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ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most
common cause of chronic liver dysfunction and a sig-
nificant global health problem with substantial rise in
prevalence over the last decades. It is becoming
increasingly clear that NALFD is not only predominantly
a hepatic manifestation of metabolic syndrome, but also
involves extra-hepatic organs and regulatory pathways.
Therapeutic options are limited for the treatment of
NAFLD. Accordingly, a better understanding of the
pathogenesis of NAFLD is critical for gaining new
insight into the regulatory network of NAFLD and for
identifying new targets for the prevention and treatment
of NAFLD. In this review, we emphasize on the current
understanding of the inter-organ crosstalk between the
liver and peripheral organs that contributing to the
pathogenesis of NAFLD.
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INTRODUCTION

NAFLD refers to excess fat accumulation in the liver of
patients with no history of alcohol abuse or other causes of
secondary hepatic steatosis. Clinically, it represents a com-
plex spectrum of hepatic damage, from simple steatosis and
nonalcoholic steatohepatitis (NASH), progressing to fibrosis,
and ultimately cirrhosis (Anstee et al., 2011). NAFLD is one
of the most common public health problems worldwide.
Recent epidemiology studies suggest that NAFLD is present

in 12%–38% of the general population and NASH affects
3%–15% (Vernon et al., 2011). In China, NAFLD is becoming
a greater health concern, with increasing rates of metabolic
disturbances, such as obesity, type 2 diabetes mellitus, and
dyslipidemia. The prevalence of NAFLD in patients with type
2 diabetes is 28%–55% and in those with hyperlipidemia is
27%–92% (Fan and Farrell, 2009). NAFLD is regarded as a
hepatic manifestation of metabolic syndrome and is strongly
associated with obesity and insulin resistance (Stojsavljevic
et al., 2014). Although NAFLD is strongly associated with
obesity and insulin resistance, its pathogenesis has not been
fully elucidated and therapeutic options are limited. Current
treatment is focused on the control of the disease process
and risk factors. Thus a comprehensive understanding of the
pathogenic mechanism of the development of NAFLD is
extremely important (Cohen et al., 2011).

The underlying mechanism for the development and
progression of NAFLD is complex and multifactorial. Differ-
ent theories have been proposed; initially, the “two hits”
hypothesis was developed to explain the pathogenesis of
the NAFLD spectrum (Day and James, 1998). According to
this traditional doctrine, the factors that metabolically pro-
mote the deposition of triacylglycerides (TAG) in the liver,
including a high-fat diet, obesity, and insulin resistance,
represent the “first hit” in the pathogenesis of NAFLD. Sig-
naling process such as extracellular cytokines, adipokines,
bacterial endotoxin, mitochondrial dysfunction, and/or
endoplasmic reticulum (ER) stress provide the second hit for
progression to NASH, activating inflammatory cascades and
fibrogenesis (Greenberg et al., 1991; Peverill et al., 2014).
However, the traditional “two-hit” pathophysiological theory
has been challenged as knowledge of the interplay among
insulin resistance, adipokines, adipose tissue inflammation,
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and other less recognized pathogenic factors have recently
increased. In particular, it has been suggested that hepatic
steatosis represents an epiphenomenon of several distinct
injurious mechanisms, rather than a true “first hit” (Bulankina
et al., 2009). For this reason, the initial “two-hit” theory
explaining the progression from NAFLD to NASH has been
evolved into the “multiple parallel hits” hypothesis (Jou et al.,
2008; Buzzetti et al., 2016).

Several lines of evidence suggest that continuous inter-
organ crosstalk sustains all processes involved in NAFLD
pathogenesis, and crucial roles of the gut, hypothalamus,
adipose tissue, and intestine have been suggested. In this
review, we emphasize on the current understanding of the
inter-organ crosstalk between the liver and peripheral organs
that participated in the pathogenesis of NAFLD (Fig. 1).

LIVER AND NAFLD

As mentioned above, epidemiological studies have revealed
that NAFLD is a specific manifestation of metabolic syn-
drome and is strongly associated with obesity and insulin
resistance. Specifically, hepatic steatosis arises from an
imbalance between TAG influx and efflux. During hepatic
TAG formation, fatty acids are derived from the diet, de novo
lipogenesis (DNL), and adipose tissue via lipolysis. Once in
hepatocytes, free fatty acids (FFAs) undergo acyl-CoA syn-
thetic activity to form fatty acyl-CoAs, which further be oxi-
dized in mitochondria via the β-oxidation pathway, re-
esterified to TAG, and stored in lipid droplets (LDs) or cou-
pled to apolipoproteins and further secreted as very low-
density lipoprotein (VLDL) (Cohen et al., 2011). In obese
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Figure 1. The “cross-talk” between liver and peripheral organs in the pathogenesis of NAFLD. The impairment of the

hypothalamic signaling pathway due to mutations (Leptin receptor and MC4R) by affecting the appetite or inflammation leads to the

development of obesity and NAFLD. Dysfunction of adipose tissue in obesity, lipodystrophy or insulin resistance provides a source of

excess fat and release of adipokines such as Leptin, Adiponectin, Resistin, and proinflammatory cytokines such as TNF-α and IL-6

that participated in the pathogenesis of NAFLD. In addition, emerging evidence suggests that an altered gut permeability

