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Abstract

Purpose of Review Developmental dyslexia is characterized by an impaired acquisition of fluent and skilled reading ability.
Numerous studies have explored the neural correlates of this neurodevelopmental disorder, with most classic accounts strongly
focussing on left temporoparietal regions. We will review recent findings from structural and functional MRI studies that suggest
a more important role of occipitotemporal cortex abnormalities in dyslexia.

Recent Findings Recent findings highlight the role of the occipitotemporal cortex which exhibits functional as well as structural
abnormalities in dyslexic readers and in children at risk for dyslexia and suggest a more central role for the occipitotemporal

cortex in the pathophysiology of dyslexia.

Summary We demonstrate the importance of the occipitotemporal cortex in for understanding impaired reading acquisition and
point out how future research might enhance our understanding of functional and structural impairments in the reading network

via large-scale data analysis approaches.

Keywords Developmental dyslexia - Occipitotemporal cortex

Introduction

Developmental dyslexia (henceforth, dyslexia) designates im-
paired acquisition of reading skills which is not merely
accounted for by mental age, sight defects, or insufficient
schooling [1]. Affected individuals show difficulties in read-
ing comprehension, word decoding, and recognition and sim-
ilar tasks that require adequate reading skills [2, 3]. Dyslexia,
which describes the difficulty in decoding the spelling and
pronunciation of words, must be distinguished from reading
comprehension impairments, where readers have problems
understanding the meaning of what they read. Family studies
show that dyslexia is heritable and has a strong genetic com-
ponent [4]. Dyslexia lacks a concrete etiology and is deter-
mined via dimensional classification schemes: it describes the
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lower end of a continuous distribution that ranges from poor
outcome to optimal outcome in word reading ability.
However, in clinical practice, a rather arbitrary cutoff point
is normally set to separate dyslexia from subclinical reading
deficits. Reading skills are commonly related to general intel-
ligence, although the importance of the discrepancy between
reading ability and general intelligence has been refuted by
recent research [5, 6].

Besides several auditory, visual, and motor dysfunction
hypotheses, the prevalent (and most consistent [7]) cognitive
explanatory approach for dyslexia is the phonological deficit
hypothesis. It postulates a specific deficit to represent, access,
and process speech sounds caused by inherent dysfunctions of
cortical areas specialized in phonology and reading. Word
reading difficulties differ somewhat across languages since
their orthographies vary in the transparency of their
grapheme-phoneme mappings. It is therefore easier to read
Finnish or German words (transparent orthographies) as com-
pared to English words (opaque orthography) [8], and this
affects dyslexic as well as normal readers [9, 10]. Several
attempts have been made to identify subtypes of dyslexia [1,
11e]. Critically, none of these typologies is universally ac-
cepted in the field of dyslexia research. Dyslexia is comorbid
with other neurodevelopmental disorders like ADHD and
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dyscalculia and therefore it is not surprising that there is a solid
correlation between reading and mathematical abilities and
that these disorders might share common patterns of brain
alterations [12].

In most classic accounts of brain abnormalities in dyslexia, the
importance of the left temporoparietal cortex is especially
highlighted, since this brain region has been closely linked with
the phonological processing deficits in dyslexia [13, 14, 15¢].
Although left ventral posterior occipitotemporal dysfunctions
are regularly discussed, those were often seen as secondary brain
deficits in dyslexia, as it was assumed that phonological process-
ing deficits reflected in temporoparietal dysfunctions would cause
disrupted development of the left occipitotemporal cortex (OTC).
This account was also based on the idea that the temporoparietal
cortex is especially important in the early stage of reading acqui-
sition with phonologically based word decoding and that the OTC
only emerges in later reading development. In this paper, we will
review recent evidence that points to a more central role of the left
OTC in dyslexia which suggests that functional and structural
abnormalities of this region may constitute the most reliable and
important neural correlate of developmental dyslexia. We will
primarily review functional and structural MRI studies and mostly
studies with alphabetic orthographies, as there are still (in our
opinion) not enough studies to evaluate the consistency of neural
abnormalities in dyslexia in other orthographies. One should note,
however, that there are some reports showing that Chinese dys-
lexic readers do not show abnormalities in posterior brain regions,
but rather in the middle frontal gyrus [16], although the left OTC
is reliably involved in skilled reading also in logographic scripts
[17]. Another study found comparable left OTC dysfunction in
Chinese and English dyslexic readers [18].

