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Nuclear factor-�B (NF-�B) is a family of transcription factors
that play a key role in cell survival and proliferation in many
hematological malignancies, including multiple myeloma (MM).
Bortezomib, a proteasome inhibitor used in the management of
MM, can inhibit both canonical and noncanonical activation of
NF-�B in MM cells. However, we previously reported that a sig-
nificant fraction of freshly isolated MM cells harbor bort-
ezomib-resistant NF-�B activity. Here, we report that hyaluro-
nan and proteoglycan link protein 1 (HAPLN1) is produced in
bone marrow stromal cells from MM patients, is detected in
patients’ bone marrow plasma, and can activate an atypical bort-
ezomib-resistant NF-�B pathway in MM cells. We found that
this pathway involves bortezomib-resistant degradation of the
inhibitor of NF-�B (I�B�), despite efficient bortezomib-medi-
ated inhibition of proteasome activity. Moreover, HAPLN1 can
also confer bortezomib-resistant survival of MM cells. We pro-
pose that HAPLN1 is a novel pathogenic factor in MM that
induces an atypical NF-�B activation and thereby promotes
bortezomib resistance in MM cells.

Multiple myeloma (MM)4 is the second most common
hematologic malignancy with over 30,000 new cases diagnosed

annually in the United States. Currently, MM is generally con-
sidered an incurable disease with a median survival of 5–7 years
from diagnosis (1). MM is characterized by the uncontrolled
proliferation and accumulation of antibody-secreting plasma
cells primarily in the bone marrow (1). It is a complex disease
with respect to clinical features, cytogenetic abnormalities, and
cellular and molecular factors that contribute to disease devel-
opment and progression (1–4). High throughput whole-ge-
nome and whole-exome sequencing efforts have identified fre-
quent MM cell-intrinsic genetic alterations in the components
of several signaling pathways, including RAS/MEK/MAPK,
JAK2/STAT3, and nuclear factor-�B (NF-�B) (5–8). In addi-
tion to cell-intrinsic changes, the tumor microenvironment
(TME) further provides cancer cell– extrinsic influences on
MMcells,promotinggrowth,survival,migration,anddrugresis-
tance (9). For example, bone marrow stromal cells (BMSCs) can
secrete cytokines, growth factors, and additional factors to cre-
ate a niche for MM cells to thrive by promoting local expansion,
immune evasion, and metastasis (4, 10 –12).

Proteasome inhibition by bortezomib/Velcade has been a
key strategy in the treatment of both newly diagnosed and
relapsed MM. Bortezomib is believed to suppress multiple sig-
naling pathways, including stabilization of cell cycle–inhibitory
proteins p21 and p27 (13), tumor-suppressor protein p53 (14),
and the inhibitor of NF-�B, I�B� (15). In addition, bortezomib
is known to induce the unfolded protein response, which mon-
itors endoplasmic reticulum stress to maintain quality control
of proteins and homeostasis (16). MM cells are highly suscep-
tible to proteasome inhibition in vivo, possibly arising from the
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excessive demand of the endoplasmic reticulum system to
maintain the high secretion load of immunoglobulins (17–19).
Although the widespread use of proteasome inhibitors has
improved response and survival, the majority of MM patients
eventually develop refractory disease (1–4). Multiple distinct
mechanisms of bortezomib resistance have been described,
including point mutations of the 26S PSMB5 (proteasome sub-
unit � type 5), decreased expression of unfolded protein
response proteins, and changes in critical pathways, such as
�-catenin, insulin growth factor receptor, MAPK, AKT, KRAS,
and JAK/STAT (5, 6, 8, 20, 21). Activation of NF-�B has also
been implicated in bortezomib resistance (22, 23).

NF-�B is a family of transcription factors that has emerged as
a critical pathogenic factor in MM development and drug resis-
tance (24 –27). Normally, NF-�B (p50-RelA or cRel complexes)
is sequestered in the cytoplasm by its inhibitor proteins, includ-
ing I�B� and I�B�. “Canonical” activation of NF-�B requires
the engagement of the I�B kinase complex composed of IKK�,
IKK�, and IKK�/NEMO. The IKK complex then causes site-
specific phosphorylation of I�B proteins to cause degradation
by the ubiquitin-26S proteasome pathway (28, 29). Alterna-
tively, the “noncanonical” NF-�B activation pathway involves
the action of NF-�B–inducing kinase and IKK� and limited
processing of NF�B2/p100 to p52 by the 26S proteasome to
selectively activate p52-RelB complex (30). Accumulated data,
including the analysis of gene expression signatures (31) and
NF-�B-RelA immunostaining (32), have shown that NF-�B sig-
naling is constitutively active in MM cells of �90% of patients.
Although MM cancer cell genome and exome sequencing has
identified genetic aberrations in canonical and noncanonical
NF-�B signaling components in up to �23% of MM cases (5, 6,
8, 31, 33), the mechanisms of NF-�B activation in the remaining
70% of MM cases remain unclear. Such an activation could be
dependent on extrinsic factors, such as those derived from the
TME.

We previously reported that the constitutive NF-�B activity
present in freshly isolated patient-derived MM cells is often
resistant to inhibition by bortezomib in vitro (34), and such a
bortezomib-resistant NF-�B activity could be further induced
in MM cells via a factor that is secreted by BMSCs obtained
directly from MM patients (35). This bortezomib-resistant
NF-�B activity seems to embody an atypical NF-�B pathway,
termed proteasome inhibitor-resistant (PIR), which involves
I�B� degradation and NF-�B activation that are highly resist-
ant to inhibition by a variety of proteasome inhibitors, includ-
ing bortezomib (36 –38). Paradoxically, bortezomib has also
been shown to cause NF-�B activation while blocking the pro-
teasome activity (34, 39), unlike NF-�B activity in MM cells that
had often been attributed to bortezomib-sensitive pathways
(26, 27).

In this current study, we identified a BMSC-secreted factor,
hyaluronan and proteoglycan link protein 1 (HAPLN1), that
can induce bortezomib-resistant NF-�B activity in MM
cells. Specifically, HAPLN1 proteoglycan tandem repeat (PTR)
domain 1 and 2 fragments have strong PIR NF-�B–inducing
activities. This was surprising, because HAPLN1 is an extracel-
lular matrix (ECM) protein well-known for its role in structural
support in cartilage formation and other tissue ECM (40, 41),

but with no previously characterized direct signaling functions
through the PTR domains. Importantly, HAPLN1 PTR frag-
ments confer bortezomib-resistant survival in some MM cells
and are frequently detectable in MM patient bone marrow aspi-
rates. Our study reveals a novel inducer of drug-resistant
NF-�B activity in MM, which could represent a novel therapeu-
tic target for this currently incurable disease.

