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Abstract

Combination antiretroviral regimens have achieved tremendous success in reducing perinatal HIV 

transmission, and have become standard of care in pregnant women with HIV. However, the large 

variety of combination antiretroviral regimens utilized in practice raises the question of whether 

some of these highly potent drugs pose other risks to the pregnancy or infant. While HIV-infected 

pregnant women are almost always exposed to multiple antiretrovirals concurrently, standard 

safety screening strategies typically consider each individual antiretroviral separately, which fails 

to account for potential confounding due to simultaneous exposure to other antiretrovirals. In this 

paper, we evaluate a hierarchical modeling approach which groups antiretrovirals by drug class to 

screen for the safety of antiretrovirals taken during pregnancy, while still providing individual 

antiretroviral drug effect estimates. In simulation studies, we observed that the hierarchical 

approach may be advantageous as compared to considering each antiretroviral drug separately or 

simultaneously evaluating all antiretrovirals in a fixed effect model, particularly when there is 

prior evidence suggesting drugs from the same class behave similarly on the outcome. The 

characteristics of the hierarchical approach are illustrated in an application evaluating risk of 

preterm birth using a study including over 2000 pregnancies representing over 100 antiretroviral 

combinations, each involving up to three drug classes.
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1 Introduction

The use of combination antiretroviral (ARV) therapy during pregnancy has been a public 

health success, reducing the risk of perinatal human immunodeficiency virus (HIV) 

transmission to less than 2%.1,2 Despite widespread use of ARVs during pregnancy, there is 

a dearth of adequate and well-controlled human studies evaluating the safety of ARVs in 

pregnancy, leading to a need to monitor potential adverse effects that these highly potent 

drugs may have on the pregnancy or infant.3 Given the large number of available and 

effective ARVs, identification of individual ARVs with increased risks is critical, so that 

pregnant women can be advised to take ARVs with the safest profile.

The difficulty in assessing the safety of ARVs during pregnancy is due in part to the large 

number of different drugs available, yielding hundreds of possible combinations of ARV 

drugs that women can be exposed to during pregnancy. When prior research findings are 

suggestive or in settings with limited variability in regimens, a comparative effectiveness 

strategy may be used to compare two regimens against each other.4 However, such 

approaches may not be useful for general safety screening across many ARVs or regimens. 

In most cases, safety screening for a larger number of ARV drugs has been conducted by 

considering one drug at a time as part of a screening strategy. That is, studies have either 

restricted analysis to a single drug or drug class, or analyzed exposure to one drug or drug 

class at a time, and repeated the analysis for each drug and/or drug class.5–14 Such analyses 

fail to adjust for exposure to other ARV drugs, and thus could be confounded by other ARV 

use. On the other hand, with so many different ARV exposures, it can become prohibitive to 

include all exposures at once in the statistical models ordinarily used.

As an alternative to these conventional approaches, hierarchical modeling has been 

advocated to address the multiple-exposure issues inherent to many epidemiologic 

investigations.15–17 It has been used in areas such as nutrition, occupational health, and 

genetics.15,17–26 Hierarchical models have also previously been used in evaluating outcomes 

among HIV-infected adults, but have not been utilized in the context of addressing safety of 

ARV use during pregnancy.27–29

In this paper, we investigate a hierarchical model safety screening approach that includes 

first-stage effects for each drug class (nucleoside reverse transcriptase inhibitors (NRTI), 

non-nucleoside reverse transcriptase inhibitors (NNRTI), and protease inhibitors (PIs)), and 

second-stage effects for individual drugs. In essence, this model assumes that the effect of 

each drug is the summation of the (fixed) effect of its drug class and a residual effect specific 

to the individual drug. The effect for drugs less commonly used will be pulled toward the 

“mean” effect averaged over other, more common drugs from its same drug class. We would 

thus expect the hierarchical modeling method to perform well when drugs from the same 

drug class do indeed have similar effects on the outcome of interest.

The assumption of a similar effect for drugs within the same drug class can be justified by 

the fact that each class of ARV medications has a different mechanism of action. NRTIs are 

analogs of naturally occurring deoxynucleotides and terminate DNA chain formation.30,31 