Brain Activation Abnormalities

The occipitotemporal (including the visual word form area;
VWFA), temporoparietal, and left frontal regions regularly
emerge in fMRI studies on dyslexia and are identified as im-
portant core regions for reading [1, 15¢, 19-22].
Temporoparietal cortex (TPC) activation is often found in
studies (and meta-analyses), although with some limitations.
First, TPC activation seems to vary with reading proficiency
in impaired and normal reading: Richlan et al. [23] identified
underactivation in the left temporal areas in adult dyslexic
readers whereas this effect was not replicated for children
studies. Conversely, convergent temporal activation was
shown for healthy infant but not for adult readers [24¢].
Second, it is not yet clear how TPC abnormalities vary with
orthographic depth: Although TPC underactivation in dyslex-
ic readers was identified in deep and shallow orthographies in
arecent meta-analysis [25¢¢], this effect heavily relied on task-
negative activation in dyslexic participants and group differ-
ences disappeared when deactivation relative to baseline was
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excluded from the analyses. Such inconsistencies appear in-
compatible with the prominent role the TPC is assigned to in
neural models of dyslexia.

By contrast, the OCT shows convergent activation irrespective
of reading proficiency as demonstrated in robust activation in
child as well as adult readers, which highlights the role of the
OCT not only during proficient reading but also during reading
acquisition (meta-analysis [24¢]). In a similar vein, child as well as
adult dyslexic readers reveal convergent underactivation in the left
ventral OTC (meta-analysis [23]). Abnormal activation in dyslex-
ic readers in OTC might be unaffected by orthographic depth,
since decreased neural response was identified in deep (English)
as well as in shallow (e.g., Dutch, Italian) orthographies (meta-
analysis [25¢¢]). Besides consistent results on less activation in the
left OTC in dyslexic readers, dyslexia is also associated with an
abnormal neural response profile: Neural activation in dyslexic
children is assumed to differentiate to a lesser extent between
letters and other visual stimuli and between different types of
words: Neural activation in OTC during the visual presentation
of words as compared to false fonts is higher in children with
normal reading abilities than in dyslexic children. They also
showed a decreased differentiation between orthographically fa-
miliar and unfamiliar forms of real words [26]. An abnormal
response profile of the OTC in dyslexia during visual word pro-
cessing in terms of a decreased specialization was also found in
subsequent fMRI studies, and can be considered as one of the
most robust findings [27-29].

Support for the important role of the left OTC in dyslexia is
also provided by training studies on children with reading
disabilities, showing that systematic reading interventions
(50 min per day) increased not only reading fluency but also
neural response in the occipitotemporal cortex [30]. This ef-
fect was not replicated for “communal interventions” (i.e.,
interventions often provided within school settings). Another
study on dyslexic readers investigated the effects of training in
the domains of phonology, attention, or visual word recogni-
tion on neural response [31¢]. The authors found that, irrespec-
tive of training type, significant increase in activation was only
found in occipitotemporal regions, which (once more) high-
lights the importance of the OTC in literacy skills. ERP as-
sessments in prereaders could show that occipitotemporal sites
exhibit a delayed N1 component in infants who develop dys-
lexia later on in development [32]. In a similar vein, print
knowledge was identified as a reliable predictor of later read-
ing performance as early as reception class level at the ages of
~4 and 6 [33]. At the neuronal level, fMRI assessments dur-
ing orthographic processing (letter vs. false font) in prereaders
revealed a decreased specialization for letters in posterior dor-
sal regions [34]. Similar to findings of the training study of
Shaywitz et al. [30] mentioned above, abnormal neural acti-
vation was improvable by supplementary reading interven-
tion. Additional support for abnormal posterior brain activa-
tion prior to reading onset was provided by Raschle et al. [35]:
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They examined neural activation in kindergarten children dur-
ing a sound matching task and found reduced activation in the
OTC and TPC in infants with a family history of dyslexia.

