the
fibrils. Collectively, these data indicate that Httex1(Q46) mis-
folds in a stepwise process, where the structuring of the N17
precedes that of the polyQ, whereas the PRD continues to
mature even after the �-sheet is formed.

To evaluate whether Httex1 with non-pathogenic Gln length
undergoes similar stepwise structural transitions, we repeated
the EPR experiments with spin-labeled Httex1(Q25) deriva-
tives. Interestingly, no significant EPR spectral changes could
be observed in the N17 or the polyQ within a 20-h time frame
(Fig. S3b), indicating that the aforementioned steps in the
aggregation pathway are Gln length– dependent. Thus, even
the early transitions, in which the N17 became ordered, were
stabilized by an expanded polyQ that was not yet completely
structured.

�-Helical oligomers form prior to �-sheet formation

To determine the secondary structure changes during aggre-
gation, we performed circular dichroism measurements. At t �
0 min, Httex1(Q46) yielded a CD spectrum with a minimum at
�205 nm (Fig. 2a), consistent with previously reported CD
data, which revealed a mixture of random coil, polyproline II,
and �-helical structure for monomeric Httex1(Q46) (45, 46).
Over a period of 20 h, the signal intensity gradually decreased,
and the minimum shifted to 214 nm. This spectrum was nearly
identical to that previously reported for Httex1(Q46) fibrils

(19). Those spectra had been fitted using the DichroWeb suite
(47) of fitting programs giving rise to estimates of 35– 45%
�-sheet (assigned to polyQ) and 5–10% �-helical structure
(assigned to N17). The remainder was attributed to random coil
and polyproline II (assigned to PRD) (19).

To characterize the early structural changes during N17
ordering, the difference spectrum for the two earliest time
points (t � 0 min versus t � 30 min, Fig. 2b) was created. The
generation of this difference spectrum was facilitated by the fact
that the aggregation-dependent loss in CD signal intensity,
which is commonly observed during fibril formation (48), had
not yet occurred in the first 30 min. Inasmuch as the ordering in
the N17 was only �10% complete after 30 min according to the
EPR data, it was not surprising that the change in the CD spec-
tra was relatively small at this early time point. Nonetheless, this
difference spectrum exhibited clearly detectable minima at 208
and 222 nm. These changes are characteristic of the �-helical
structure, indicating that the predominant structural change in
the first 30 min is �-helix formation. Based on a change in the
MRE at 222 nm of �261.11 degrees cm2 dmol�1 and a 10%
completion of structuring in the N17 after 30 min, we estimate
that on the order of 10 amino acids become helical (also see
“Experimental procedures”). Considering that the N17 already
contains residual helical structure in the monomer, these data
are consistent with a significant fraction (if not all) of the N17
becoming �-helical. Together with the EPR data, this result
suggests that the initial structuring of the N17 corresponds to
�-helix formation and that the �-sheet formation in the polyQ
region occurs at a later time.

Next, we used FCS to further characterize the oligomeriza-
tion state at early time points. As shown in Fig. S4a, FCS
revealed the emergence of increasing amounts of oligomers
during the first 2 h. Comparison of the diffusion times of these
oligomers (220 –260 �s) to those of the monomer (115 �s) indi-
cated that oligomers contain 7–11 subunits. This size estimate
from FCS is in reasonable agreement with negative stain EM
images that reveal oligomeric species predominantly with an
average diameter of 6.7 � 1.1 nm (Fig. S4b). Assuming an aver-
age protein density and spherical oligomer structure, the aver-
age size corresponds to �10 subunits. The generation of an
oligomeric species during the early stages of N17 �-helix for-
mation is also consistent with the EPR spectra. Although the
EPR spectra at t � 0 h, like those previously described for the
Httex1 monomers (19), were devoid of strongly immobilized
components, the later time points were very different. To inves-
tigate the structural features of intermediates, we generated
difference spectra for early time points (30 min and 2 h, Fig.
S5a) by subtraction of the t � 0 time points. The corresponding
spectra for 3R1, 9R1, and 15R1 had significantly immobilized
components with spectral widths over 60 G. The strongly
reduced rotational movement indicated by these spectral
widths would not be expected for a fast tumbling, relatively
small Httex1 monomer (�14 kDa). Rather, the spectra are con-
sistent with oligomer formation. In fact, the difference spectra
at early time points are highly similar to those from the later
time points (Fig. S5b) suggesting that the overall structural fea-
tures within the N17 remain largely unchanged during the sub-
sequent aggregation steps.