NNRTIs bind to the HIV reverse transcriptase enzyme and cause a structural change that 
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impairs further DNA synthesis.30,32 PIs prevent the processing of viral proteins into their 

functional form, such that release of active virus particles is inhibited.30,33 As a result of 

their mechanism of action, PIs as a class have been linked to increased rates of dyslipidemia 

in both children and adults with HIV infection,34,35 and have also been associated with 

increased rates of preterm birth,36,37 particularly when taken by HIV-infected women early 

in pregnancy.38 In contrast, NRTIs have been linked to potential mitochondrial dysfunction 

and lactic acidosis based on evidence from both animal and human studies.39 While their 

common mechanism of action supports an assumption that drugs within a class would 

behave similarly, and some studies have documented similar rates of outcomes,40 there are 

also specific individual drugs which may confer increased or decreased risk as compared to 

others within the same class.1,41,42 For example, the drug efavirenz (EFV) has been more 

commonly associated with psychiatric adverse effects than other drugs within the NNRTI 

class.42

Given a plausible biological justification, the hierarchical modeling approach thus seems 

appealing. However, while a limited number of prior applications have utilized this 

approach, there is little information on how well this method will perform under various 

possible scenarios reflecting ARV drug effects. For example, this approach may not perform 

well when drugs from the same class do not behave similarly. Furthermore, previous 

research studies utilizing this approach considered multiple continuous exposures with 

considerably more variability than observed within our context.18,19 Thus, examination of 

whether the hierarchical modeling approach is advantageous within the context of multiple 

binary exposures with many zero counts is warranted. Given the lack of prior knowledge 

regarding expected effects in these types of screening studies, we sought to quantify how 

much is gained by using the hierarchical model when the drug class assumption is correct, 

and also how much is lost by using the hierarchical model when the drug class assumption 

contradicts the true underlying data mechanism.

In Section 2, we detail the three screening approaches to be compared, and consider the 

analytical bias of the separate models approach and the hierarchical approach. In Section 3, 

we present a simulation study conducted to compare the conventional approaches and the 

hierarchical modeling approach under various true exposure-outcome scenarios in the 

context of screening the safety of ARV exposures during pregnancy. In Section 4, we 

illustrate the hierarchical modeling approach using data from the Surveillance Monitoring of 

ART Toxicities (SMARTT) study within the Pediatric HIV/AIDS Cohort Network Study 

(PHACS). In Section 5, we conclude with a discussion of the relative merits and limitations 

of the hierarchical approach for safety screening, and avenues of further research.

2 Methods

2.1 Models

We consider the setting of an observational cohort study with N participants for whom we 

have information on ARV exposures during pregnancy and perinatal outcome data. We let y 
be an N by 1 outcome vector, indicating a perinatal or infant outcome. We let X be an N by 

m matrix of zeroes and ones indicating the exposure history (no/yes) during pregnancy of 

each participant to m individual ARVs under investigation, and we let Xj be the N by 1 
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subvector of X indicating the exposure history for the jth ARV (j=1,2,… m). Lastly, we let 

1N be an N by 1 vector of ones and W be an N by q matrix of q potential confounding 

variables. Let g(·) denote the link function for a generalized linear model. In particular, we 

investigate the identity link (g(E(y))=E(y)) for continuous outcomes and the logit link 

(g(E(y)) = logit{E(y)}) for binary outcomes.

The standard, separate regression models approach involves running m models, where each 

model includes one ARV drug

g E(y ∣ X j, W) = αS1N + X jβ j
∗ + Wγ j

∗, j = 1, 2, …, m (1)

In equation (1), αS represents the mean outcome (under the identity link) or the log odds of 

the outcome (under the logit link) among those unexposed to the jth ARV and for which all 

covariates in W equal zero. The β j
∗ represents the mean difference in outcome (under the 

identity link) or the difference in log odds of the outcome (under the logit link) between 

women exposed and unexposed to the jth ARV after adjusting for the covariates in W. The 

γ j
∗ is a vector indicating the mean differences in outcome (under the identity link) or the 

differences in log odds of the outcome (under the logit link) for a one unit increase in the 

covariates, when adjusting for the jth ARV.

The full fixed effect regression model involves running one model with all m ARVs included 

at once

g(E(y ∣ X, W)) = αF1N + XβF + WγF (2)

In equation (2), αF represents the mean outcome (under the identity link) or the log odds of 

the outcome (under the logit link) among those unexposed to all m ARVs and for which all 

covariates in W equal zero. The βF vector represents the mean differences (or differences in 

log odds) in outcome under the identity link (or logit link) between women exposed and 

unexposed to each ARV after adjusting for the other m−1 ARVs and the covariates in W. 

The γF is a vector indicating the mean differences in outcome (under the identity link) or the 

differences in log odds of the outcome (under the logit link) for a one unit increase in the 

covariates, when adjusting for all m ARVs.