Results

HAPLN1 PTR domains activate NF-�B in myeloma cells

We previously demonstrated that MM patient-derived
BMSCs can cause bortezomib-resistant NF-�B activity in MM
cells through a secreted soluble factor (35). Partial purification
of this factor from a stromal cell line was described previously
(35). Following SDS-PAGE, Coomassie Blue staining, and mass
spectrometry analysis of the enriched fraction F3 (Fig. 1A), we
identified four potential factors: calumenin, osteonectin, galec-
tin-3-binding protein, and HAPLN1. cDNAs encoding these
proteins were isolated from MM patient BMSCs, cloned into a
pSecTag2a vector for efficient secretion, sequence-verified, and
transiently transfected into HEK293 cells. Conditioned media
(CMs) from transfected HEK293 cells were applied to a MM
cell line, RPMI8226, to assay for NF-�B activation by an elec-
trophoretic mobility shift assay (EMSA), whereas the presence
of corresponding proteins was verified by immunoblot analysis
of the CM (Fig. 1, B–E). Only the HAPLN1-containing CM
induced NF-�B activation (Fig. 1E). Importantly, this NF-�B
activation was highly resistant to bortezomib treatment
(Fig. 1E).

HAPLN1 is a 45–52-kDa ECM protein containing a signal
peptide (SP), one immunoglobulin-like (IG), and two PTR
domains (PTR1 and PTR2) (Fig. 2A) (42, 43). We found that
full-length human HAPLN1 (FL-H1) (Fig. 2B) was unable to
induce NF-�B activation in MM cells (Fig. 2C). ECM proteins
can sometimes generate smaller active signaling factors,
matrikines, via proteolysis (44). We observed smaller species of
HAPLN1 in HEK293 CM (Fig. 1D); therefore, we tested
whether subdomains of HAPLN1 were sufficient to cause
NF-�B activation. We expressed HAPLN1 subdomains as GST-
fused recombinant fragments in Escherichia coli and purified
them by GSH-Sepharose chromatography (Fig. 2B). We found
that the HAPLN1 PTR1 (H1-P1) and PTR2 (H1-P2) domains
activated NF-�B �6.6-fold and �6.8-fold, respectively (Fig.
2C). The IG domain (H1-IG) caused NF-�B activation but to a
much lesser degree than that induced by H1-P1 (Fig. 2C) and
therefore was not further pursued here. To rule out the possi-
bility that NF-�B activation was due to the presence of contam-
inating endotoxin, we measured the amounts of endotoxin in
H1-P1 preparations. The levels of contaminating endotoxin
were found to be �0.2 ng/ml, below the sensitivity of the NF-�B
activation assay in RPMI8226 cells (Fig. 2, D and E).

We further characterized NF-�B activation in MM cells
using H1-P1 domain due to its strong NF-�B activation poten-
tial coupled with robust expression and purification relative to
other HAPLN1 forms. Additionally, known glycosylation sites
lie within the N-terminal region of HAPLN1 far upstream of the
PTR domains; therefore, H1-P1–mediated NF-�B activation
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does not involve glycosylation (45). Dose-response and time
course analyses demonstrated that NF-�B activity is induced by
as low as 10 nM H1-P1 and saturates at 100 nM (Fig. 3A). Acti-
vation occurs within 1 h, peaks at 2– 4 h, and persists through
24 h of treatment (Fig. 3B). Supershift analysis using antibodies
selective for NF-�B family members demonstrated that p50 and
p65 (RelA) are activated within 2 h (Fig. 3C). H1-P1c, which
contains no GST tag, was also capable of inducing NF-�B activ-
ity (Fig. 3, D and E). However, due to generally poor solubility of
the cleaved H1-P1 domain, we employed GST-tagged H1-P1 in
the remainder of the study. HAPLN1 is known to be cleaved
between residues 31 and 32 by multiple metalloproteinases,
including MMP9 (gelatinase B) (46), and removal of the N-ter-
minal 31 amino acids to create HAPLN1(32–354) was also able
to cause NF-�B activation (Fig. 3F).

H1-P1–induced NF-�B activation was not limited to the
RPMI8226 MM cell line, as stimulation of additional myeloma
cell lines, such as MM.1S and H929, also showed NF-�B activa-
tion (Fig. 3G). EMSA analysis of different cell types stimulated
with H1-P1 indicated that H1-P1–mediated NF-�B activity is
not limited to MM cell lines but can also be seen in some lym-
phoma (e.g. mantle cell lymphoma) and leukemia cell lines to
varying degrees (summarized in Table 1). Thus, these studies
demonstrate that HAPLN1 and its PTR domains possess a pre-
viously unprecedented NF-�B signaling potential in MM cell
and certain other cancer cell types.

HAPLN1-PTR1–induced NF-�B activation does not involve
hyaluronic acid binding

HAPLN1 links hyaluronic acid (HA) to specific proteogly-
cans, such as versican (42, 43). Currently, HA binding is the
only known biochemical function of the PTR domains. Thus, it
is possible that H1-P1 binds HA to signal through cell surface
receptors, such as RHAMM, CD44, and TLR-2/4 to induce
NF-�B signaling (4, 47, 48). To test the possible role of HA
binding in HAPLN1-mediated signaling, we added low- or
high-molecular weight HA forms, alone or in conjunction with
H1-P1, but these did not alter NF-�B activation (Fig. 4, A and
B). Moreover, treatment with hyaluronidase did not affect
H1-P1–induced NF-�B activation (Fig. 4B). Blundell et al. (49)
determined critical residues for HA binding in the PTR domain
of a H1-P1–related protein, TSG-6. We mutated the 6 con-
served residues in H1-P1 to alanines (H1-P1 HABD mt), but
these did not affect NF-�B activation in MM cells (Fig. 4C).
Taken together, these data suggest that HAPLN1-PTR1 causes
NF-�B activation in MM cells in a manner independent of HA
binding.