Figure 2. Secondary structural changes during Httex1(Q46) aggregation
monitored by CD. a, CD spectra of native, unlabeled Httex1 obtained at
different time points (0 min, dark blue; 30 min, orange; 2.5 h, gray; 5 h, yellow;
10 h, light blue; 20 h, green). b, difference spectrum for the t � 0-min and t �
30-min time points shows �-helical character as judged by the peaks at 208
and 222 nm. The concentration was 15 �M. The data are given in millidegrees
and were not converted to MRE, as the starting concentrations do not accu-
rately describe the behavior during self-association and aggregation.
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External seeds promote aggregation of Httex1

Seeding has become an important aspect of many amyloid
diseases as it could promote aggregation and cell-to-cell
spreading (49 –51). Thus, seeding could be of significant path-
ological significance. To test for the effect of seeding in our case
and to investigate whether and how it will impact the stepwise
mechanism described above, we repeated the experiments in
the presence of seeds. As shown in Fig. 3, a and b, the addition
of 10% (1.5 �M) seeds significantly sped up the ThT and EPR
kinetics for the 35R1 derivative, giving rise to nearly identical
rates (0.63 and 0.64/h, respectively). Thus, external seeds
strongly accelerated aggregation. Interestingly, the EPR kinet-
ics of a labeling site in the N17 (9R1) were nearly superimpos-
able with those obtained for 35R1 (Fig. 3c). Thus, the stepwise
mechanism, where the N17 becomes ordered prior to �-sheet
formation, is circumvented in the presence of seeds.

Membranes catalyze Httex1(Q46) aggregation by altering the
pathway

Next, we tested whether membranes affect the aggregation of
Httex1(Q46). For these measurements, we focused on the 35R1
derivative, which reports on �-sheet formation in the polyQ
core region. As shown in Fig. 4a, the ThT fluorescence in the
presence of membranes (25% POPS/75% POPC) increased rap-
idly within just 1 h. This time course is mirrored by the change
in the EPR amplitude over time (Fig. 4b). Remarkably, the kinet-
ics observed by ThT and EPR were not only �6-fold faster than
those in solution, but they were even faster than those in the
presence of exogenous seeds.

Prior studies using isolated N17 peptides indicated that this
region can bind to membranes by forming an amphipathic
�-helix (36, 52–54). To test whether the N17 can anchor Httex1
to the membrane and initiate aggregation, we compared the
EPR spectra for freshly prepared N17-labeled derivatives (3R1,
9R1, and 15R1) in the presence and absence of membranes.
Detectable differences could be seen for all sites (Fig. S6a) with
membrane-binding inducing spectral components similar to
those previously observed in amphipathic, membrane-bound
helices of �-synuclein and IAPP (55–57). In contrast, no early
spectral changes could be observed for 35R1 or 81R1, indicating
that these regions did not partake in the initial ordering on
membranes (Fig. S6b). Similar results were obtained for
Httex1(Q25), which does not undergo subsequent aggregation
under the present conditions (Fig. S7, a and b). To further verify
�-helix formation, we performed CD measurements. Although
the rapid increase in light scattering complicated such experi-

ments for Httex1(Q46), CD of Httex1(Q25) showed that the
incubation of the protein with membranes enhanced helicity
(Fig. S7, c and d). Collectively, these data support the notion
that early membrane interaction of Httex1 is mediated by an
�-helical, membrane-bound N17.

To further verify that rapid aggregation occurred in the pres-
ence of membranes, we investigated sample morphology after
3 h by electron microscopy (Fig. S8). Fibrils with a clustered
appearance were commonly observed at this early time point.
Vesicles were remarkably absent, however, indicating that the
addition of Httex1(Q46) leads to the disruption of vesicle integ-
rity (37). Instead of vesicles, amorphous structures that could
be remnants of lipid membranes (Fig. S8, black arrows) were
frequently observed in the proximity of fibrils.