The hierarchical model adds a prior distribution to the βF coefficients in equation (2), such 

that

βH = Zπ + δ
δ Nm(0, τ2Im)

(3)
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So, βH ~ Nm(Zπ, τ2Im), where Z is an m by p matrix indicating drug-class membership 

when the m individual drugs under investigation are from p different drug classes, and π is a 

p by 1 vector of the p fixed, drug class-specific mean effects. For example, with m=14 drugs 

from p=3 drug classes, Z may look like

Abacavir (ABC)
Emtricitabine (FTC)
Tenofovir (TDF)
Zidovudine (ZDV)
Lamivudine (3TC)
Efavirenz (EFV)
Etravirine (ETR)
Nevirapine (NVP)
Rilpivirine (RPV)
Atazanavir (ATV)
Darunavir (DRV)
Fosamprenavir (FPV)
Ritonavir‐boosted lopinavir (LPV/r)
Nelfinavir (NFV)

NRTI NNRTI PI
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

δ is an m by 1 vector of residual effects for each individual drug, and the elements of δ are 

assumed to be independent normal random variables with mean 0 and variance τ2. The 

hierarchical model thus becomes

g(E(y ∣ X, Z, W, δ)) = α + X(Zπ + δ) + Wγ = α1N + XZπ + Xδ + Xγ
δ Nm(0, τ2Im)

(4)

From the formulation in equation (4), we can see that XZ is an N by p matrix indicating the 

number of drugs from each drug class that each participant was exposed to during 

pregnancy. The elements in π represent the effect on the outcome of each additional drug 

from a particular drug class that a woman is exposed to during pregnancy, conditional on the 

individual drugs taken and covariates in W. The elements of δ are the residual effects on the 

outcome for a particular drug above and beyond the effects attributed to its drug class. The α 
parameter represents the mean outcome (under the identity link) or the log odds of the 

outcome (under the logit link) among those unexposed to all m ARVs and for which all 

covariates in W equal zero; and γ is a vector of the covariate effects conditional on exposure 

to drug classes and individual drugs.

The variance of the random effects (τ2) controls the degree of shrinkage of the βH’s to their 

drug class mean. Smaller values of τ2 will result in more shrinkage to the drug class mean, 

with the hierarchical model reducing to a model with just fixed effects for drug class when 

τ2 = 0. Larger values of τ2 correspond to less shrinkage to the drug class mean, and the 

hierarchical model becomes equivalent to the ordinary full regression model when τ2 = ∞.
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2.2 Brief bias considerations under the linear model

As mentioned earlier, we would expect the hierarchical modeling method to perform well 

when drugs from the same drug class have similar effects on the outcome of interest. 

However, often there is little prior knowledge regarding the effects of ARV exposures on 

reproductive and perinatal outcomes, and the relative advantages of the hierarchical 

approach when only a subset of ARV drugs have an effect require evaluation. Suppose the 

true underlying data-generating mechanism is that only one drug, X1, has an effect on a 

continuous outcome Y in the following form

yi = α∗ + X1β1
∗ + εi, εi N(0, σ2)

Under the separate models approach, the maximum likelihood estimate (MLE) for β1
∗ will be 

unbiased and consistent when fitting drug 1, i.e. the correct model. However, MLE estimates 

for the β j
∗ from the other m−1 models will be biased due to uncontrolled confounding by X1. 

In particular, it can be shown that the expected value of β j
∗ has the form

E β j
∗ = ξ1 jβ1

∗, j = 2, 3, …, m

where ξ1j is the difference in probability of receiving drug X1 between women exposed and 

unexposed to drug Xj, i.e.

E X1 ∣ X j = P X1 = 1 ∣ X j = ξ0 j + ξ1 jX j, j = 2, 3, …, m

Thus, the MLE estimators from a separate models approach will be biased for the true null 

effect ( β j
∗ = 0). As the magnitude of the effect of X1 on Y (β1

∗) increases, and as the 

correlation between exposure to drug X1 and drug Xj (ξ1j) increases, the bias in β j
∗ also 

increases. Furthermore, increasing the sample size only exacerbates the problem, as the 

separate models approach will show increasing certainty (smaller standard errors) around an 

incorrect effect estimate in m−1 of the models.

Often researchers adjust for potential confounders between the drug exposures and the 

outcome. However, the confounded effect estimate of Xj will remain unless the model 

controls for all covariates W*that determine prescribing patterns by physicians such that 

ξ1 j
∗ = 0 under E X1 ∣ X j, W∗ = P X1 = 1 ∣ X j = ξ0 j

∗ + ξ1 j
∗ X j + W∗θ. Given the differences in 

prescribing patterns across hospitals and physicians, it seems unlikely one could fully 

account for W*.