HAPLN1-PTR1 causes bortezomib-resistant I�B� degradation

Whereas canonical and noncanonical activation pathways of
NF-�B depend on the proteasome activity, we identified
HAPLN1 as a factor capable of inducing bortezomib-resistant
NF-�B activity (Fig. 1E). Thus, we next compared the bort-

Figure 1. Identification of HAPLN1 as a factor capable of inducing NF-�B activity in myeloma cells. A, SDS-PAGE and Coomassie Blue staining of the
enriched fractions with NF-�B–inducing activity previously identified by Markovina et al. (35). Three bands (*) from fraction 3 (F3) that contained the highest
NF-�B–inducing activity were excised and analyzed by nano-LC-MS/MS. Shown are identified factors with the number of unique peptides identified in
parentheses. B, EMSA analysis of RPMI8226 cells incubated with 10 ng/ml TNF� for 15 min or CM collected from HEK293 transiently transfected with vector
containing C-terminally MYC-tagged proteins: calumenin, osteonectin, or galectin-3– binding protein (Gal-3BP) for 2 h. Results are representative of at least
three independent experiments. C, representative immunoblot analysis (IB), using anti-MYC antibody, of CM from HEK293 cells transiently transfected with
calumenin, osteonectin, or galectin-3– binding protein expression vector showing the presence of corresponding secreted factors. D, immunoblot analysis,
using anti-MYC antibody, of HAPLN1 expression in CM collected from transiently transfected HEK293 cells with the HAPLN1 expression vector positive for
induction of NF-�B activity. Smaller HAPLN1 (H1) fragments are indicated *, larger immunoreactive bands. E, EMSA analysis of RPMI8226 cells treated with CM
from transiently transfected HEK293 cells containing HAPLN1 for 2 h in the absence or presence of 100 nM bortezomib (Bort). Induced NF-�B activity is highly
variable in more than five independent experiments, possibly dependent on the variability of smaller H1 species seen in D.
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ezomib dose response for inhibition of NF-�B activity with a
proteasome activity assay (Proteasome Glo) (Fig. 5, A–C). Bort-
ezomib showed maximal inhibition of both TNF�-induced
NF-�B activity and proteasome activity at 10 nM bortezomib
(Fig. 5, B and C). In contrast, H1-P1–induced NF-�B activation
was significantly more resistant to bortezomib at doses of
10 –100 nM (Fig. 5, A and B). H1-P1 did not affect the ability of
bortezomib to block proteasome activity at these doses (Fig.
5C); thus, the lack of NF-�B inhibition was not due to reduced
bortezomib efficacy or increased proteasome activity. NF-�B
activation by H1-P1 was also resistant to lactacystin, another
proteasome inhibitor, unlike TNF� (Fig. 5D). Increasing con-
centrations of TNF� did not limit the bortezomib-mediated
inhibition of NF-�B (Fig. 5E), indicating that bortezomib is
capable of fully inhibiting canonical NF-�B activation, no mat-
ter what the dose of TNF� used.

The above observations suggest an atypical mechanism at
play in H1-P1–induced NF-�B activation. This activation
occurs in the presence of cycloheximide (see below), thus indi-
cating that new protein synthesis is not required for activation.
Stimulation with H1-P1 caused degradation of I�B� protein
from 1 to 3 h, which was highly resistant to treatment with 100
nM bortezomib (Fig. 6, A and B). Bortezomib alone does not

affect I�B� degradation. Canonical NF-�B activation induced
by TNF� is accompanied by the accumulation of phosphorylat-
ed and ubiquitinated intermediates of I�B� preceding degrada-
tion by the proteasome; however, H1-P1–induced I�B� degra-
dation was not readily accompanied by the I�B� intermediates
preceding degradation by the proteasome (Fig. 6C). EMSA
analysis indicated that bortezomib caused �40% inhibition of
NF-�B activation induced by H1-P1 (Fig. 5B); however, I�B�
continued to be degraded in the presence of bortezomib (Fig. 6,
A–B). This suggests that another I�B family member could be
involved in this inhibition. Indeed, H1-P1 caused degradation
of I�B�, but I�B� degradation was more susceptible to inhibi-
tion by bortezomib than I�B� degradation (Fig. 6, A and B).
Interestingly, IKK16, an I�B kinase (IKK) inhibitor, and
MLN4924, a NEDD8-activating enzyme inhibitor that is criti-
cal for activation of SCF-type ubiquitin ligases, such as �-TrCP
required for I�B� ubiquitination (50, 51), could inhibit H1-P1–
mediated NF-�B activation and I�B� degradation (Fig. 6, D–F).
H1-P1–induced phospho-I�B� species became readily detect-
able in the presence of MLN4924 (Fig. 6, E and F). Collectively,
these results indicate that HAPLN1-PTR1 causes degradation
of both I�B� and I�B�, but I�B� degradation is resistant to
bortezomib, thus explaining significant resistance of H1-P1–

Figure 2. Generation and characterization of recombinant HAPLN1 proteins. A, diagram of HAPLN1 domains. The numbers indicate the amino acid
positions. SP, signal peptide; IG, immunoglobulin-like domain; PTR1, proteoglycan tandem repeat 1 domain; PTR2, proteoglycan tandem repeat 2 domain. B,
SDS-PAGE and GelCodeTM staining of GST-fused HAPLN1 domain proteins. Full-length (FL) HAPLN1 (not GST-tagged) is from R&D. *, band of interest. C (top),
representative EMSA analysis of NF-�B and Oct-1 activities in RPMI8226 cells following incubation with FL-H1, GST-fused H1-IG, H1-P1, and H1-P2 at 100 nM for
4 h or TNF� (10 ng/ml) for 15 min. Bottom, graph represents results of the mean -fold NF-�B activation � S.D. (error bars) of three independent EMSA
experiments shown above. *, p � 0.05; **, p � 0.01 when compared with appropriate control (untreated or GST only). D, representative EMSA analysis of three
independent experiments where RPMI8226 cells were stimulated with increasing doses of lipopolysaccharide (LPS) for 1 h or 10 ng/ml TNF� for 15 min. E,
representative graph of three independent endotoxin quantifications using the Pierce LAL chromogenic endotoxin quantification kit (Thermo Fisher Scien-
tific). Depicted is the span of the average amount of endotoxin found in three independent H1-P1 purifications. The eluted fractions were further diluted
50 –100-fold when added to culture media for NF-�B activation analyses, making the levels of contaminating lipopolysaccharide at least 3 orders of magnitude
below what is detectable for NF-�B activation by EMSA.
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induced NF-�B activation to proteasome inhibition in MM
cells. However, both IKK and NEDD8-activating enzyme inhib-
itors blocked I�B� degradation and NF-�B activation induced
by H1-P1, suggesting that this activation also involves compo-
nents of the canonical NF-�B–signaling pathway.