consequently affect circulating levels of molecular such as LPS, FFA, bile acid, and to the release of pro-inflammatory cytokines by

the regulation of TLR and FXR further influence the development and progression of NAFLD, recognized as effect of gut–liver axis. In
the liver, the dysregulation of lipid de novo lipogenesis and imbalance of lipid influx and efflux causes lipotoxicity and may result in

mitochondrial dysfunction, overproduction of ROS and ER stress as well as the consequent activation of inflammatory responses,

thus influencing the risk of progression of NAFLD to NASH, as observed in obesity and insulin resistance.
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patients, the increased efflux of FFAs from adipose tissue to
the liver may induce defects in the insulin signaling pathway
and contribute to insulin resistance (Bandsma et al., 2008;
Braliou et al., 2008). In states of insulin resistance, sterol
regulatory element binding protein-1c (SREBP-1c), the
master regulator of DNL, is over-expressed and DNL is up-
regulated (Stefan et al., 2008). Studies in rodent models
revealed a peculiar feature of hepatic insulin resistance, in
which hepatic glucose metabolism becomes unresponsive to
insulin but hepatic lipogenesis continues unabated, recog-
nized as selective hepatic insulin resistance (Brown and
Goldstein, 2008, Li et al., 2010b, Cook et al., 2015). Selec-
tive hepatic insulin resistance has been proposed to explain
the common clinical phenotype of hyperglycemia, hyperlipi-
demia, and NAFLD in T2D patients (Vatner et al., 2015).
Additionally, β-oxidation of FFAs is inhibited in insulin resis-
tance states, thus further promoting hepatic lipid accumula-
tion (Donnelly et al., 2005, Postic and Girard, 2008, Cohen
et al., 2011, Lambert et al., 2014). The inhibition of TAG
incorporation into new VLDL by blocking micorsomal TAG
transport protein (MTTP) and apolipoprotein B (ApoB) cau-
ses impaired TAG secretion which induces TAG accumula-
tion in the liver (Amaro et al., 2010, Di Filippo et al., 2014).
Hepatic inactivation of diacylgycerol acyltransferase 2
(DGAT2), a key enzyme catalyzing TAG synthesis, also
reduces the hepatic TAG content and subsequently increa-
ses FFA oxidation, resulting in the worsening of steatohep-
atitis in mouse models (Yamaguchi et al., 2007).

Lipid droplets (LDs) are dynamic cytoplasmic organelles
found ubiquitously in cells. They are linked to many cellular
functions, including lipid storage for energy generation and
membrane synthesis, viral replication, and protein degrada-
tion (Walther and Farese, 2012). Interestingly, connections
between LD-associated proteins and NAFLD have been
recently identified through genome-wide association studies
(GWAS) as well as genomic and proteomic studies (Zhang
et al., 2017).

Perilipins (PLINs) were the first type of specific LDs
marker proteins identified in 1991 (Greenberg et al., 1991).
The PLIN family contains several members, including per-
ilipin 1 (PLIN1), perilipin 2/adipophilin (PLIN2), perilipin
3/Tip47 (PLIN3), perilipin 4 (PLIN4), and perilipin 5/OXPAT
(PLIN5). While are not essential for LDs formation, PLINs
are important for the regulation of lipid metabolism (Bu-
lankina et al., 2009). PLIN1 is undetectable in normal liver,
but is expressed in the liver of humans with NAFLD (Straub
et al., 2008). PLIN2 has negative regulatory effects on VLDL
lipidation (Chang et al., 2010) and TAG secretion. PLIN2,
PLIN3, and PLIN5 levels are elevated in fatty liver of humans
and their ablation alleviates steatosis in mouse models (Imai
et al., 2007, Wang et al., 2015). Cell death-inducing DFFA-
like effector (CIDE) proteins, which are located on LDs and
the ER, are involved in fatty liver progression. Cidea and
Cidec are responsible for liver steatosis under fasting and
obese conditions by mediating the fusion of small and large
LDs (Gong et al., 2011, Xu et al., 2016), while Cideb

promotes lipid storage under a normal diet by regulating the
process of VLDL lipidation and LDs fusion in the liver (Li
et al., 2007, Ye et al., 2009)

Patatin-like phospholipid domain-containing protein 3
(PNPLA3) is another ER- and LD-associated protein. It is
one of the few examples of a protein that has been validated
in several populations to be conclusively shown to be
associated with NAFLD, particularly the I148M (rs738409
C/G) variant (Romeo et al., 2008, Anstee, 2015). As a
member of the PNPLA family, PNPLA3 is most closely
related to PNPLA2 (ATGL), the major cellular TAG lipase.
Neither ablation nor overexpression of wild-type PNPLA3
affects the liver fat content in mice, whereas transgenic mice
with hepatic specific overexpression of human 148M or
PNPLA3 I148M knock-in mice exhibit increased hepatic TAG
contents and LD sizes and develop hepatic steatosis (Bas-
antani et al., 2011, Li et al., 2012, Pirazzi et al., 2012,
Smagris et al., 2015). Moreover, PNPLA3 I148M affects
VLDL secretion in rat hepatoma cells and mouse livers (Pi-
razzi et al., 2012). These observations suggest two possible
mechanisms for the pathogenesis of NAFLD induced by
PNPLA3 mutations. First, PNPLA3 may alter lipolysis, not by
hydrolysis activity itself, but by the inhibition of other proteins
in the family, like ATGL (Smagris et al., 2015). Second,
PNPLA3 mutations may reduce the mobilization of TAG on
LDs (Pirazzi et al., 2012). Further studies are required to
determine the precise mechanisms by which PNPLA3 reg-
ulates of hepatic lipid metabolism and determines its asso-
ciation with NASH and fibrosis.