Under the hierarchical modeling approach, the estimated drug-specific effects are also 

biased, but the bias decreases as the sample size increases. Greenland noted that β̂H = BZπ̂+
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(I-B)βF̂, where B=(V* + τ2Im)−1 V*, and V* is the covariance matrix of β̂F.16,20 For a given 

τ2, as V*→0 with increasing sample size, β̂F is given more weight and β̂H is a consistent 

estimator for the true parameters of all m drugs. That is, as N→∞, β1
H β1

∗ and β j
H 0 for 

j=2,3,…m. Asymptotic properties, however, may not be reasonable approximations for 

estimators at the sample sizes commonly utilized for studies assessing ARV exposures and 

reproductive outcomes. In this paper, we will consider the bias under both methods at 

realistic sample sizes to assess finite-sample properties and further consider the bias under a 

binary outcome with generalized linear models.

3 Simulation study

A simulation study was performed to investigate the operating characteristics of the three 

different approaches under various outcome scenarios. The first approach involved separate 

univariate regression models for each drug (equation (1)); the second approach was the full 

ordinary regression model with all drugs included at once (equation (2)); and the third 

approach was the hierarchical model (equation (4)). We used a semi-Bayes approach for 

fitting the hierarchical model by specifying a priori the variance in the random effects (τ2), 

as advocated in prior studies using this approach.16,19,28,29,43 An empirical Bayes approach 

(estimating τ2 from the data) was also considered, but τ2 was consistently estimated to be 

zero, which reduces the model to having only fixed effects for drug class and is not helpful 

in making drug-specific conclusions. We considered a binary outcome (preterm birth) and a 

continuous outcome (Bayley-III score of the infant at 12 months). For each outcome, we 

considered various true exposure-outcome relationships, including no true effects, a subtle 

effect of all drugs within one drug class, a moderate effect of only one individual drug, and 

moderate effects of two drugs from the same class, but in opposite directions. Table 1 

provides the specific models under which data were simulated for each scenario.

A number of statistical properties were evaluated, including the percent of models that 

converged (for the binary outcome), the percent of false discoveries, the power to detect true 

effects, the bias in estimated effects for each exposure, the standard error in estimated effects 

for each exposure, and the observed coverage of 95% confidence intervals (CIs) for the 

effect for each exposure.

SAS 9.4 (SAS Institute Inc., Cary, North Carolina) was used for all simulations and applied 

data analysis. The SAS-provided GLIMMIX macro (http://support.sas.com/techsup/notes/

v8/25/030.html) was used to implement the hierarchical modeling method for the binary 

outcome.19 Note that the GLIMMIX procedure does not yield estimates of the covariances 

between fixed and random effects, and thus cannot be used for this approach. The MIXED 

procedure was used to implement the hierarchical modeling method for the continuous 

outcome (programs are available by request to the author).

3.1 Exposure assignment

We used data from the SMARTT study to inform the ARV exposure distributions within the 

simulation study. The SMARTT study is a large cohort study with data on HIV-uninfected 

children born to HIV-infected women since 1995 to the present. Patterns in ARV use during 
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pregnancy have changed dramatically over these years, but HIV-infected women typically 

receive a combination regimen during pregnancy consisting of a two-NRTI backbone plus 

either a PI or an NNRTI.44 We are specifically interested in monitoring the safety of current 

combination regimens, and thus used the observed distribution of regimens reported in 

SMARTT between 2010 and 2015 to inform the exposure distribution. In particular, 

regimens were assigned via a multinomial distribution with 107 categories (for the 107 

different observed regimens over this time period), with each category having the same 

probability (ranging between 0.0008 and 0.2264) as observed in the SMARTT cohort. 

Exposures to 14 individual drugs and three drug classes were then derived from the assigned 

regimen. Specifically, five NRTIs, four NNRTIs, and five PIs were included in the 

simulation analysis, as shown in the Z matrix in Section 2.1.

3.2 Outcome assignment

We acknowledge that it is improbable the hierarchical model being fit reflects the true 

underlying outcome mechanism. Rather, our interest lies in whether a hierarchical model can 

be a useful screening approach despite violations to its underlying assumptions. 

Consequently, outcomes were assigned randomly via the Bernoulli distribution (for preterm 

birth) or the standard Normal distribution (for standardized Bayley-III score) under simple 

models based on exposure and outcome scenario (see Table 1). Three thousand simulated 

datasets were created in this way. The main simulations were conducted with a sample size 

of 1000. Additional simulations were conducted with sample sizes of 500, 3000, and 5000.