HAPLN1 is detectable in myeloma patient BMSCs and BM
plasma

We previously showed that BMSC-induced NF-�B activity
was highly variable from patient to patient (35). To test whether
production of HAPLN1 by myeloma patient– derived bone
marrow stromal cells (MM-BMSCs) is also highly variable, we
utilized qRT-PCR primers that can detect a common region of
six of seven splice variants (ENSEMBL database; the shortest
variant contains only the IG domain) to measure the expression
of HAPLN1 mRNAs in MM patient– derived BMSCs. HAPLN1
mRNA was observed in different MM-BMSCs at highly variable
levels (0.3–180 relative expression) (Fig. 7A).

Numerous ECM proteins can undergo proteolysis to re-
lease biologically active signaling fragments, called matrikines
(44, 52–54). We found that FL-H1 was unable to induce NF-�B
activation in MM cells (Fig. 2, C and D), but PTR1 and -2
induced NF-�B activation (Fig. 2, C and D). Because HAPLN1 is
known to be proteolyzed and multiple subdomains have
NF-�B–inducing capabilities, we characterized several HAPLN1
antibodies (Fig. 7, B and C) to determine HAPLN1 expres-
sion in BMSC CM. Two antibodies, H-93 and HPA019482
(HPA), that react with the IG domain (Fig. 7, B and C),
detected immunoreactivities at �40 kDa in four of seven
BMSC samples analyzed (Fig. 7D), whereas two additional
antibodies that detect PTR1 and PTR2 domains (K-14
and C-14, respectively) did not detect any other species in
BMSC CMs (not shown). There was no correlation between
HAPLN1 RNA expression and protein detection in CMs,
although secretion-positive BMSCs tended to be above the
mean RNA expression (Fig. 7A).

Figure 3. HAPLN1-PTR1 domain activates NF-�B in myeloma cells. A (top), representative EMSA analysis of RPMI8226 cells incubated with increasing
concentrations of H1-P1 for 2 h. Bottom, graph represents results of the mean -fold NF-�B activation � S.D. (error bars) of three independent EMSA experiments
(above). *, p � 0.05; **, p � 0.01 when compared with untreated (0 nM). B (top), representative EMSA analysis of RPMI8226 cells incubated with 100 nM H1-P1
for the times indicated. Bottom, graph represents results of the mean -fold NF-�B activation � S.D. of three independent EMSA experiments (above). *, p � 0.05;
**, p � 0.01 when compared with unstimulated 1-h lane. C, supershift analysis of RPMI8226 cells treated with 100 nM H1-P1 for 2 h using antibodies against the
five NF-�B family members. Results are representative of three independent experiments. D, SDS-PAGE and GelCodeTM staining of GST-fused H1-P1 following
incubation with GST-fused PreScission protease. H1-P1c, cleaved H1-P1 fragment. E, EMSA analysis of RPMI8226 cells pretreated for 30 min with 100 nM

bortezomib as indicated and stimulated with 100 nM H1-P1c or 10 ng/ml TNF� for the times indicated, representative of two independent experiments. F,
RPMI8226 cells treated with the indicated concentrations of H1(32–354) for 4 h and analyzed by EMSA, representative of two independent experiments. G,
RPMI8226, MM.1S, and H929 cell lines were incubated with 10 ng/ml TNF� for 15 min or 100 nM H1-P1 for 4 h and assayed for induction of NF-�B activity by
EMSA, representative of three independent experiments. Where indicated, EMSA was done in the presence of a RelB antibody (RelB Aby) to shift RelB complexes
to enable quantification of canonical NF-�B activation. -Fold change of NF-�B DNA binding as measured by phosphor image quantification, corrected for Oct-1
DNA binding control, and normalized to unstimulated but RelB antibody–treated, is indicated below the gel.
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We next analyzed HAPLN1 species in BM plasma from aspi-
rates of relapsed/refractory MM patients (Table 2). All four
antibodies employed detected immunoreactivities at �40 – 44
kDa in 3 of 15 patient samples analyzed (patients 5, 9, and 15)
(Fig. 7E). K-14 and C-14, which detect PTR1 and PTR2

domains, respectively, also detected smaller fragments of
20 –25 kDa in 9 of 15 patient BM plasma samples (patients 4, 5,
8 –10, and 12–15) (Fig. 7E). This suggests that these smaller
species in patient BM samples are HAPLN1 fragments contain-
ing the PTR1/2 domains but not the IG domain. Of note, of the
15 patients analyzed for BM plasma, five had progressive dis-
ease at the time of biopsy; HAPLN1 was detectable in four of
them (patients 10 and 13–15). The detection of HAPLN1 in
patients with progressive disease versus others was statistically
significantly different (p � 0.04, Wilcox–Mann–Whitney, two-
tailed). Overall, our results indicate that HAPLN1 is (i) variably
produced by BMSCs, (ii) present in patient BM plasma in both
larger forms (�40 – 44 kDa) containing all three domains and
smaller forms (20 –25 kDa) containing PTR1/2 domains but
lacking the IG domain, and (iii) potentially associated with pro-
gressive disease.

HAPLN1-PTR1 causes bortezomib resistance in myeloma cells

We previously showed that BMSC-induced NF-�B activity
was associated with bortezomib-resistant survival in RPMI8226
cells (34, 35). Thus, we investigated whether HAPLN1 could
cause bortezomib resistance in these cells. Bortezomib is cyto-
toxic (�90%) in RPMI8226 cells at 10 nM over 3 days (Fig. 7F).
H1-P1 alone did not affect cell viability, but when combined
with bortezomib, it induced bortezomib-resistant viability to
�80% (Fig. 7F). Additional MM cell lines (H929, KMS11, and
MM.1S) were also protected from bortezomib-induced toxicity
(Fig. 7F). Next, we analyzed primary CD138-positive MM cells
from patient bone marrow aspirates. We observed H1-P1–
mediated protection from bortezomib-induced toxicity in
three of four samples analyzed (Fig. 7G). Of the four patients
analyzed, patients a, b, and d had received bortezomib treat-
ment before biopsy, whereas patient c was newly diagnosed
with MM and therefore had not received any prior treatment.
Overall, our results demonstrate that HAPLN1-matrikine is
detectable in MM patient BM microenvironment, and its
HAPLN1-PTR1 domain is sufficient to induce resistance to
bortezomib-induced cell death in MM cells.