17β-Hydroxysteroid dehydrogenase 13 (17β-HSD13) is a
hepatic LD protein associated with NAFLD identified in
recent proteomic studies (Su et al., 2014). Another inde-
pendent study confirmed this result and also indicated a
slight upregulation of 17β-HSD13 in patients with NASH
without fatty liver (Kampf et al., 2014). In a study of fasted
and refed mice, 17β-HSD13 expression was markedly
higher on hepatic LDs of mice in the high-fat diet group than
on those of mice in the low-fat group (Crunk et al., 2013).
Overexpression of 17β-HSD13 in a mouse hepatocyte cell
line induced liver steatosis and lipid accumulation. It also
lead to increased expression of proteins involved in lipid
synthesis, such as mature SREBP-1 and FAS, suggesting
that 17β-HSD13 is involved in NAFLD development by pro-
moting lipogenesis (Su et al., 2014).

In recent years, in the pathogenesis of NAFLD, more and
more attention has been paid to the hepatokines, which are
mainly produced by the liver. NAFLD seems to be associ-
ated with altered hepatokines production such as fetuin-A,
fibroblast growth factor-21 (FGF-21), selenoprotein P, sex
hormone-binding globulin (SHBG), angiopoietin-related
growth factor (AGF) and leukocyte derived chemotaxin 2
(LECT2) (Lebensztejn et al., 2016). There is a suggestion
that fetuin-A constitutes a link between obesity, insulin
resistance and NAFLD, plays a major pathogenic role in
metabolic disease (Mori et al., 2011, Pal et al., 2012, Stefan
and Haring, 2013). Meanwhile, FGF21 has recently emerged
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as a novel hormone, leading to beneficial effects on glucose
metabolism and lipid homeostasis, in addition to promoting
rapid body weight loss in rodents (Li et al., 2010a). A number
of publications showed significantly higher serum concen-
trations of FGF-21 in a population of patients with NAFLD
compared to the controls (Yilmaz et al., 2010a, Yilmaz et al.,
2010b, Giannini et al., 2013).

In addition, microRNAs (miRNAs), short, noncoding
RNAs that regulate gene expression, have been associated
with histological features of NAFLD and are readily detected
in the circulation. As such, miRNAs are emerging as
potentially useful noninvasive markers with which to follow
the progression of NAFLD (DiStefano and Gerhard, 2016).
Not only the potential mechanistic role of miRNAs involved in
the pathogenesis of NAFLD described elsewhere (Gerhard
and DiStefano, 2015), but also the multicellular nature and
pathophysiological progression of NAFLD suggested that
miRNAs may be associated with different disease stages
(DiStefano and Gerhard, 2016). In a study of 84 circulating
miRNAs measured in 47 NASH patients, 30 individuals with
simple steatosis and 19 healthy controls, levels of miR-122,
miR-192, and miR-375 were upregulated in patients with
NASH compared to those with simple steatosis, and were
associated with histological disease severity (Pirola et al.,
2015). Furthermore, another non-coding RNA, long non-
coding RNAs (lncRNAs) have emerged as important regu-
latory molecules in the pathogenesis of NAFLD (Li et al.,
2015, Chen, 2016). Several fatty liver-related lncRNAs
(FLRLs) have been identified to be related to lipogenesis,
such as FLRL8, FLRL3 and FLRL7, through proteins in
PPAR signaling pathway, such as Fabp5, Lpl and Fads2,
indicating their potential regulatory role in lipid metabolism
(Chen et al., 2017).

Fat accumulates in the liver of patients with NAFLD
mainly in the form of TAG. This accumulation occurs
concurrently with an increase in lipotoxicity owing to high
levels of FFAs, free cholesterol, and other lipid metabo-
lites. This lipotoxicity is believed to further lead to mito-
chondrial dysfunction with oxidative stress and the
production of reactive oxygen species (ROS) and ER
stress-associated mechanisms (Malhotra and Kaufman,
2007, Vonghia et al., 2013, Schneider and Cuervo, 2014,
Buzzetti et al., 2016). Mechanistically, alterations in the
structure and function of mitochondria contribute to the
pathogenesis of NAFLD. Mitochondrial dysfunction may
collapse respiratory oxidation with the impairment of fat
homeostasis, generation of lipid-derived toxic metabolites,
and overproduction of ROS (Begriche et al., 2006). Con-
sequentially, increased ROS causes not only oxidative
stress damage, but also the activation of Kupffer cells,
whose activation is a key step in the development of
NASH (Vonghia et al., 2013). Furthermore, ROS accu-
mulation and related changes in autophagy cause chronic
ER stress, which is closely related to the apoptosis of
hepatocytes (Malhotra and Kaufman, 2007).