For the binary outcome, the hierarchical model was fit specifying a τ2 value of 0.125, which 

corresponds to 95% of the residual effects of a particular ARV drug (above and beyond the 

effects of its drug class) lying between odds ratios (OR) of ½ and 2 ([e−1.96/ 8, e1.96/ 8]). We 

also considered τ2 values of 0.36 and 0.64, which are equivalent to allowing residual effects 

to fall within an expanded 10-fold and 25-fold range, respectively, but simulation results 

presented for the binary outcome are for τ2 =0.125.16 For the continuous outcome, the 

hierarchical model was fit specifying a τ2 value of 0.26, corresponding to 95% of the 

residual effects of a particular drug falling within one standard deviation. Additional 

analyses considered values of 1.04 and 2.34, equivalent to allowing residual effects to fall 

within two and three standard deviations, respectively.

3.3 Simulation results

For the binary outcome, convergence of the model was a sizeable problem with the full 

model but a minimal issue with the hierarchical model. At a sample size of 1000, all of the 

hierarchical models converged under each outcome scenario, whereas the full logistic model 

failed to converge in 14–22% of simulations, depending on the outcome scenario. With 

N=500, the full model failed to converge in over 75% of the simulations, while the 

hierarchical model failed to converge in 0.1% of simulations. The separate model approach 

converged for all 13 models over 95% of the time; however, results for rare exposures were 

sometimes nonsensical, with standard errors exceeding 500. For instance, the simple logistic 

model failed to yield interpretable results for EFV in up to 24% of the simulations at 

N=1000 and in up to 40% of the simulations at N=500.
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The hierarchical model outperformed both the full model and the separate model approaches 

in terms of false discoveries, regardless of outcome type and outcome scenario (Figure 1). 

With a binary outcome, the hierarchical model had no false discoveries over 80% of the 

time. The full model had no false discoveries for 64% (under scenario (i)) to 74% (under 

scenario (ii)) of simulations. The separate model approach had false discovery rates 

comparable to the full model approach under scenarios (i) and (ii), but did quite poorly 

under scenarios (iii.a) and (iv). Notably, under the latter two scenarios, the standard 

approach had at least one false discovery in over 70% of the simulations, and four or more 

false discoveries (of twelve truly null effects) in 40% of simulations under scenario (iv).

For the continuous outcome, false discovery rates were consistently higher than observed for 

the binary outcome, though the hierarchical model maintained noticeably lower rates than 

the other two methods (Figure 1). Under scenarios (iii.a) and (iv), the separate models 

method identified one or more false discoveries in over 99% of the simulations, and four or 

more false discoveries in over 90% of the simulations.

Detection of true effects is irrelevant to scenario (i). With N=1000, the true effects of the five 

PIs under a common drug class assumption (scenario (ii)) were detected most often by the 

hierarchical model for both outcome types (Figure 2). This result was to be expected 

because the hierarchical model assumes drugs from the same class behave similarly, which 

corresponds to the true underlying data mechanism in this scenario. For the remaining 

scenarios, detection of true effects differed depending on outcome type. With a binary 

outcome, the hierarchical model performed similarly to the full fixed effect model but 

substantially worse than the separate models method in detecting the true effects of the 

ARVs in scenarios (iii.a), (iii.b), (iii.c), and (iv). This result also was to be expected given 

that the hierarchical model assumes similar effects for drugs from the same class, which is 

not correct in scenarios (iii) and (iv). Interestingly, however, under the continuous outcome, 

all three methods detected the true effects of the ARVs almost 100% of the time in scenarios 

(iii.a), (iii.b), and (iv). Under scenario (iii.c), the separate models method detected the true 

effect of EFV more often than the other two methods, though the differences were not as 

large as under the binary outcome (Figure 2).

The additional simulations showed that as the sample size increases, the hierarchical model 

continued to detect the true effects of the PIs under scenario (ii) considerably more often 

than the separate models method, while also continuing to minimize the number of false 

discoveries. With the continuous outcome, all three methods detected the true effects of the 

ARVs equally under the other scenarios by N=3000 (Figure 2). With a binary outcome, the 

hierarchical model detected the true effects about as well as the other methods at N=5000 for 

scenarios (iii.a), (iii.b), and (iv), but failed to detect the true effect of EFV as often as the 

other methods under scenario (iii.c) even for N=5000 (Figure 2).

Simulation results under scenario (iv) for the bias and standard errors (SE) in estimated 

coefficients and coverage of 95% CIs among the three approaches are presented in Table 2 

for the binary outcome and Table 3 for the continuous outcome. Scenario (iv) represents the 

“worst-case” type scenario for the hierarchical model since the prior being fit (assuming 

drugs from the same class behave similarly) contradicts the true underlying exposure-
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outcome relationship. Still, some patterns in these results remain consistent across scenarios 

(see Supplemental Tables 1 to 10). First, SEs were consistently largest under the full model. 