Discussion

In the present study, we identified HAPLN1 as a BMSC-se-
creted factor that is capable of inducing an atypical, PIR NF-�B
signaling pathway and bortezomib-resistant survival in MM
cells. To our knowledge, HAPLN1 has not been previously
implicated in NF-�B signaling or MM pathogenesis. Our study
also suggests the possibility that HAPLN1-mediated NF-�B
activity might account for some of the chronic NF-�B activa-
tion in MM cells that remains unexplained by genome-se-
quencing studies (5–7, 31, 33). Full-length HAPLN1 lacked
NF-�B signaling activity; only the MMP-processed version,
HAPLN1(32–354) (46), and internal PTR domains had strong
NF-�B signaling activities (46). ECM components that make up
the tissue stroma can be proteolytically processed to produce
soluble peptides and products, generally referred to as
“matrikines,” that can then signal to different cell types to
change their phenotype (4, 44, 53, 54). HAPLN1 is produced by
cells in the TME, and that production could be enhanced dur-
ing disease progression, particularly in patients with progres-

Table 1
Summary of H1-P1 induction of NF-�B activity in different cell lines of
different cell types
Cells were treated with 100 nM H1-P1 for 4 h as analyzed by EMSA. �, a positive
induction of NF-�B activity; �, no induction of NF-�B activity; �/�, a very weak
induction of NF-�B activity. MM, multiple myeloma; MCL, mantle cell lymphoma;
AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia.

Cell line Cell type H1-P1

RPMI8226 MM �
H929 MM �
MM.1S MM �
U266 MM �
Jeko-1 MCL �
z138 MCL �
Loucy MCL �
721 Lymphoblast �
DHL4 B cell lymphoma � / �
KG-1 Macrophages (AML) �
RS4;11 Bone marrow ALL �
J45.01 T-cell ALL �
REH ALL lymphocytes (non-B, non-T) �
KIT225 Lymphocytic leukemia T cells �
U-937 Histiocytic lymphoma (monocytes) �
HEK293 Human embryonic kidney �
MEF Mouse embryonic fibroblasts �

Figure 4. Hyaluronic acid binding is unnecessary for HAPLN1-PTR1–
induced NF-�B activation. A, EMSA analysis of NF-�B activity in RPMI8226
cells following incubation with low-molecular weight HA (LMW-HA; 29 kDa) or
high molecular weight HA (HMW-HA; 289 kDa) at the microgram amounts
indicated for 2 h. Results are representative of two independent experiments.
B, EMSA analysis of RPMI8226 cells treated with 100 nM H1-P1, low-molecular
weight HA, high-molecular weight HA, or hyaluronidase (HYAL) in the
amounts indicated for 4 h. C, H1-P1 HA-binding mutant (H1-P1 HABD mt) was
made by mutating the critical residues necessary for HA binding within H1-P1 to
alanine where illustrated. RPMI8226 cells were incubated with the indicated con-
centrations (nM) of recombinant GST-fused H1-P1 HABD mt for 4 h and assayed
by EMSA. Results are representative of three independent experiments. -Fold
change of NF-�B activity was determined as described previously.
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sive disease. We detected HAPLN1 fragments in a considerable
fraction of MM patient BM plasma. Thus, it seems plausible
that HAPLN1 is produced by BMSCs, and a proteolytic mech-
anism is associated with the release of NF-�B–activating frag-
ments, matrikines, to confer bortezomib resistance (Fig. 8).
Given the lack of detection of smaller PTR1/2 species in BMSC
CMs, it seems plausible that MM cells themselves or other cell
types could be involved in further processing of HAPLN1 into
smaller matrikine fragments in MM patient bone marrow.
The development of methodologies to accurately quantify
HAPLN1-matrikine levels in individual MM patients could
serve as a new biomarker for MM therapy and drug resistance.

It is well-established that two major pathways of NF-�B sig-
naling, canonical and noncanonical, share the requirement for
the ubiquitin-dependent proteasome pathway to inactivate
inhibitor proteins (28, 30). Thus, NF-�B activities present in the
tumor cells are generally considered to be sensitive to inhibition
by proteasome inhibitors, including bortezomib. However, our
laboratory previously reported a case in which a considerable
number of freshly isolated MM cells harbor NF-�B activity that
is highly resistant to bortezomib (34). We also described an
atypical NF-�B activation mechanism, termed the PIR path-
way, which is constitutively active in certain B lymphoma cell
lines and highly resistant to inhibition by over 10 different types

of proteasome inhibitors (37, 38). This PIR NF-�B activation
involves selective degradation of I�B�, but not I�B�, in a man-
ner highly resistant to proteasome inhibitors but is sensitive to
inhibition by IKK inhibitors (38). No extracellular ligand capa-
ble of inducing the PIR NF-�B signaling pathway was previously
known, but our current data demonstrate that HAPLN1 satis-
fies all of the expected features of such a PIR signaling ligand.
HAPLN1 does not modify bortezomib’s efficacy to block pro-
teasome activity in MM cells; thus, I�B� degradation occurs
despite efficient inhibition of the proteasome activity. More-
over, MLN4924, an NEDD8-activating enzyme inhibitor, could
block HAPLN1-induced I�B� degradation and NF-�B activa-
tion. Thus, further studies are required to determine how
HAPLN1 induces PIR NF-�B signaling (e.g. a cell surface receptor
and other signaling components that make this pathway highly
resistant to bortezomib inhibition). Our study suggests that HA
binding is not required for NF-�B signaling, thus tentatively ruling
out the HA receptors as necessary mediators (47, 48).