HYPOTHALAMUS AND NAFLD

The central nervous system is crucial for the regulation of
energy metabolism. In particular, the hypothalamus has
critical roles in sensing and integrating signals from the
periphery tissue and effecting appropriate physiological
changes to maintain metabolic homeostasis (Zoccoli et al.,
2011). The arcuate nucleus (ARC) provides many physio-
logical roles involved in feeding, metabolism, and cardio-
vascular regulation (Bouret et al., 2004, Coppari et al., 2005,
Sapru, 2013). More specifically, the ARC of hypothalamus is
a specific nuclear group to sense different peripheral indi-
cators of metabolic status and integrates responses to
afferent information to control food intake and body weight
(Schwartz et al., 2000).

The best-characterized peripheral indicator is leptin,
which is an adipokine produced primarily in visceral adipo-
cytes. Leptin signaling in the hypothalamus regulates hunger
and energy expenditure, which are mediated by a neural
circuitry comprising orexigenic and anorectic signals (Kwon
et al., 2016). ARC neurons produced anorexigenic neu-
ropeptides pro-opiomelanocortin (POMC), the precursor of
α-melanocyte-stimulating hormone (α-MSH), and cocaine-
amphetamine-regulated transcript (CART) are both activated
by leptin (Cone et al., 1996, Kristensen et al., 1998),
whereas orexigenic neuropeptide Y (NPY) and Agouti-re-
lated peptide (AgRP) are inhibited by leptin and activated by
ghrelin (Broberger et al., 1998, Hahn et al., 1998). Central
administration of NPY increases food intake, inhibits the
thyroid axis, and decreases sympathetic nervous system
outflow to brown adipose tissue, thus lowering energy
expenditure. Conversely, stimulation of α-MSH receptors
suppresses food intake, activates the thyroid axis, and
increases energy expenditure (Wynne et al., 2005).

The spontaneous leptin mutation model ob/ob mice
develop severe diabetes with marked hyperglycemia and a
propensity to overeat, resulting in obesity and the develop-
ment of hepatic steatosis (Mayer et al., 1951). A study
reported that an obese leptin-deficient girl with hepatic
steatosis exhibited rapid improvement after the introduction
of recombinant leptin therapy (von Schnurbein et al., 2013).
A recent meta-analysis indicated that circulating leptin levels
were higher in patients with NAFLD than in controls.
Importantly, such increased leptin levels were consistent
with the severity of NAFLD, and the association remains
significant after the exclusion of pediatric or adolescent
populations as well as morbidly obese individuals subjected
to bariatric surgery (Polyzos et al., 2016). Leptin action in
peripheral tissues involves interaction with specific trans-
membrane receptors (leptin receptor, LEPR). The observa-
tion that LEPR is associated with NAFLD has been pointed
by several studies. Among patients with NAFLD, LEPR
polymorphisms were found to be associated with lipid
metabolism, obesity parameters, and insulin resistance
(Aller et al., 2012, Zain et al., 2013). Recent study suggested
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that the combined effect of variants of LEPR and PNPLA3
conferred increased susceptibility to NAFLD (Zain et al.,
2013).

Approximately 20% of ARC NPY neurons innervate the
paraventricular nucleus (PVN) (Baker and Herkenham,
1995). Stimulation of this pathway leads to increased food
intake through direct stimulation of NPY receptors Y1R and
Y5R and through AgRP antagonism of melanocortin recep-
tors MC3R and MC4R in the PVN (Woods et al., 1998;
Simpson et al., 2009). Moreover, the administration of α-
MSH into the PVN inhibits food intake and the orexigenic
effect of NPY administration (Woods et al., 1998). MC4R-KO
mice fed with a high-fat diet developed a liver condition
similar to human NASH and further progressed to HCC,
which is associated with obesity, insulin resistance, and
dyslipidemia. These phenotypes seem to result from a loss
of function of MC4R in the hypothalamus, rather than in the
liver itself (Itoh et al., 2011). Polymorphisms in MC4R are
associated with alanine aminotransferase and BMI (Guan
et al., 2014), but not with hepatic fat content in population-
wide studies (Haupt et al., 2009).

In addition, hypothalamic inflammation was also shown
involvement in the regulation of hepatic steatosis in physio-
logical and pathophysiological conditions (Milanski et al.,
2012; Valdearcos et al., 2015). Obesity-associated
hypothalamic inflammation was first reported in a rat model
of diet-induced obesity (De Souza et al., 2005), which was
further confirmed by other groups (Zhang et al., 2008,
Kleinridders et al., 2009, Milanski et al., 2009, Ozcan et al.,
2009, Posey et al., 2009, Holland et al., 2011a). The
observation that genetic interventions that disrupt neuronal
inflammation can block both obesity and hypothalamic leptin
resistance during feeding with a high-fat diet supports such
role of inflammation in NAFLD pathogenesis. Several sig-
naling pathways of the innate immune system have been
identified as candidate mediators of hypothalamic inflam-
mation during high-fat diet feeding, including toll-like receptor
4 (TLR 4), c-Jun N-terminal kinase (JNK), suppressor of
cytokine signaling 3 (SOCS3), and pro-inflammatory cytoki-
nes, as well as the induction of ER stress and autophagy
defects (De Souza et al., 2005, Zhang et al., 2008, Klein-
ridders et al., 2009, Milanski et al., 2009, Ozcan et al., 2009,
Posey et al., 2009, Holland et al., 2011a).