To examine whether the membrane-mediated enhancement
is affected by lipid composition, we reduced the amounts of the
negatively charged POPS to 10%. The change strongly reduced
the effect of membrane-mediated aggregation (Fig. S6c) indi-

Figure 3. Effect of seeding on Httex1(Q46) aggregation. a, ThT fluorescence kinetics for the 15 �M 35R1 Httex1(Q46) derivative in the presence (red) and
absence (black) of 10% (1.5 �M) seeds. b, acceleration of Httex1(Q46) aggregation in the presence of seeds (red) monitored via EPR kinetics for 35R1 derivative.
The control without seed is shown in black. c, EPR-based kinetics for spin-labeled Httex1(Q46) derivatives (9R1, blue curve; 35R1, red curve) show very similar
kinetics, indicative of similar rates of aggregation in the respective regions.

Figure 4. Membranes strongly enhance aggregation of Httex1(Q46). a,
ThT fluorescence kinetics for 35R1 Httex1(Q46) derivative in the presence
(red) or absence (black) of vesicles (25% POPS/75% POPC, 375 �M total lipid
concentration). Also shown for comparison are the seeded kinetics from Fig.
3 (blue). b, membrane-mediated enhancement in aggregation can also be
detected by EPR using the 35R1 derivative of Httex1(Q46). The control with-
out membranes is shown in black, whereas the EPR data obtained in the
presence of 25% POPS/75% POPC vesicles (375 �M) are in red. The protein
concentration was 15 �M in all cases.
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cating that lipid composition, and presumably negative charge
density, plays an important role.

Discussion

We present a comprehensive analysis of three different
Httex1 aggregation pathways. In solution, aggregation is rela-
tively slow, but it can be strongly accelerated by pre-formed
seeds or lipid membranes. All of these reactions proceed via
very different pathways, where the N17 plays entirely different
roles.

In the absence of seeds and membranes, the N17 is the first
region to become ordered. This ordering coincides with oligo-
merization (according to FCS and EPR) and an increase in
�-helical structure (according to CD), suggesting that the early
oligomer is stabilized by N17 �-helices. The process of early
oligomer formation is Gln length– dependent as no time-de-
pendent structural changes could be observed for Httex1(Q25).
The N17 remains ordered throughout the aggregation process
with only minor EPR spectral changes upon transition from the
helical intermediate to fibrils. This strongly suggests that the
early helix-rich intermediate is on-pathway to fibril formation
(Fig. 5). This notion is consistent with the reported �-helical
structure of the N17 in fibrils (17, 21). Although it is not known
exactly how the helical bundles are arranged in oligomers or
fibrils, it is clear that the N17 bundles promote aggregation
more efficiently than the previously tested coiled coils (28).
This could be caused by different arrangements of the polyQ
regions with respect to each other. It is also possible that the
larger size (7–11 subunits estimated by FCS) could facilitate
aggregation by bringing more polyQ regions into close proxim-
ity. Regardless of the precise details by which the transition
from �-helix-rich oligomers to early �-helix and �-sheet oligo-
mers occurs, our seeding data indicate that the activation bar-
riers associated with the first two steps can be circumvented by
aggregation seeds (Fig. 5).

In contrast to the early ordering of the N17, the maturation of
the PRD represents the slowest phase, which continues long
after the ordering, and �-sheet formation in the polyQ has been

completed. Solid-state NMR and EPR data suggest that the PRD
structure in monomers and fibrils is remarkably similar, con-
taining large amounts of polyproline II helical structure in both
cases (19 –21). Thus, the reduction in EPR amplitude for sites in
the PRD is likely dominated by changes in dynamics due to
crowding rather than significant secondary structure changes.
Increased crowding of the PRD region could occur at multiple
steps, including the transition from smaller �-sheet-containing
oligomers to fibrils as well as the formation of more bundled
fibrils (21, 22). These crowding steps are likely to be important
for the aggregation-inhibiting properties of the PRD.