Beyond the currently discovered role in multiple myeloma
disease, HAPLN1 is also expressed in other tissues, including
the brain, heart, and digestive tract, and its overexpression has
been linked to several human malignancies, including colorec-
tal cancer, breast cancer, and hepatocellular carcinoma (55–
57). Our limited analysis of different cell lines demonstrated

Figure 5. HAPLN1-PTR1 causes bortezomib-resistant NF-�B activation. A, representative EMSA analysis of RPMI8226 cells incubated with 10 ng/ml TNF�
or 100 nM H1-P1 in the absence or presence of increasing concentrations (nM) of bortezomib (Bort). B, graph depicts the mean � S.D. (error bars) of the
quantification of three independent replicates of EMSA analysis as in A. *, p � 0.05; **, p � 0.01; ***, p � 0.001. C, the proteasome activity in RPMI8226 cells was
analyzed following treatment with increasing doses of bortezomib (nM) in the presence and absence of 100 nM H1-P1 using a Proteasome-Glo cell-based assay
(Promega) and plotted using the basal proteasome activity in 0 nM bortezomib set as 1. Results represent mean � S.D. of three independent experiments. D,
EMSA analysis of RPMI8226 cells incubated with increasing concentrations of lactacystin (�M) and stimulated with 10 ng/ml TNF� for 15 min or 100 nM H1-P1
for 4 h. Results are representative of two independent experiments. E, EMSA analysis of RPMI8226 cells pretreated with 100 nM bortezomib for 30 min and
stimulated with increasing doses of TNF� (ng/ml) for 15 min. -Fold change of NF-�B activity was determined as described previously.
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that NF-�B activation by H1-P1 is not limited to MM cell type
but also detected in certain other cancer types. NF-�B is well-
known to control inflammatory cytokine production as well as
inducing cell survival mediators; therefore, HAPLN1-induced
NF-�B signaling could explain some of these HAPLN1-associ-
ated pathological processes. The newly uncovered role for
HAPLN1 in NF-�B signaling and possible other pathways
opens future investigations to greatly deepen our understand-
ing of this ECM protein’s role in a multitude of physiological
and pathological processes.

Experimental procedures

Antibodies and reagents

Antibodies against cMYC (9E10), HAPLN1 (H-93, K-14,
C-14), I�B� (C-21), I�B� (C-20), IKK�/� (H-470), cRel (C), p65
(C-20), p100/p52 (C-5), p50 (NLS), and RelB (C-19) were
obtained from Santa Cruz Biotechnology. Other antibodies

were against HAPLN1 (HPA019482, Sigma-Aldrich), phospho-
IKK�/� (2697, Cell Signaling Technology), phospho-I�B�
(9246, Cell Signaling Technology), and tubulin (CP06, Calbi-
ochem). Reagents purchased include recombinant human
TNF� (654205, EMD Millipore), lipopolysaccharide (L2880,
Sigma-Aldrich), clasto-lactacystin �-lactone (154226-60-5,
Sigma-Aldrich), bortezomib (S1013, Selleckchem), IKK16
(S2882, Selleckchem), MLN4924 (505477, Calbiochem), cyclo-
heximide (C7698, Sigma-Aldrich), recombinant HAPLN1
(2608-HP, R&D Systems), low/high molecular weight hyaluro-
nan (GLR001 and GLR004, R&D Systems), hyaluronidase
(75790-208, ProSci), and GelCodeTM Blue Stain (Thermo
Fisher Scientific).

Cell line culture

RPMI8226, MM.1S, NCI-H929, and HEK293 cell lines were
obtained from American Type Culture Collection (ATCC).

Figure 6. HAPLN1-PTR1 causes bortezomib-resistant I�B� degradation. A, representative immunoblot analysis of I�B�, I�B�, and tubulin in RPMI8226
cells pretreated for 30 min with cycloheximide (Cx; 20 �g/ml) or bortezomib (Bort) (100 nM) and stimulated with H1-P1 (100 nM) where indicated. B, three
biological replicates of degradation of I�B� and I�B� as in A were quantified and plotted with mean � S.D. (error bars). *, p � 0.05. C, immunoblot analysis of
RPMI8226 cells pretreated for 30 min with 100 nM bortezomib where indicated and stimulated with 10 ng/ml TNF� for 15 min or 100 nM H1-P1 for 2 h. The top
gel image is a longer exposure of the I�B� blot. The positions of I�B�, phospho-I�B�, and I�B� ubiquitin ladders are indicated. Results are representative of at
least three independent experiments. D, RPMI8226 cells pretreated for 30 min with 10 �M IKK16 and 20 �g/ml cycloheximide were stimulated with H1-P1 for
the indicated times and analyzed by EMSA and immunoblotted (IB) for indicated proteins. Results are representative of three independent experiments. E,
EMSA and immunoblot analysis for the indicated proteins of RPMI8226 cells pretreated for 30 min with increasing concentrations MLN4924 (�M) and stimu-
lated with 100 nM H1-P1 for 4 h or 10 ng/ml TNF� for 15 min and analyzed by EMSA and immunoblotting for the indicated proteins. F, results represent mean �
S.D. (*, p � 0.05; **, p � 0.01) of quantification of three independent EMSA and phospho-I�B� immunoblot analyses as in E at 100 �M MLN29424.
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KMS11 and L363 cell lines were obtained from Dr. Lixin Rui.
All multiple-myeloma cell lines were cultured at 37 °C/5% CO2

in RPMI1640 containing 10% FBS, 2% GlutaMAX (Gibco) � 1%
penicillin/streptomycin.

Patient sample collection and processing
In accordance with the University of Wisconsin-Madison

Institutional Review Board requirements (HO07403), human
bone marrow aspirates (2–10 ml) were obtained with informed