ADIPOSE AND NAFLD

Adipose tissue, in addition to its function as the major stor-
age depot for TAG, is an active endocrine organ that senses
metabolic signals and secretes hormones that profoundly
influence hepatic lipid metabolism (Berg et al., 2001).
Excess adipose tissue in obesity and a lack of adipose tis-
sue in the lipodystrophic state are associated with insulin
resistance and NAFLD (Kahn and Flier, 2000).

Obesity, especially visceral adiposity, is a major risk factor
for NAFLD in humans. Adipose tissue is a source of FFAs
that are delivered to the liver, used for TAG synthesis by

hepatocytes, and released into the blood (Diehl et al., 2005).
The excess fat storage in obese and insulin-resistant indi-
viduals, and increased lipolysis in adipose tissue, are
important source of FFA for hepatic TAG formation and
storage in the liver of NAFLD patients (Cusi, 2012, Bril et al.,
2014).

Additionally, NAFLD is also a typical finding in lipodys-
trophic patients. Lipodystrophy syndromes represent
extreme and opposite ends of the adiposity spectrum related
to obesity. A selective loss of body fat is the hallmark of
lipodystrophy syndromes associated with an increased
prevalence of insulin resistance in the skeletal muscles and
the liver, increased plasma TAG levels, and hepatic steatosis
(Kahn and Flier, 2000; Agarwal et al., 2004). In patients with
lipodystrophy, defective adipose tissue is unable to store
even regular amounts of energy. The inability of adipose
tissue to store lipid in the form of TAG results in ectopic fat
accumulation in aberrant tissues, such as the liver and
skeletal muscle. Consequentially, excess TAG deposition in
the liver (hepatic steatosis) and skeletal muscle induces
NAFLD and peripheral insulin resistance (Agarwal and Garg,
2006). Several genetic mutations are strongly associated
with lipodystrophy, including mutations in Agpat2, Pparγ,
Lmna, Zmpste24, Akt2, and Bscl2 (Agarwal and Garg,
2006). Among these mutants, AGPAT2 induced lipodystro-
phy was indicated either by reducing triglyceride accumula-
tion in adipocytes or levels of glycerophospholipids and
hence affecting adipocyte function (Agarwal et al., 2004).

As an endocrine organ, adipose tissue is responsive to
both peripheral and central metabolic signals by secreting a
number of proteins, termed adipokines, to execute a variety
of local, peripheral, and central effects (Stojsavljevic et al.,
2014). For example, leptin is such a peptide hormone
secreted mainly by visceral adipocytes to modulate food
intake, body fat composition, insulin sensitivity, thermogen-
esis, and the immune system via the hypothalamus, as
described above (Stojsavljevic et al., 2014).

Another adipokine, adiponectin, is a soluble matrix pro-
tein, is produced by visceral adipocytes (Arita et al., 1999). A
great number of studies using human, animal, and in vitro
models to investigate the pathogenesis and molecular
mechanisms have shown that adiponectin influences obe-
sity, insulin resistance, NAFLD, and other components of
metabolic syndrome (Hu et al., 1996, Arita et al., 1999, Ryo
et al., 2004, Matsuzawa, 2010). Adiponectin circulates in the
serum in several oligomeric isoforms whose specific effects
have been observed (Schober et al., 2007, Wang et al.,
2008). In addition to that adiponectin improves hepatic and
peripheral insulin resistance, it also presents some anti-in-
flammatory and hepato-protective activities (Kadowaki et al.,
2006). These effects are partly achieved by enhancing the
deacylation of ceramide sphingolipids, independently of
AMPK, especially in hepatocytes (Holland et al., 2011b). The
anti-inflammatory effects are achieved by blocking the acti-
vation of NF-κB, secreting anti-inflammatory cytokines, and
inhibiting the release of pro-inflammatory cytokines, such as
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TNF-α and IL-6 (Tilg and Moschen, 2006). Adiponectin was
also shown to have a direct antifibrotic effect (Kamada et al.,
2003), which could be mediated by the activation of AMPK
(Adachi and Brenner, 2008). Enhanced liver fibrosis has
been demonstrated in mice lacking adiponectin (Kamada
et al., 2003) whereas the delivery of recombinant adipo-
nectin significantly improves steatohepatitis in mice (Xu
et al., 2003). The antioxidant effects of adiponectin are
mediated by its receptor AdipoR1 and thus decreased adi-
ponectin levels in obesity may have causal roles in mito-
chondrial dysfunction and insulin resistance (Kamada et al.,
2003). In obese patients, reduced adiponectin and increased
leptin levels may result in hepatic steatosis and the activation
of inflammation and fibrogenesis (Tsochatzis et al., 2006).
Interestingly, adiponectin has been proposed as a good
predictor of the necroinflammatory grade and fibrosis in
NAFLD (Musso et al., 2005, Handy et al., 2010, Polyzos
et al., 2011, Finelli and Tarantino, 2013). Furthermore, serum
levels of adiponectin are reduced in obese subjects with type
2 diabetes mellitus and insulin resistance (Statnick et al.,
2000, Maeda et al., 2001, Weyer et al., 2001, Spranger et al.,
2003, Ozcelik et al., 2013). Replenishment of adiponectin
ameliorates insulin resistance and glucose intolerance and
decreases the liver triglyceride content in mice (Berg et al.,
2001, Fruebis et al., 2001, Yamauchi et al., 2001, Okada-
Iwabu et al., 2013). Additionally, resistin, another adipocyte-
derived polypeptide, was initially found to be upregulated in
obesity and insulin resistance (Holcomb et al., 2000, Step-
pan et al., 2001). In NAFLD, its levels were also higher than
those in controls and were positively correlated with liver
inflammation and fibrosis severity, although this result
remains controversial (Zou et al., 2005, Pagano et al., 2006,
Tsochatzis et al., 2008). In vitro studies have suggested that
resistin participates in the progression of inflammation and
its pro-inflammatory effects may be mediated by activating
the c-Jun-N-terminal kinase (JNK) and NF-κB pathways
(Zhang et al., 2010).