Taken together, developmental dyslexia is frequently asso-
ciated with a decreased specialization for letters and words in
the OTC. Decreased neural response during reading-related
processes in dyslexia seems to be invariant to orthographic
depth and is robustly identified in adult as well as infant read-
ing. Altered activation is also found in prereading studies sug-
gesting early developmental brain alterations prior to reading
acquisition [36¢]. Notably, although reading abilities are often
defined in relation to general intelligence, neuroimaging stud-
ies revealed evidence for the contrary: Tanaka et al. [37]
assessed phonological processing in poor readers with either
high or low 1IQ and found that both groups exhibited similar
patterns of reduced neural activation in the OTC and TPC.
With respect to the relationship between reading comprehen-
sion and word reading, one fMRI study provided evidence
that decreased activation of the left OTC during reading is
specifically associated with problems in word reading and
not with impaired reading comprehension [38]. In a very re-
cent study, Perrachione et al. [39+¢] found diminished neural
adaptation in dyslexic readers compared to that in normal
readers while processing written words in the OTC. Neural
adaptation is assumed to reflect an efficient processing of sen-
sory input and it is defined as the decreased blood oxygen
level dependent (BOLD) response towards a repeatedly pre-
sented stimulus in regions critically involved in the processing
of the investigated stimulus category. Strikingly, diminished
neural adaptation was not restricted to reading-specific mate-
rial but was also identified during visual object and face per-
ception. Assessment of functional MRI during visual process-
ing found further support for the notion that deficient activa-
tion in dyslexia may not be restricted to reading material but
rather reflects a more general impairment of the OTC:
Dyslexic readers exhibited decreased OTC activation not only
for word-like stimuli but also for numbers and abstract symbol
strings [40¢]. Decreased activation for non-word stimuli was
also found in an earlier study that reported diminished activa-
tion not only in the left occipitotemporal word-selective re-
gions for visual words but also in the right fusiform face area
in response to visual faces in dyslexic children [41].
Collectively, these recent findings suggest that abnormal left
OTC function in dyslexia is not restricted to visual word pro-
cessing and may therefore not be solely caused by a lack of
reading experience in dyslexic readers, as also suggested by
other fMRI findings reviewed in this section.

Structural Brain Abnormalities

First neuroanatomical assessments of structural brain abnor-
malities in dyslexia arose from post-mortem investigations

[42]. Abnormalities included a reduced leftward asymmetry
of the planum temporale and ectopias located in the
perisylvian regions. With the beginning of neuroimaging in
living individuals, voxel-based morphometry (VBM) assess-
ments showed gray matter abnormalities in the ventral OTC
[43, 44], although the direction of altered findings was rather
inconsistent. Furthermore, such gray matter abnormalities
could not be replicated thoroughly [45]. On the contrary, gray
matter reduction in dyslexic readers in OTC was identified in a
meta-analysis by Linkersdorfer et al. [46]: The authors con-
ducted a meta-analysis on VBM studies which revealed that
abnormal neural activation and gray matter alterations in dys-
lexia overlapped in the left fusiform gyrus. In a similar fash-
ion, Altarelli et al. [47] examined cortical thickness of dyslex-
ic children around their individual peak of functional activa-
tion towards visually presented words. Dyslexic children
showed decreased cortical thickness in word-selective OTC
but not in other cortical areas. Notably, this effect was mainly
driven by differences in healthy vs. impaired female readers.
Decreased cortical thickness (and increased gyrification) in
the OTC is also shown by a very recent study of Williams
et al. [48]. There is also evidence that gray matter abnormal-
ities in the OTC are specific for dyslexia and not found in
readers with a specific reading comprehension impairment
but no deficit in word reading per se [49].

Similar to functional MRI investigations, structural assess-
ments show variations in the neuroanatomy of reading-related
regions in at-risk prereaders. Structural alterations prior to read-
ing acquisition include atypically small sulcal basins [50¢] and
reduced gray matter volume in the OTC as well as TPC [51, 52].
Here, gray matter alterations were associated with a delay in
language acquisition [52] and a family history of developmental
dyslexia [51, 52]. Volume indices also correlated positively with
rapid automatized naming tasks in these cortical areas [51].

Genetic imaging studies have also demonstrated an associa-
tion between OTC structure and genetic markers of dyslexia [4].
Skeide et al. [53¢] investigated single-nucleotide polymorphisms
(variations in certain DNA sequences) often associated with lit-
eracy performance in 19 genes in kindergarten schoolchildren
(prereaders; 5—6 years). The NRSNI gene was related to gray
matter volume in the VWFA. The genetically associated volume
profile of the VWFA (gVWFA) was able to classify readers into
dyslexic and control individuals. Furthermore, gVWFA accurate-
ly distinguished between later dyslexic and normal reading skills
in the prereader sample. In another recent genetic imaging study,
a link was found between a genetic risk factor for dyslexia and
dyscalculia and decreased volume and brain activation of the
fusiform gyrus in the left OTC [54].