Figure 7. HAPLN1 is secreted by BMSCs, and HAPLN1-PTR1 causes bortezomib resistance in myeloma cells. A, mRNA expression of HAPLN1 in myeloma
BMSCs analyzed by qRT-PCR in triplicate, normalized to GAPDH mRNA expression; the mean for each sample is presented as a box-and-whisker plot. n � 18
myeloma patient BMSCs. B, schematic illustrating the locations of epitopes for different HAPLN1 antibodies utilized. Dashed lines indicate the uncertainty of the
specific epitope regions. C, immunoblot analysis of GST-fused HAPLN1 domains showing the epitope specificity of HAPLN1 antibodies utilized. Four parallel
SDS-PAGE analyses and immunoblots were performed to independently determine the reactivity of each antibody. *, species of interest. D, immunoblot
analysis of HAPLN1 expression from conditioned media collected from myeloma BMSCs for 48 h. *, HAPLN1 immunoreactivities detected by two independent
anti-HAPLN1 antibodies, H-93 and HPA019482 (HPA). Results are representative of three biological replicates. Pt, patient. E, immunoblot analysis of HAPLN1
expression in myeloma patient BM plasma fractions with four different HAPLN1 antibodies detecting PTR1 and PTR2 (K-14 and C-14) and IG (H-93 and
HPA019482) domains. One membrane was probed with K-14 and H-93, and a second membrane was probed with C-14 and HPA019482. *, HAPLN1 immuno-
reactivities detected. NS, non-specific. Results are representative of three independent replicates. F, the indicated myeloma cell lines were cultured at 104 cells
(°, except for MM.1S at 5 � 104 cells and 3 nM bortezomib (Bort)) with 100 nM GST or 100 nM H1-P1 alone or in combination with 10 nM bortezomib. After 3 days,
cell viability was measured by an MTT assay. Each dot represents the mean of biological replicates performed in triplicate. Bar graphs represent the mean of
three biological replicates � S.D. (error bars). *, p � 0.05; **, p � 0.01. G, CD138� cells from patients were cultured at 1–1.5 � 104 cells with 100 nM GST or 100
nM H1-P1 alone or in combination with 10 nM bortezomib, as indicated. Following 24 h, cell viability was measured by an MTT assay. Each square represents a
technical replicate, and the bar graph represents the mean � S.D. of triplicates. **, p � 0.01.

Table 2
Characteristics of MM patients’ samples utilized in bone marrow plasma analysis
Numbers are data gathered for 15 patients.

Patient
age Male Female

Lytic bone
disease

Average no.
of treatments Autotransplant

Abnormal
cytogenetics

years % % % % %
52–86 64 36 94 2.4 73 66

Figure 8. Schematic of proposed role of HAPLN1 in myeloma. MM-BMSCs secrete HAPLN1. Secreted proteases produced by MM-BMSCs, MM cells, or
possibly other cell types in the tumor microenvironment process HAPLN1 into PTR1/PTR2-containing fragments to induce an atypical NF-�B signaling pathway
in myeloma plasma B-cells leading to bortezomib-resistant survival of MM cells. This pathway involves IKK activation and I�B� phosphorylation, but polyu-
biquitination of I�B� is hardly detected (denoted by a lighter and shorter ubiquitin chain). In contrast, TNF� activates the canonical NF-�B pathway that is
sensitive to bortezomib inhibition, and both I�B� phosphorylation and polyubiquitination are readily detectable.
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consent from multiple myeloma patients at the University of
Wisconsin Hospital and Clinics. The samples collected were
only accompanied by diagnosis with no further information
regarding patient history at the time of analysis. Some aspirates
were spun at 400 � g for 5 min at room temperature, and BM
plasma fraction was removed and stored at �80 °C for further
analysis. Myeloma plasma cells were positively sorted with
CD138� magnetic MACS� beads (Miltenyi Biotec) to 	90%
purity as described previously (34). CD138-negative fractions
were cultured in “BMSC medium” (OptiMEM containing 10%
FBS, 2% GlutaMAX � 1� NEAA (Gibco), and 1% penicillin/
streptomycin) at 37 °C in a 5% CO2 incubator, and BMSCs were
derived by removal of nonadherent cells 24 h after plating.
Adherent cells were then expanded until passage 3– 4 and cryo-
preserved as described previously (58).

Conditioned medium mass spectrometry analysis

Partial enrichment of H1-ESC-MSCs-induced factor was
described previously (35). Fractions were analyzed by SDS-
PAGE and stained with Coomassie Blue. Unique bands were
cut, and the protein identification was carried out at ProtTech,
Inc. by using nano-LC-MS/MS peptide-sequencing technol-
ogy. In brief, each protein gel band was destained, cleaned, and
digested in-gel with sequencing grade modified trypsin. The
resulting peptide mixture was analyzed by a LC-MS/MS sys-
tem, in which a high-pressure liquid chromatograph with a
75-�m inner diameter reverse phase C18 column was on-
line– coupled with an ion trap mass spectrometer. The mass
spectrometric data acquired were used to search the most
recent non-redundant protein database with ProtTech’s
proprietary software suite.

HEK293 transient transfection and conditioned media

Multiple myeloma BMSCs were used to isolate total RNAs,
and cDNAs encoding each of the mass spectrometry hits in full
length were PCR-amplified with the following primers: G3BP,
forward (5
-acgaagcttcatgacccctccgaggctcttc-3
) and reverse
(5
-agtggatccgtgtccacacctgaggagttgg-3
); calumenin, forward
(5
-gtggaattcctatggacctgcgacagtttctt-3
) and reverse (5
-ctcctc-
gcgtgaactcatcatgccgta-3
); osteonectin, forward (5
-attctgcaga-
atgagggcctggatcttctttctcc-3
) and reverse (5
-ctctcgagtgatcaca-
agatccttgtcgatatc-3
); HAPLN1, forward (5
-cgcggatccaatgaag-
agtctactt-3
) and reverse (5
-gcgactcgaggttgtatgctctgaa-3
).
Then they were inserted into a pSecTag2A plasmid and
sequence-verified for integrity. pSecTag2A adds a C-terminal
Myc tag and His6 tag for detection of secreted factors. HEK293
cells were transiently transfected via a standard calcium phos-
phate precipitation protocol with each plasmid. CM was col-
lected at 72 h after transfection. Expression and secretion of
each of the transfected factors was analyzed by immunoblot
using anti-Myc antibody.

CM analysis

CM was prepared by culturing a confluent monolayer of
BMSCs, washing monolayer three times with 1� PBS and cul-
turing the cells in serum-free BMSC medium at 37 °C. After
48 –72 h, the CM was removed and centrifuged at 3,000 rpm for

5 min to remove cellular debris. Then 0.5 ml of CM was TCA-
precipitated and analyzed by SDS-PAGE and immunoblotting.

EMSAs

EMSAs to measure NF-�B activity in myeloma cell lines were
performed as described previously (36) using 32P-labeled dou-
ble-stranded DNA probes with the following sequences: �B,
5
-tcaacagagggactccgagaggcc-3
; Oct-1, 5
-tgtcgaatgcaaatcact-
agaa-3
. Briefly, cell extracts were made using TOTEX buffer, as
described previously (38), and 10 �g of extracts were separated
on 4% native polyacrylamide gel, dried, and exposed to a phos-
phor screen (Amersham Biosciences), followed by quantitation
of NF-�B DNA binding through ImageQuant software (GE
Healthcare). Each NF-�B lane was normalized to Oct-1 values
from the same sample and then to the vehicle-treated control
values for each experiment to derive -fold induction.