Currently, some view that development of NAFLD and
insulin resistance may be resulted from imbalance cytokines,
namely, increased pro-inflammatory and decreased anti-in-
flammatory cytokines (Diehl et al., 2005, Day, 2006). For
instance, TNF-α is a proinflammatory cytokine that has
various biological effects, including metabolic inflammatory
and proliferative effects. It exhibits increased expression
levels in the liver and adipose tissue of subjects with NAFLD.
Data from human and animal studies have indicated that
TNF-α has a role in the development of NAFLD and is a
predictor of NASH that is correlated with advanced stages
(Diehl, 2004, Cai et al., 2005, Jarrar et al., 2008). Further-
more, large quantities of IL-6 are secreted by visceral fat
than by subcutaneous fat in obese individuals (Fontana
et al., 2007). The role of visceral fat as an independent factor
associated with NAFLD is due in large part to its secretion of
proinflammatory cytokines (Van der Poorten et al., 2008).
Inflammation and fibrosis in NAFLD patients were associ-
ated with increased systemic IL-6 (Van der Poorten et al.,

2008), which decreased by therapy with Vitamin E in NAFLD
patients in a small pilot study (Kugelmas et al., 2003).

GUT AND NAFLD

Recently, compelling evidence links the gut microbiome,
intestinal barrier integrity, bile acid and NAFLD, indicating
that interactions between the liver and the gut, the so-called
“gut–liver axis” may play a critical role in NAFLD onset and
progression.

Emerging evidence indicates that the human gut
microbiota is involved in the development of obesity and
related complications, including NAFLD (Drenick et al.,
1982, Backhed et al., 2004, Zhu et al., 2015). Gut micro-
flora may stimulate hepatic fat deposition and promote
NASH by several mechanisms (Aron-Wisnewsky et al.,
2013, Gkolfakis et al., 2015). Changes to the microbiome
regulate gut permeability and increase hepatic exposure
to injurious substances that increase hepatic inflammation
and fibrosis. The first evidence of an increased intestinal
permeability (leaky gut) and tight junction alterations in
NAFLD patients compared with healthy subjects was
reported in 2009 (Miele et al., 2009). Since then, more
studies in humans and mice have confirmed the associa-
tion between impaired intestinal barrier function and hep-
atic fibrogenesis and inflammation (Miele et al., 2009,
Gabele et al., 2011).

The gut microbiota also regulates immune balance and
participates in the development and homeostasis of overall
host immunity (Burcelin et al., 2012). The cross-talk between
host and bacteria, which depends on Toll-like receptors
(TLRs) or NOD-like receptors, is responsible for innate and
adaptive immune responses that protect the host and
maintain intestinal homeostasis (Compare et al., 2012).
TLRs recognize highly conserved microbial molecules called
“pathogen-associated molecular patterns” (PAMPs) or
damage-associated molecular patterns (DAMPs) and initiate
a signaling cascade leading to the activation of pro-inflam-
matory genes, such as TNF-α, IL-6, IL-8, and IL-12 (Piset-
sky, 2011, Alisi et al., 2012). Lipopolysaccharide (LPS), the
most extensively studied PAMP, is a component of the gram-
negative bacteria cell membrane and the active component
of endotoxin. LPS-TLR-4 signaling activation is related to
insulin-resistance and NASH. Studies on TLR-4 null mice
have confirmed that TLR-4 is essential for hepatic fat
deposition and NASH development (Poggi et al., 2007,
Saberi et al., 2009, Henao-Mejia et al., 2012). In addition, the
inflammasome, that is composed of leucine-rich-repeat-
containing proteins and nucleotide-binding domain (NLRPs)
can act as sensors of PAMPs and DAMPs and participate in
the activation of lipid peroxidation and ROS production dur-
ing NAFLD/NASH progression (Thuy et al., 2008, Harte
et al., 2010, Henao-Mejia et al., 2012). Moreover, dysbiosis
also affects the metabolism of food substrates, by increasing
the production of certain short-chain fatty acids and alcohol
and depleting choline.
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The bile acid 90% excreted by the gallbladder is reab-
sorbed in the small intestine and is recycled back to the liver
through the portal vein and have emerged as relevant sig-
naling molecules that function in the liver to regulate lipid and
carbohydrate metabolic pathways as well as energy home-
ostasis. Bile acids may function as signaling molecules via a
variety of receptors, including members of the nuclear
receptor superfamily (farnesoid X receptor [FXR; NR1H4],
Vitamin D receptor [NR1I1], and pregnane X receptor
[NR1I2]) and members of the G-protein-coupled receptor
superfamily (TGR5), to regulate their own synthesis as well
as other metabolic processes, such as glucose, lipid, and
energy homeostasis (Maeda et al., 2001). Specifically, FXR,
originally named for its ability to bind to farnesoid, has shown
to play a role in the regulation of lipid metabolism (Sinal
et al., 2000, Schaap et al., 2014, Carr and Reid, 2015,
Mazuy et al., 2015, Fuchs et al., 2016). FXR-KO mice exhibit
a proatherogenic lipoprotein profile with markedly elevated
serum and hepatic cholesterol and triglycerides levels (Sinal
et al., 2000, Arab et al., 2017). The activation of FXR
represses hepatic DNL and stimulates fatty acid β-oxidation,
limiting hepatic lipid accumulation (Pineda Torra et al., 2003,
Watanabe et al., 2004, Savkur et al., 2005, Moore, 2012).
FXR can also promote plasma VLDL triglyceride clearance
by inducing the expression of ApoCII, an activator of
lipoprotein lipase, and suppressing the expression of
ApoCIII, an inhibitor of lipoprotein lipase activity (Mazuy
et al., 2015, Fuchs et al., 2016). In addition, the gut flora
modifies bile acid metabolism and FXR/TGR5 signaling and
hence contributes indirectly to the development of NAFLD
(Tremaroli et al., 2012).