The N17 also plays an important role in the presence of
membranes, where it forms an amphipathic helix (35–38) that
initially anchors Httex1 to the membrane. The enhanced local
concentration and the two-dimensional diffusion on mem-
branes then enhances encounters between aggregation-prone
polyQ regions from different molecules. This mechanism,
which is related to that of IAPP and �-synuclein aggregation in
the presence of membranes (31, 58, 59), affords an astonishing
enhancement of the aggregation kinetics. In addition to gener-
ating misfolded and potentially toxic species, membrane-medi-
ated aggregation also caused membrane disruption as judged by
EM. Such disruption of membrane integrity could further con-
tribute to toxicity and has been invoked as a mechanism of
pathogenesis in Huntington’s disease as well as other amyloid
diseases (37, 60 – 62). Considering that Httex1 interacts with a
number of cellular membranes and that Htt-lipid co-aggregates
are found in transgenic mouse models (39, 41), membrane-me-
diated aggregation and the concurrent membrane damage is
likely to occur in vivo.

Our results illustrate the complexity of Httex1 aggregation
(Fig. 5) and the challenges this could represent for the develop-
ment of therapeutics aimed at inhibiting aggregation. In the
case of Tafamidis, a misfolding and aggregation inhibitor for
transthyretin-related amyloidosis, it proved advantageous to
target an early aggregation step (63). For aggregation in solu-
tion, this means that there are three potential steps of interest:

Figure 5. Representation of three different Httex1 aggregation pathways. a, Httex1(Q46) aggregation in solution is initiated by an �-helix-rich early
oligomer, in which the N17 (blue) increases in �-helicity. This early oligomer contains 7–11 subunits as estimated by FCS. Subsequently, this early oligomer
gradually transforms into �-helix/�-sheet-rich intermediates where the polyQ region takes on �-sheet structure. The size distribution of this oligomer was not
established in this study and is arbitrarily depicted as a 10-mer. The formation of fibrils and bundled fibrils enhances the crowding for the PRD bristles (green),
leading to a slow reduction in mobility. b, presence of seeds circumvents the need for intermediate steps shown in a and leads to enhanced aggregation. c,
membrane-mediated aggregation begins with the membrane insertion of the N17, leading to an increase in local protein concentration and enabling
encounters via two-dimensional diffusion.
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1) helix bundle formation; 2) conversion into a seeding compe-
tent structure; and 3) elongation from a seed (Fig. 5). However,
even if those steps are blocked, membrane-mediated aggrega-
tion could still occur. It may therefore be necessary to simulta-
neously block various aggregation pathways. One feature that
both the solution and membrane-mediated aggregation path-
ways have in common is their reliance on the N17, making this
region an ideal target for blocking multiple pathways at once.
Phosphorylation at positions 13 and 16 in the N17 has been
shown to protect from toxicity (64, 65). Prior studies have
already shown that phosphorylation at these sites slows down
aggregation in solution (64, 65). It is very likely that the addition
of two negatively charged phosphates in the N17 also strongly
reduces the N17’s affinity for negatively charged membranes,
thereby inhibiting membrane-mediated aggregation and mem-
brane damage.

The methodology and the comprehensive aggregation map
presented here will enable future studies aimed at determining
how post-translational modifications or other modulators
affect aggregation. Not only will it be possible to map which
pathways potential aggregation modulators affect most, but it
will also be possible to determine which specific step in a given
pathway they act on. This should help decipher the relative
importance of the various pathways as well as facilitate future
therapeutic efforts aimed at inhibiting aggregation, especially if
it will become possible to determine the detailed three-dimen-
sional structures of the various misfolded intermediates.

Experimental procedures

Expression and purification of Httex1 fusion protein

Thioredoxin fusion proteins of Httex1 with 46- or 25-amino
acid-long glutamine stretches (Q46 or Q25, respectively) were
expressed and purified using a slightly modified version of a
previous expression protocol (19, 20). Httex1 does not naturally
contain Cys residues. The native Cys-free protein as well as
single Cys mutants for subsequent labeling to give spin-labeled
side chain R1 were generated by mutagenesis and expressed
using pET32a-HD46Q. The plasmids were transformed into
BL21(DE3) cells, and starter cultures were grown at 37 °C for
4 h. These cultures were then used to inoculate a 50-fold excess
of LB media and allowed to grow further at 37 °C in an incuba-
tor shaker at 225 rpm to A600 nm � 0.7– 0.8. Protein expression
was induced overnight by the addition of 1 mM isopropyl
1-thio-�-D-galactopyranoside at 18 °C. Cells were harvested by
centrifugation at 4500 � g and resuspended in 20 mM Tris-HCl,
pH 7.4, 300 mM NaCl, and 10 mM imidazole containing 1%
Triton X-100 (Sigma). After incubation for 20 min at room
temperature on a rocker in the presence of 1 mM DTT, lysates
were separated from cell debris by centrifugation at 19,000 � g
for 20 min and incubated with NiHis60 superflow resin (Clon-
tech) for 45 min. The resin was washed with 5– 6 column vol-
umes of 20 mM Tris-HCl, pH 7.4, 300 mM NaCl, 20 mM imidaz-
ole, 1 mM DTT. The final washing was performed using the
same buffer, except without DTT. Finally, the protein was
eluted with 20 mM Tris-HCl, pH 7.4, 300 mM NaCl, 300 mM