Despite the large number of studies pointing to the impor-
tance of structural abnormalities in the OTC for dyslexia, it
should be noted that the literature on structural brain abnor-
malities in dyslexia is plagued by inconsistencies and failures
to replicate (for an excellent recent critical review, see [11°¢]).
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These inconsistencies are also reflected in a large-scale study
of structural abnormalities based on a multi-site dyslexia
dataset collected via the Dyslexia Data Consortium. This anal-
ysis showed that most differences in gray and white matter
volume disappeared when the analysis adjusted for differ-
ences in whole brain volume and that dyslexia was associated
with more heterogeneity of gray matter volume in most re-
gions of the brain [55e].

Structural Brain Connectivity

Dyslexia was early conceptualized as a disconnection syndrome
[56], consistent with the explanation that impaired reading might
be closely associated with impaired connectivity and disturbed
white matter tracts between reading-related brain areas.
Accordingly, numerous studies have explored structural connec-
tivity in dyslexia using diffusion-weighted MRI [57]. As in stud-
ies exploring functional MRI and structural MRI, early assess-
ments mainly focused on connectivity involving the left TPC,
including the arcuate fasciculus and the corona radiata, because
of their assumed link with phonological processing. A number of
findings from these studies indicated abnormalities in white mat-
ter tracts but with considerable inconsistency on which track is
specifically involved [11e]. Regarding the OTC, recent studies
provided some evidence for white matter abnormalities. For ex-
ample, familial risk for dyslexia in prereading children was main-
ly associated with deficits in a left ventral white matter tract, the
left inferior fronto-occipital fasciculus [58¢], and integrity of this
ventral tract was related to both familial risk for dyslexia and later
reading ability in a longitudinal DWI study [59]. Interestingly,
integrity of this ventral pathway was found to be associated with
performance on an orthographic processing task [60]. However,
there are also inconsistent results from studies indicating no as-
sociation between integrity of ventral white matter tracts and risk
for dyslexia in prereaders, but rather highlight an association
between dorsal tracts and dyslexia risk [61]. In summary, there
is inconsistent evidence for abnormalities of ventral white matter
tracts in the OTC in dyslexia and reading impairment. Generally,
although there is a consensus on the importance of white matter
tract abnormalities in dyslexia, there is still no clear consensus on
which specific white matter abnormalities are reliably associated
with dyslexia. It should be noted that DWI studies can differ in
numerous aspects [11e¢], which makes formal meta-analysis
across studies difficult and may partly explain the lack of a clear
consensus.

Functional Brain Connectivity
To date, relatively few fMRI studies have reported findings on

impaired functional brain connectivity in dyslexia, despite the
clear interest on disordered communication between brain
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regions. With respect to the left OTC, we have recently shown
that this region reveals less connectivity with the left inferior
frontal regions [62¢¢]. Importantly, this reduction of functional
connectivity of the OTC was not merely found during two
different reading tasks but also during the task-free resting
state, thus highlighting a general and permanent disruption
of the left OTC in dyslexia. Comparable results were reported
in other fMRI connectivity studies during reading tasks [29,
63, 64]. One recent resting fMRI connectivity study with
Chinese dyslexic children also reported decreased connectiv-
ity of the left OTC with the left frontal regions [65]. Another
study reported widespread functional connectivity abnormal-
ities in dyslexia using whole-brain data-driven analysis ap-
proach. They also identified reduced coupling between the
ventral visual regions in the OTC and reduced coupling be-
tween the visual and prefrontal regions [66]. However, some
studies did not identify impaired functional connectivity in-
volving the left OTC but revealed other abnormalities in dys-
lexia during reading or rest [67—70]. Compared to other brain
disorders, there are relatively few fMRI connectivity and es-
pecially resting state connectivity studies on dyslexia. Even
fewer studies employ effective connectivity techniques like
Dynamic Causal Modelling (DCM), which would allow for
a more targeted analysis of connectivity abnormalities and the
role of top-down and bottom-up connectivity in dyslexia and
which turned out promising in understanding connectivity
during visual word processing [71]. The small number of
DCM studies in dyslexia does not yet show a consistent pat-
tern for the OTC (or other regions of the reading network) [72,
73¢]. Clearly, more and larger studies are needed to character-
ize potential abnormalities in connectivity of the OTC in dys-
lexia more reliably, also because studies in non-impaired
readers suggest that the role of the OTC and its emergence
during development is strongly determined by structural and
functional connectivity [74, 75].