For rare exposures (<5% exposed), the SEs were smallest under the hierarchical model, but 

for the more common exposures (>15% exposed), they were smallest under the separate 

models method. Second, the bias in estimated coefficients tended to be minimized under the 

hierarchical model, the main exception being for when an uncommon drug was the only 

drug with a true effect (e.g. abacavir (ABC) in scenario (iii.b) and EFV in scenario (iii.c)). 

Third, the nominal coverage rates of the 95% CIs were quite poor for some of the ARVs 

under the separate models method. The poor coverage rates tended to be for more common 

drugs that had relatively high bias (due to uncontrolled confounding by other ARV 

exposures) and relatively small SEs. For example, under scenario (iv), the 95% CI for 

zidovudine (ZDV) captured its true effect (null) in only 59% of the simulations for the 

binary outcome (Table 2) and in only 1% of the simulations for the continuous outcome 

(Table 3).

Additional simulations were conducted to assess how results may vary for binary outcomes 

that are much rarer or much more common than the moderate baseline prevalence (0.12) 

considered in the main simulations. In particular, baseline prevalences of 0.25 and 0.05 were 

considered. Although power increased for the more common outcome and decreased for the 

less common outcome, the relative differences across the three approaches remained similar 

to results from the main simulations and thus results are not shown here.

4 Illustrative example

We applied the hierarchical modeling approach to evaluate ARV use and preterm birth in the 

SMARTT cohort. The SMARTT study has been approved by the research ethics committee 

at Harvard T.H. Chan School of Public Health and all research sites, and study participants 

provided written informed consent. The SMARTT cohort has enrolled over 3000 HIV-

infected pregnant women from 22 sites around the United States, as described elsewhere.9 

Consistent with prior analyses, we controlled for birth cohort (1995–2004, 2005–2009, 

2010–2012, and 2013–2015), annual income<$20,000, and black race.9

Our analysis included 2660 singleton pregnancies with ARV exposures and preterm birth 

outcomes available. The majority of women (71%) received only one ARV regimen during 

their pregnancy. For this analysis, we classified the maternal ARV regimen as that taken for 

the longest duration during pregnancy, and considered a woman exposed to a particular drug 

if that drug was included in her most common regimen. We assessed 18 individual drugs, 

including seven NRTIs, four NNRTIs, and seven PIs.

Table 4 presents ORs and 95% CIs from the hierarchical model under three different values 

of τ2 and from the full logistic model (equivalent to the hierarchical model at τ2 = ∞). 

Consistent with results from the simulation study, as τ2 increased, the CIs tended to widen, 

with the CIs widest under the full logistic model. The shrinkage effect of the hierarchical 

model can be observed for rarely used ARVs, for which estimated ORs in the hierarchical 

model are further from their estimated ORs under the full model (i.e. they are being pulled 

more toward their drug class mean effect), whereas the estimated ORs for common drugs 
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were more similar. For example, the estimated OR for the least common PI (indinavir (IDV)) 

was 1.24 (95% CI: 0.66, 2.31) in the hierarchical model with τ2 = 0.125 and 1.51 (95% CI: 

0.61, 3.73) in the full model. In comparison, the estimated ORs from those models for the 

most common PI (ritonavir-boosted lopinavir (LPV/r)) were 1.51 (95% CI: 1.10, 2.06) and 

1.50 (95% CI: 1.08, 2.09), respectively. In addition, as τ2 increases, the estimated ORs from 

the hierarchical model get closer to the estimated ORs from the full model. For example, for 

IDV, the estimated ORs are 1.24 (95% CI: 0.66, 2.31), 1.34 (95% CI: 0.62, 2.89), and 1.39 

(95% CI: 0.61, 3.17) under τ2 values of 0.125, 0.36, and 0.64, respectively.

Results from the hierarchical model with τ2 = 0.125 suggest that further studies should focus 

on the possible detrimental associations between saquinavir (SQV) and LPV/r and preterm 

birth (Table 4), as both these drugs have relatively high estimated ORs (>1.5) with fairly 

little variability around the estimates (95% CIs: 1.01, 2.89 and 1.10, 2.06, respectively). The 

estimated OR for etravirine (ETR) is also relatively high (OR=1.58), but with just 8% of 

women exposed to ETR in pregnancy, there is much more variability around that estimate 

(95% CI: 0.77, 3.23), suggesting follow-up on ETR would take lower priority than follow-up 

on SQV and LPV/r.