imidazole buffer. Immediately after elution, the recombinant
protein was spin-labeled using a 5-fold molar excess of the

1-oxyl-2,2,5,5 tetramethyl-�3-pyrroline-3-methylmethaneth-
iosulfonate spin label for 45 min at room temperature to give
the spin-labeled side chain R1, as described earlier (19, 20).
Excess spin label was removed using HiTrap Q XL ion-ex-
change chromatography (GE Healthcare).

Preparation and purification of Httex1 monomers and seeds

To cleave the thioredoxin fusion tag, 5 �M solutions of spin-
labeled or unlabeled Httex1 fusion proteins were digested with
EKMax (Invitrogen) for 50 min. 1 unit of EKMax was used for
each milliliter of reaction volume. The reaction was stopped by
the addition of 4 M urea. The subsequent isolation of Httex1
from the mixture was achieved on a reversed phase Phenome-
nex C4 column (15 �m, 300 Å, 250 � 4.60 mm) using an AKTA
FPLC system (Amersham Biosciences) with buffer A (99.9%
water, 0.1% trifluoroacetic acid) and buffer B (90% acetonitrile,
9.9% water, 0.1% trifluoroacetic acid). The Httex1 fractions
were collected (Fig. S1a) and subsequently lyophilized. The
Httex1 powder was stored in a vacuum desiccator in low pro-
tein-binding tubes (Eppendorf) until further use. The correct
mass of the purified Httex1 was confirmed by electrospray ion-
ization-mass spectrometry, and the purity was confirmed via
SDS-PAGE. We noticed that over-digestion of Httex1 can
occur for protein concentration above 10 �M, but it can be
avoided at the lower concentrations used here. Regardless, our
purification method allowed us to purify the correct product
and separate it from any over-digested species as they had sig-
nificantly different migration properties on the Phenomenex
C4 column. Seeds were prepared from unlabeled Cys-free
Httex1(Q46) fibrils harvested at 15,000 � g for 15 min, frag-
mented using sonication, and stored at 4 °C. The subsequent
experiments to monitor the aggregation pathway of Httex1
variants prepared in this section were performed at 25 °C.

Vesicle preparation

Lipid vesicles were made by mixing 25% of POPS and 75% of
POPC (Avanti Polar Lipids). Chloroform was removed by a
gentle stream of N2 gas and vacuum-desiccated overnight. The
lipid film was resuspended into 20 mM Tris, 150 mM NaCl, pH
7.4, to a final concentration of 8 mg/ml and subjected to 10
freeze-thaw cycles. The size of the vesicles was standardized
using a mini-extruder containing a polycarbonate filter
(Avanti) of 100 nm diameter. The protein to lipid molar ratio
for all experiments was 1:25. For circular dichroism experi-
ments using membrane-bound Httex1(Q25), vesicles were son-
icated to reduce scattering.

Thioflavin T(ThT) fluorescence

The lyophilized samples in a low protein-binding tube were
treated with 0.5% TFA (v/v) in methanol to solubilize and dis-
aggregate the Httex1 powder. The organics were removed
under a gentle stream of N2 gas to obtain a thin film of Httex1 at
the bottom of the tube. The film was dissolved in 20 mM Tris,
150 mM NaCl, pH 7.4, to a desired concentration of 15 �M. This
protocol resulted in clean monomeric protein (also see under
“Results”). The aggregation kinetics of purified Httex1 deriva-
tives were measured by ThT fluorescence using an Eppendorf
Plate Reader AF2200 equipped with appropriate filters in a Fal-
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con 96-well (clear flat bottom) plate, over a period of 20 h at
25 °C. The excitation and emission wavelengths were kept at
440 and 484 nm, respectively, with a slit width of 20 nm each.
The fluorescence of all samples was recorded at least in tripli-
cate. The ThT concentration was kept at 50 �M in all cases. The
data were baseline-corrected using a no protein control and
fitted to a single exponential using Origin 7.0. The data were
fitted using y � A � exp(�x/t) � y0, where y0 � Y offset, A �
amplitude, t � time constant (h). The rate constant of fibril
formation (Kf) was estimated by the following equation: Kf�
(1/t). x and y were treated as variables in the fit. Origin 7.0 fitting
wizard automatically adjust the data set for the abovemen-
tioned equation.