The colon is a major site of gut bacterial fermentation,
yielding high levels of short chain fatty acids (SCFAs,
70–130 mmol/L) (Duncan et al., 2009). The main substrates
for the production of SCFAs by the colonic microbiota are
dietary carbohydrates that have escaped digestion in the
small intestine, collectively referred to as dietary fibre (Psi-
chas et al., 2015). Experiments comparing the feces of
obese and lean individuals demonstrated that the level of
short-chain fatty acids was higher in the obese whereas
residual calories from food were concomitantly reduced
(Turnbaugh et al., 2006, Schwiertz et al., 2010). SCFAs
therefore have been proposed to contribute to obesity and
liver steatosis as they provide approximately 10% of daily
caloric consumption and may enhance nutrient absorption
by promoting expression of glucagon-like peptide 2 (den
Besten et al., 2013, Boursier and Diehl, 2015) (Zhu et al.,
2015). However, SCFAs also improve lipid and glucose
metabolism and maintain intestinal homeostasis (den Bes-
ten et al., 2013, Puertollano et al., 2014, Boursier and Diehl,
2015). Hence, the net effect of SCFAs on NAFLD patho-
genesis remains unclear and is likely complex. For example,
although total cecal SCFA concentrations of recipient mice
given flora from responder versus nonresponder mice were
similar in the Leroy study, two branched-chain fatty acids
(isobutyrate and isovalerate) were significantly higher in

responder-receiver mice (Boursier and Diehl, 2015). Bran-
ched-chain fatty acids, which can be de novo synthesized by
several gut bacterial species, have been associated with
insulin resistance and metabolic disease development
(Newgard, 2012, Boursier and Diehl, 2015).

EXTRACELLULAR VESICLES AND NAFLD

Exosomes are small membrane-bound extracellular vesicles
(EVs) released by various types of cells into biological fluids
(Sato et al., 2016). There are two main populations of EVs,
namely exosomes and microparticles (MPs), which differ in
size, composition, and mechanism of generation. Exosomes
are small, 30–100 nm in diameter, and are released by
exocytosis as a result of multivesicular bodies fusing with the
plasma membrane (Masyuk et al., 2013). EVs have been the
topic of great interest in recent years in NAFLD research.
Patients with NAFLD or NASH secrete increased levels of
microvesicles derived from macrophages and natural killer T
cells (Kornek et al., 2012). Another EV study has shown that
the expression levels of various proteins within vesicles are
enhanced in a mouse model of NAFLD, and that protein
expression pattern differs between exosomes and
microvesicles (Povero et al., 2014).

EVs are involved in NAFLD pathology because they
regulate cell-cell communication and a number of patho-
physiological events in various types of cells via horizontal
transfer of their cargo including proteins (membrane,
cytosolic, and nuclear), RNAs (including mRNAs and
microRNAs), and lipids (Yuan et al., 2009, Diehl et al., 2012,
Raposo and Stoorvogel, 2013). Notably, released EVs do
not only stay in the tissue of origin, but also circulate in the
blood stream (Povero et al., 2014). Recent studies have
demonstrated that primary and immortalized hepatocytes
are capable of producing and releasing both exosomes and
MPs (Conde-Vancells et al., 2008, Witek et al., 2009, Pan
et al., 2012, Povero et al., 2013). EVs are formed and
released during the accumulation of lipotoxic lipids in hep-
atocytes, which is a key mechanism of liver damage and
disease progression in NAFLD (Povero et al., 2014).