Functions of the OTC in Non-Impaired
Reading

The OTC is consistently identified in studies assessing literacy
skills in normal and dyslexic reading. This area is assumed to
accommodate a functional region—VWFA—which computes
representations of visually presented words irrespective of
variances in size, font, location, and case [76]. Initial accounts
of the VWFA assumed that it is mainly responsible for
prelexical orthographic processing and does not respond to
auditory words [77]. However, recent neuroimaging findings
account this of the VWFA: For example, a number of findings
now strongly argue for orthographic (whole word) represen-
tations in the sense of an orthographic lexicon within the
VWFA [78, 79]. Furthermore, VWFA seems to be involved
in accessing the orthography of auditorily presented words
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[80]. Assuming that abnormal VWFA activation is also related
to disturbed auditory processes, this might be an interesting
link to spelling deficits identified in some dyslexics or the
finding that lesions in the VWFA are often accompanied by
acquired alexia.

Variable response properties suggest that VWFA activation
also contributes to other functions besides the mere visual repre-
sentation of words. In their “The interactive account of the ventral
occipitotemporal contributions to reading,” Price and Devlin [81]
propose that the function of this region varies depending on its
interaction with other areas. Therefore, top-down input from au-
ditory processes or lexical information might alter VWFA acti-
vation for efficient stimulus processing. An alternative approach
is that there exist two functionally different regions within the
OTC [82, 83]: One that is relevant for the graphemic description
of a word, irrespective of its location, font, or size. This region
corresponds to what is often termed VWFA [82]. The other region
is located lateral to the left of the VWFA and is engaged in a
variety of lexical tasks and responds to written and spoken words
[82, 83]. It is therefore assumed to be modality independent and
to link semantics to lexical representation for written or oral
output. Although there is some support for this approach, this
functional distinction needs future investigations since—due to
their spatial proximity—these two regions are confounded in
previous studies and task-dependent individual localizations of
the VWFA complicate a retrospective separation even more.

Conclusions

In summary, the OTC is most consistently identified in infant and
adult readers irrespective of orthographic depth and is even shown
in fMRI assessments of non-alphabetic writing systems. Dyslexic
readers not merely show decreased neural response in the OTC
but rather indicate unspecific activation towards a reading mate-
rial. Although less consistent, several structural MRI assessments
highlight the role of structural alterations in the OTC in dyslexic
readers. Strikingly, structural as well as functional alterations be-
come evident even before reading acquisition in preschool chil-
dren and are able to accurately predict later reading disabilities.
The central importance of the OTC in reading and reading-related
skills like spelling and (rapid) object naming might be one poten-
tial explanation for the relatively broad literacy impairments of
dyslexia. Connectivity impairments between the OTC and frontal
areas might be indicative of a disrupted linkage between ortho-
graphic and phonological word representations what in turn leads
to inefficient and slow reading performance.

Considering the evidence of abnormalities in dyslexia in
various research domains ranging from behavioral RT measures
to functional brain activation and even genetic factors, it seems
unlikely that there is a single mechanistic explanation for dys-
lexia. Additionally, there is an ongoing discussion about wheth-
er there are qualitative differences in the neuronal mechanisms

that underlie dyslexia, meaning that dyslexic symptoms might
be based upon slightly diverging “neuronal subtypes” of dys-
lexia. The assumption of different neuronal subtypes might
account for the sometimes inconsistent findings produced in
this field. To illustrate, it remains up to future studies to show
how occipitotemporal abnormalities relate to temporoparietal
and frontal activation patterns and why certain tasks elicit de-
creased neural response in dyslexic readers whereas others do
not. Furthermore, alterations in functional activation and struc-
ture might also be influenced by comorbid disorders like
ADHD and dyscalculia and subclinical traits; at the moment,
there is not much brain data directly exploring the relationship
between dyslexia and other neurodevelopmental disorders and
between reading ability and other skills and traits.

Advanced approaches might provide suitable methods to
classify dyslexic subgroups in a data-driven manner based on
brain function, connectivity, and structure: Such methods are
already successfully applied in other psychiatric disorders
[84]. Besides, advanced developments in the field of compu-
tational neuroanatomy and quantitative MRI might also be of
great relevance for an improved and more sensitive analysis of
brain structure [85]. In general, there is an urgent need for a
careful integration of large-scale functional and structural
MRI datasets on dyslexia and increased data sharing. The first
steps and promising results have already been provided by
structural MRI data collected by the Dyslexia Data
Consortium [55¢¢]. But, large-scale, publicly available
datasets are also needed for functional MRI data; such data
sharing already had a large impact on research on the brain
basis of another neurodevelopmental disorder, for example, in
the field of autism research [86].
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