5 Discussion

We evaluated how a hierarchical modeling approach to screening ARV use in pregnancy 

would operate in practice under various conditions. In theory, a hierarchical model offers a 

compromise between evaluating individual ARV drugs one at a time (which is the current 

method of choice for assessing the safety of ARV exposures in pregnancy) and fitting a full 

fixed effect model. It has the benefit of adjusting for other ARV exposures like the full 

model, but has less convergence problems, smaller standard errors, and more stable 

estimates than a full fixed effect model approach. However, the hierarchical model groups 

ARVs from the same drug class together, when there is often little prior knowledge 

regarding possible effects and the underlying biological mechanisms that ARVs have on 

perinatal and infant outcomes. If drugs from the same class have disparate effects on an 

outcome, adopting a hierarchical model approach for ARV safety screening could potentially 

undermine the screening approach.

In this study, we compared the performance of three different approaches under six different 

underlying true exposure-outcome relationships. Our results suggest that the hierarchical 

model that groups ARVs by drug class is almost always advantageous with a large enough 

sample (e.g. 5000). It minimizes the number of false negatives under each scenario as 

compared to both the full and separate models; it is able to detect the true effects 

substantially better than the separate models method and as well as or slightly better than the 

full model method when drugs from the same class behave similarly; and is still able to 

detect true effects similarly to the other methods even when drugs from the same class have 

opposite effects, except in the case of a binary outcome with a rare exposure.

In reality, however, these types of safety screening studies usually have smaller sample sizes, 

and the implications of the simulation study for use of the hierarchical model in smaller 

samples are less straightforward. If we wish to optimize the detection of true effects 
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regardless of the expense in false discovery, then determining which approach to employ 

may involve taking into account the strength of one’s prior belief regarding effects of drugs 

from the same class, the sample size, and the outcome type (binary or continuous). However, 

perhaps one of the surprising results from the simulations was just how high the false 

discovery rate can be when evaluating ARV drugs individually, with four or more false 

discoveries (among 12 drugs) over 90% of the time, and abysmal nominal coverage rates of 

95% CIs for some drugs in certain scenarios. Its poor performance in these areas is largely 

due to biased effect estimates from uncontrolled confounding by other ARV exposures. 

Power considerations in such settings become irrelevant when there are numerous false 

signals detected, and as a result evaluating ARVs individually may not allow identification 

of safety signals to appropriately focus future studies (see Supplemental Figures 1 and 2).

We present the hierarchical modeling approach as a screening approach, where little prior 

knowledge is available regarding possible exposure-outcome relationships. However, if there 

is evidence of differing effects for drugs belonging to the same class, then the full model 

may be suggested as a first choice for model fit. Particularly for rare drugs and a binary 

outcome, the full model has more power to detect the true effects if drugs from the same 

class do not have similar effects on the outcome; the full model also exhibits less bias in the 

effect estimates for the drugs with the true effects and better nominal coverage rates for the 

95% CIs for the drugs with true effects. Thus, presuming the model converges, the full 

model has advantages over the hierarchical model when drugs from the same class do not 

behave similarly on an outcome. Nonetheless, if the full model does not converge, the 

hierarchical model specified with a large variance for the random effects (τ2) to allow larger 

residual effects for individual drugs is an appropriate alternative.

Our simulations and applied data analysis considered drugs from three drug classes (NRTIs, 

NNRTIs, and PIs). The number of drug classes has expanded in recent years, and as new 

drugs from new drug classes are made available (e.g. fusion inhibitors, entry inhibitors), 

some drugs may be the only drug of their drug class. For these drugs, the advantages of the 

hierarchical model are limited. Drugs unique to their class could still be included in a 

hierarchical model as fixed effects, but they would not be able to “borrow” information from 

other drugs in their class. Alternatively, Wang et al.28 grouped rare drugs unique to their 

class together in an “other” category. The drug class effect for this “other” group does not 

have any clinical meaning, but it may still improve the reliability of the estimates for those 

rare drugs. In particular, based on our simulation results, it may be an advantageous option 

so long as drugs in the “other” group do not have opposite effects.

We did not consider any interactions between ARVs in this study. Further research is needed 

to characterize how the hierarchical model performs when interactions are present.

This study highlights the shortcomings – in particular, the inherent bias – of the separate 

models approach that is currently used to screen the safety of ARVs used during pregnancy. 

A hierarchical modeling approach can be a superior alternative to the current method, 

particularly when considering a binary outcome in large samples (N>3000), a continuous 

outcome in moderate or large samples (N>500), and/or when there is prior evidence 

suggesting drugs from the same class behave similarly on the outcome of interest.
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Figure 1. 
The percent of simulations with at least one false discovery at a sample size of 1000 under 

three statistical approaches and six different true outcome-exposure relationships, by 

outcome type (a) binary; or (b) continuous. Each scenario considers 14 different 

antiretroviral drugs. Scenario (i) specifies no true effects; scenario (ii) specifies a subtle 

effect of all drugs from the protease inhibitors drug class; scenario (iii.a) involves a modest 