Continuous wave-EPR measurements

The samples for EPR measurements were prepared from
lyophilized powder as described for ThT sample preparation.
Samples were loaded into Boro Glass Tubing (0.6 mm inner
diameter � 0.84 mm outer diameter, Vitro-Com, Mt. Lakes,
NJ), and the EPR spectra were obtained using an X-band Bruker
EMX spectrometer equipped with a Bruker ER4119HS resona-
tor at 25 °C. The scan width for all spectra was 100 G with an
incident power of 12.7 milliwatts. The central line amplitude
was obtained from the EPR spectra using WinAcquisit (Bruker
Biospin). EPR was also used to verify the concentrations of all
the labeled samples. This was done by double integration of the
EPR spectra and comparison with concentration standards.
Like the ThT data, the EPR kinetics were fitted to a single expo-
nential function in Origin 7.0.

Far UV-CD

The far UV-CD measurements were performed using a
Jasco-810. The spectra were accumulated at 15 �M protein con-
centration in 20 mM Tris, 150 mM NaCl, pH 7.4, between 200
and 240 nm at a scan rate of 50 nm/min using a quartz cuvette
of 0.1-cm path length. Difference spectra were obtained using
the Spectra Analysis tool provided with the Jasco-810. The
same program was also used for smoothing of the data. To fit
the percent �-helicity changes at 30 min, we employed the same
method previously employed for IAPP and Httex1 �-helix for-
mation (31, 46). Helicity changes were estimated using fH �
(�222 � �C)/(�H � �C). The resulting change was converted into
percent helicity and based on a total number of amino acids of
119, the percent increase in �-helicity was converted into num-
ber of �-helical amino acids.

Transmission electron microscopy

10 �l of each sample was adsorbed onto 150 mesh carbon-
coated copper grids. The grids containing samples were then
negatively stained using 1% uranyl acetate for 1 min. The
images were acquired using JEOL JEM-1400 transmission elec-
tron microscope at 100 kV.

Fluorescence correlation spectroscopy (FCS)

FCS measurements were recorded on a laser-scanning con-
focal microscope Zeiss LSM 780 (Zeiss, Jena, Germany). Sam-
ples were excited with a 488-nm argon-ion laser line using a
water-immersion objective (Zeiss C-Apochromat, 40�/1.2 W

UV-Vis-IR, Zeiss, Jena, Germany). The pinhole diameter was
set to 1 Airy unit, and pinhole x-y positions were adjusted for
maximum fluorescence intensity before measurements. Fluo-
rescence was separated from excitation using an MBS488 beam
splitter. Emission was recorded between 505 and 580 nm using
a built-in detector. To avoid detector saturation, laser intensity
was kept at low levels, and the unlabeled to rhodamine 110-
labeled protein ratio was kept low (300:1). However, for Httex1
monomer recordings at sub-saturated nanomolar concentra-
tions, the sample was fully labeled. A dilute solution of rhoda-
mine 110 (�D of �47 �s) was used for obtaining the structural
parameter of the confocal volume that was used for subsequent
fitting of correlation curves of protein samples. For each sam-
ple, at least 10 traces, each 30 s, were recorded. The FCS data
were fitted to one- or two-component models using the open
source program PyCorrFit (66). The size of the oligomers com-
pared with that of monomer was estimated using the depen-
dence of �D on the cube root of molecular weight as described in
the literature (67).

Author contributions—R. L. and N. K. P. designed research; N. K. P.,
J. M. I., A. R., R. V. L., J. L., and P. P. performed research; R. L., A. R.,
and N. K. P. analyzed data; R. L. and N. K. P. wrote the paper.
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