SDS-PAGE and immunoblot analysis

Myeloma cell lines were pelleted and lysed in TOTEX buffer,
as described previously (38). Equal amounts (100 �g) of soluble
protein were run on denaturing 10 –12.5% SDS-polyacrylamide
gel and transferred onto a polyvinylidene fluoride or nitrocel-
lulose membrane (GE Healthcare). The membrane was then
incubated with the appropriate antibodies as described previ-
ously (36). Immunoblots were analyzed by enhanced chemilu-
minescence as described by the manufacturer (GE Healthcare).
Quantification of immunoblots was performed using ImageJ
(National Institutes of Health) to calculate the signal intensity
of protein(s) of interest normalized to total protein loading
(tubulin or actin) for each lane from the same sample and then
to vehicle control values for each experiment.

Purification and expression of GST-tagged proteins

HAPLN1 domains (IG, PTR1, and PTR2) were PCR-ampli-
fied with the following primers: IG, forward (5
-cacacaggatcc-
gatcatctttcagac-3
) and reverse (5
-gccgctcgagaagtccagtgctac-
cac-3
); PTR1, forward (5
-gcgggatccgtggtattcccttac-3
) and
reverse (5
-gccgctcgagattgaaattggatgtaa-3
); PTR2, forward
(5
-cgcggatccggccgtttttactatc-3
) and reverse (5
-gccgctcgagg-
ttgtatgctctgaag-3
). Double-stranded oligonucleotides encod-
ing HAPLN1(32–354) or H1-P1 HABD mt mutant were pur-
chased from Integrated DNA Technologies and inserted into
pGEX6p-1 plasmid and sequence-verified for integrity. Plas-
mids were transformed into the BL21 Rosetta 2 E. coli strain
and induced with 1 mM isopropyl 1-thio-�-D-galactopyrano-
side, followed by lysis and purification by glutathione-agarose
beads (G4510, Pierce) and elution by 50 mM reduced glutathi-
one at pH 8.0. Removal of GST from GST-H1-P1 to generate
H1-P1c was done by incubation with GST-fused PreScission
protease (GE Healthcare) as described previously (59).

Endotoxin quantification

Endotoxin levels were assessed using the Pierce LAL chro-
mogenic endotoxin quantification kit (88282, Thermo Fisher
Scientific). Quantification was performed in 96-well tissue
culture grade plates and assayed per the manufacturer’s
instructions.
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3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay

MTT (M6494) was purchased from Thermo Fisher Scien-
tific. 104 to 105 cells/well were plated in triplicate in a 96-well
clear bottom microassay plate and assayed per the manufactu-
rer’s instructions. Cells containing formazan (MTT) were dis-
solved in 50 –75 �l of DMSO, and formazan concentration was
measured by absorbance at 540 nm. The assays were run in
three biological replicates. The data were normalized to the
mean of untreated control.

26S proteasome activity assay

Cells (20,000/well) were plated in a white 96-well microassay
plate and treated with varying concentrations of bortezomib in
the absence or presence of 100 nM H1-P1 for 4 h. Proteasome
activity was assayed using a cell-based Proteasome-Glo assay
(G8660, Promega Corp.) according to the manufacturer’s
instructions, and luminescence was recorded on a luminometer
(PerkinElmer Life Sciences). Following subtraction of back-
ground, relative light units for the no-drug control indicate
100% proteasome activity, and the ratio of relative light units for
each dose of bortezomib over control was used to determine
relative chymotryptic activity.

qRT-PCR analysis

Total RNAs from treated cells were purified by a Nucleospin
RNA II column (740955, Clontech) according to the manufa-
cturer’s instructions. cDNAs were synthesized from the total
RNAs using iScript cDNA synthesis kit (1708891, Bio-Rad).
qRT-PCR was performed and analyzed using a Bio-Rad CFX
Connect real-time system. Relative expression was determined
by ��Ct calculation and normalized to GAPDH mRNA levels
of the same sample. The qRT-PCR primer sequences were as
follows: HAPLN1, forward (5
-gatactgttgtggtagcactgg-3
) and
reverse (5
-tgctgcgcctcgtgaaaattgag-3
); GAPDH, forward (5
-
gaaggtcggagtcaacggattt-3
) and reverse (5
-gaatttgccatgggt-
ggaat-3
).

Bone marrow plasma analysis

Plasma layer from bone marrow aspirates (20 �l) was added
to 980 �l of 1� PBS. 200 �l of Affi-Gel Blue gel beads (1537301,
Bio-Rad) (1:1 slurry in 1� PBS) were added and tumbled at 4 °C
for 2–3 h. Samples were then centrifuged at 3,000 rpm for 5
min, and supernatant was subjected to a second depletion with
100 �l of Affi-Gel Blue beads (3:1 bead slurry in 1� PBS) over-
night at 4 °C to remove albumin. 100 �l of protein G-Sepharose
4 Fast Flow (17-0618-01, GE Healthcare) (1:1 slurry in 1� PBS)
was added to supernatant and tumbled for 2–3 h at 4 °C. Fol-
lowing centrifugation, supernatant was incubated with 100 �l
of protein A Sepharose Cl-4B (17-0963-03, GE Healthcare) (1:1
slurry in 1� PBS) for an additional 2–3 h to remove antibodies.
Final supernatant was TCA-precipitated and analyzed by SDS-
PAGE and immunoblotting using different HAPLN1 antibod-
ies. To avoid carryover signals, TCA-precipitated supernatant
was split into two equal samples, and two SDS-polyacrylamide
gels were run in parallel and probed with different antibodies
(one membrane probed with K-14 and H-93 and the second
membrane probed with C-14 and HPA019482).

Statistical analysis

An unpaired two-sided Student’s t test was used to compare
two independent groups. Two-way analysis of variance with
multiple-comparison test was used to compare bortezomib
inhibition and I�B degradation curves. For comparison of
HAPLN1 detection and progressive disease, a two-tailed
Wilcox–Mann–Whitney test was used. A p value of �0.05 was
considered statistically significant. Analysis was performed
with GraphPad Prism Software (GraphPad Software Inc.).
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