In obese individuals, adipocyte-derived exosomes are
known to contribute to the development of insulin resistance
via activation of adipose-resident macrophages and secre-
tion of proinflammatory cytokines that can result in insulin
resistance (Deng et al., 2009). Recent evidence indicated
that visceral obese adipocytes shed exosomes that contain
mediators capable of activating end-organ inflammatory and
fibrotic signaling pathways and these exosomes contain
miRNAs capable of regulating end-organ TGF-β and
Wnt/β-catenin signaling in obesity-related comorbid condi-
tions (Zhu et al., 2015).

CONCLUSION

The pathogenesis of NAFLD and its progression is a com-
plex process. Increasing evidence indicates that a number of

REVIEW Xu Zhang et al.

170 © The Author(s) 2017. This article is an open access publication

P
ro
te
in

&
C
e
ll



diverse and parallel processes contribute to the develop-
ment of NAFLD and liver inflammation. The impairment of
the hypothalamic signaling pathway due to mutations or
inflammation leads to the development of obesity and
NAFLD. Dysfunction of adipose tissue in obesity or
lipodystrophy provides a source of excess fat and results in
the secretion of multiple factors involved in the pathogenesis
of NAFLD. In addition, emerging evidences suggest that an
altered gut microbiota can influence the development and
progression of NAFLD, possibly via the gut–liver axis. In the
liver, the dysregulation of lipid de novo lipogenesis and
imbalance of lipid influx and efflux causes lipotoxicity which
may further result in mitochondrial dysfunction and ER stress
as well as the consequent activation of inflammatory
responses, as observed in obesity and insulin resistance.
Combined with the rapidly increasing expending field of
studies of miRNAs and LncRNA research suggest that the
identification and validation these non coding RNA may
improve the diagnosis and clinical monitoring of NAFLD
progression.

An improved knowledge of the pathogenic “cross-talk”
between the liver and extra-hepatic organs will not only help
to modulate known risk factors associated with the onset of
NAFLD and/or its progression to end-stage liver disease but
may also provide insight for the development of new phar-
macological treatments for NAFLD.
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17β-HSD13, 17β-hydroxysteroid dehydrogenase 13; α-MSH, α-

melanocyte-stimulating hormone; AdipoR1, adiponectin receptor 1;

AGF, angiopoietin-related growth factor; AgRP, agouti-related pep-

tide; AGPAT2, 1-acylglycerol-3-phosphate O-acyltransferase 2;

Akt2, protein kinase B; AMPK, AMP-activated protein kinase; ApoB,
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CIII; ARC, arcuate nucleus; ATGL, adipose triglyceride lipase; BMI,

body mass index; Bscl2, berardinelli-seip congenital lipody-strophy

2; CART, cocaine-amphetamine-regulated transcript; CIDE, cell

death-inducing DFFA-like effector; DAMPs, damage-associated

molecular patterns; DFFA, DNA fragmentation factor subunit alpha;

DGAT2, diacylgycerol acyltransferase 2; DIO, diet-induced obesity;

DNL, de novo lipogenesis; ER, endoplasmic reticulum; EVs,

extracellular vesicles; FAS, fatty acid synthase; FFAs, free fatty

acids; FGF21, fibroblast growth factor 21; FLRL, fatty liver-related

lncRNA; FXR, farnesoid X receptor; GLP-2, glucagon-like peptide 2;

GWAS, genome-wide association studies; HCC, hepatocellular

carcinoma; HFD, high fat diet; IL-6, interleukin- 6; IR, insulin

resistant; HCC, hepatocellular carcinoma; HFD, high fat diet; JNK,

c-Jun N-terminal kinase; LDs, lipid droplets; LECT2, leukocyte

derived chemotaxin 2; LEPR, leptin receptor; Lmna, Lamin A;

lncRNAs, long non-coding RNAs; LPL, lipoprotein lipase; LPS,

lipopolysaccharide; MC3R, melanocortin 3 receptor; MC4R, mela-

nocortin 4 receptor; miRNAs, microRNAs; MPs, microparticles;

MTTP, microsomal triglyceride transfer protein; NAFLD, non-alco-

holic fatty liver disease; NASH, nonalcoholic steatohepatitis; NF-kB;

nuclear factor kappa B; NLRPs, nucleotide-binding domain; NR1H4,

nuclear receptor FXRα; NR1I1, Vitamin D receptor; NR1I2, preg-

nane X receptor; NPY, neuropeptide Y; PAMPs, pathogen-associ-

ated molecular patterns; PLINs, perlipins; PLIN1, perlipin 1; PLIN2,

perlinpin 2; PLIN3, perlipin 3; PLIN4, perlipin 4; PLIN5, perlipin 5;

PNPLA3, patatin-like phospholipid domain containing protein 3;

POMC, anorexigenic neuropeptides pro-opiomelanocortin; Pparγ,

peroxisome proliferator activated receptor γ; PVN, paraventricular

nucleus; ROS, reactive oxygen species; SCFAs, short-chain fatty

acids; SHBG, sex hormone-binding globulin; SOCS3, suppressor of

cytokine signalling 3; SREBP-1c, sterol regulatory element binding

protein-1c; T2DM, type 2 diabetes mellitus; TAG, triacylglycerides;

TGR5, the G-protein-coupled receptor superfamily; TLR 4, toll-like

receptor 4; TLRs, toll-like receptors; TNF-α, tumor necrosis factor-α;

VLDL, very low-density lipoprotein.
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