effect of one drug with more common exposure; scenario (iii.b) involves a modest effect of 

one drug with less common exposure; scenario (iii.c) involves a modest effect of one drug 

with rare exposure; scenario (iv) involves modest effects in opposite directions of two drugs 

from the protease inhibitor drug class. Results based on 3000 simulations.
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Figure 2. 
The power to detect true effects of antiretroviral (ARV) exposures on preterm birth and 

standardized Bayley-III score as a function of sample size under three statistical approaches 

and six different true outcome-exposure relationships. Results are based on 3000 

simulations. Each panel reflects the power to detect the true effect of an ARV drug under a 

specific scenario as outlined in Table 1. (a), (b), (c) Atazanavir (ATV, 26.1% exposed), 

darunavir (DRV, 14.2% exposed), and nelfinavir (NFV, 4.7% exposed), respectively; under 

scenario (ii) where all protease inhibitors have a subtle effect on preterm birth. (d), (e), and 

(f) Ritonavir-boosted lopinavir (LPV/r, 28.6% exposed), abacavir (ABC, 12.4% exposed), 

efavirenz (EFV, 1.2% exposed), respectively; under scenarios (iii.a), (iii.b), and (iii.c), 

respectively, where only one ARV has a modest effect on preterm birth. (g) and (h) 

Ritonavir-boosted lopinavir (LPV/r) and darunavir (DRV), respectively; under scenario (iv) 

where two protease inhibitors have modest effects in opposite directions on preterm birth. 
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(i), (j), (k), Atazanavir (ATV), darunavir (DRV), and nelfinavir (NFV), respectively; under 

scenario (ii) where all protease inhibitors have a subtle effect on standardized Bayley-III 

score. (l), (m), and (n) Ritonavir-boosted lopinavir (LPV/r), abacavir (ABC), efavirenz 

(EFV), respectively; under scenarios (iii.a), (iii.b), and (iii.c), respectively, where only one 

ARV has a modest effect on standardized Bayley-III score. (o) and (p) Ritonavir-boosted 

lopinavir (LPV/r) and darunavir (DRV), respectively; under scenario (iv) where two protease 

inhibitors have modest effects in opposite directions on standardized Bayley-III score.
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Table 1

A summary of the true exposure-outcome relationship scenarios considered in the simulation studies.

Scenario
Binary outcome: Preterm birth (<37 weeks 
gestational age at delivery)a

Continuous outcome: Standardized 
Bayley-III score of infant at 12 months

(i) No effects P(Y1)=0.12 E(Y2)=0

(ii) A class of drugs has a subtle effect P(Y1)=0.12+0.04*PI (ORPI=1.40) E(Y2)=0–0.3*PI

(iii) One ARV drug has a moderate effect

 (a) more common ARV drug (>15% 
exposure)

P(Y1)=0.12+0.09*LPV/r (ORLPV/r=1.95) E(Y2)=0–0.5*LPV/r

 (b) less common ARV drug (5–15% 
exposure)

P(Y1)=0.12+0.09*ABC (ORABC=1.95) E(Y2)=0–0.5*ABC

 (c) rarely used ARV drug (<5% 
exposure)

P(Y1)=0.12+0.09*EFV (OREFV=1.95) E(Y2)=0–0.5*EFV

(iv) Two drugs from the same drug 
class have moderate effects, but in 
opposite directions

P(Y1)=0.12+0.09* LPV/r – 0.05*DRV (ORLPV/r=1.95, 
ORDRV=0.55)

E(Y2)=0–0.5*LPV/r + 0.5*DRV

ABC: abacavir; DRV: darunavir; E: expected value; EFV: efavirenz; LPV/r: ritonavir-boosted lopinavir; ORABC: odds ratio comparing ABC-

exposed to ABC-unexposed; ORDRV: odds ratio comparing DRV-exposed to DRV-unexposed: OREFV: odds ratio comparing EFV-exposed to 

EFV-unexposed; ORLPV/r: odds ratio comparing LPV/r-exposed to LPV/r-unexposed; ORPI: odds ratio comparing PI-exposed to PI-unexposed; 

P: probability; PI: protease inhibitor; Y1: preterm birth; Y2: standardized Bayley-III cognitive score.

a
The corresponding logistic models are: (i) logit(P(Y1))= −1.9924; (ii) logit(P(Y1))=−1.9924)0.3365*PI; (iii) logit(P(Y1))=−1.9924)0.6678*Xj 

(where Xj indicates LPV/r, ABC, or EFV); and (iv) logit(P(Y1))=−1.9924)0.6678*LPV/r – 0.5978*DRV. Note that LPV/r and DRV are mutually 

exclusive (women are never exposed to both drugs simultaneously).
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