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Abstract

In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some
attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational
inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without
alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies
of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many
epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is
in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about
transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and

changes in chromatin states.
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Introduction

In recent years, there has been much focus on the subject of
epigenetic inheritance and how heritable changes in chromatin
states may be transmitted to subsequent generations. This in-
cludes changes in gene activity and gene expression levels,
without altering the underlying DNA sequence, that may be
passed on to generations to come. Transgenerational inheri-
tance may involve DNA methylation or other chromatin-
based mechanisms, but can also involve RNA-mediated
DNA methylation and RNA-mediated DNA excision/
elimination in some of the more extreme examples. Indeed,
small non-coding RNAs have been implicated in many of
these processes and likely mediate transgenerational inheri-
tance across eukaryotic species, since they can induce changes
in chromatin dynamics and guide histone modifications.
While these phenomena have been described in mammals
and extensive work has been performed to elucidate mecha-
nisms, this review will focus primarily on RNA-mediated
transgenerational inheritance in ciliated protozoans and plants.
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Ciliates

Ciliates are large, unicellular protists that can be found ubig-
uitously across the globe in both marine and freshwater envi-
ronments. Ciliates exhibit a special case of germline-soma
specialization called nuclear dimorphism and are thus unique
systems to study RNA-mediated transgenerational inheri-
tance. Ciliates contain two completely separate caches of ge-
netic information: the micronucleus (MIC), considered the
germline nucleus, is transcriptionally silent and is used to
propagate genetic information from one generation to the next
and the macronucleus (MAC), considered the somatic nucle-
us, is used for vegetative growth of the cells (Prescott 1994).
The micronuclear genome resembles that of a canonical eu-
karyotic genome, with many genes organized along long chro-
mosomes. The micronuclear genome contains a large amount
of “junk” DNA including transposable elements (TEs) and
repetitive elements such as minisatellites, while micronuclear
genes themselves are often interrupted by multiple short
transposon-derived stretches of non-coding DNA called inter-
nally eliminated sequences (IESs) (Arnaiz et al. 2012; Chen
et al. 2014; Guerin et al. 2017; Hamilton et al. 2016). The
macronuclear genome, on the other hand, is devoid of all of
this “junk” DNA and all the transcription necessary for veg-
etative growth occurs here (Aury et al. 2006; Duret et al. 2008;
Eisen et al. 2006; Fang et al. 2012; Swart et al. 2013). During
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the ciliate sexual life cycle, the parental macronucleus pro-
vides genetic information in the form of transported sSRNAs
for the formation of a new macronucleus, which is derived
from a newly formed, micronuclear precursor. During this
micronucleus to macronucleus transition, the micronuclear
genome is modified drastically through various processing
events, including the polytenization of chromosomes and re-
moval of repetitive DNA sequences, and [ESs must be pre-
cisely removed to create functional macronuclear genes. It has
been shown that small RNAs (sRNAs) are involved in the
epigenetic transmission of information from parental nuclei
to the developing macronucleus, leading to large-scale geno-
mic rearrangements, altered chromatin states and ultimately
the complete removal of specific DNA sequences.

In the stichotrich Oxytricha trifallax, approximately 20%
of micronuclear genes exist in a non-linear, “scrambled” order
that must be connected upon IES removal during macronucle-
ar development (Chen et al. 2014). This means that in addition
to targeting specific IES regions for elimination from the ge-
nome, the cells must also sort and reorder the remaining mac-
ronuclear destined sequences (MDSs) into functional genes.
During Oxytricha conjugation, the parental macronucleus is
broken down and degraded, while a new macronucleus, called
the anlage, develops from one of the parental micronuclei. At
this developmental stage, the anlage undergoes
endoreplication, eliminates over 90% of its germline genome,
breaks apart and fragments its chromosomes, and then ligates
the thousands of remaining MDSs back together into function-
al genic reading frames (Adl and Berger 2000). A
conjugation-specific class of 27 nt small RNAs called
27macRNAs has been identified and is highly upregulated
during this process (peaking 24 h post-mixing of complemen-
tary mating types) (Fang et al. 2012; Zahler et al. 2012). These
27macRNAs are derived from the parental macronucleus,
possess a strong 5’ U bias, and play a vital role during macro-
nuclear development. The 27macRNAs associate with a PTWI
protein called Otiwil and have been implicated in specifying
which regions of the genome are protected from the DNA
elimination occurring during this time (Fang et al. 2012).
Microinjection of synthetic SRNAs corresponding to IES re-
gions that are usually eliminated led to their retention in sub-
sequent generations. Although little is known about the bio-
genesis of these RNAs or the exact mechanism by which
DNA is protected, it has been suggested that this may occur
through methylation of cytosine residues within IES regions
(Bracht et al. 2012). In addition to the 27macRNAs necessary
for DNA retention throughout macronuclear development,
long maternal guide RNA templates transcribed from macro-
nuclear nanochromosomes have also been shown to mediate
genomic rearrangements (Nowacki et al. 2008). Long RNA
transcripts (both sense and antisense), corresponding to entire
macronuclear DNA molecules, can be detected for a brief
period during conjugation and it is hypothesized that these
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act as templates for the correct unscrambling of MDSs.
Microinjection of synthetic double-stranded
nanochromosomes (DNA or RNA versions) with alternatively
arranged MDSs led to defects in the proper reordering of
MDSs in subsequent generations, indicating epigenetic inher-
itance through these RNAs (Nowacki et al. 2008). In a recent
study, RNA-cached copies of over half of Oxytricha
nanochromosomes have been identified during macronuclear
development, supporting the model in which maternal guide
RNA templates are transmitted to the progeny (Lindblad et al.
2017). Although it has been suggested that the long guide
RNAs may act as precursors for the biogenesis of
27macRNAs, the relationship between these two classes of
RNAs remains unknown. Interestingly, a striking number of
the genes upregulated during Oxytricha macronuclear devel-
opment encode well-conserved proteins with links to germline
function and development in higher-level eukaryotes (Neeb
etal. 2017).

In the more well studied ciliates Paramecium and
Tetrahymena, it has also been shown that epigenetic informa-
tion from the parental macronucleus guides the elimination
and subsequent retention of specific DNA sequences during
macronuclear development (Fig. 1) (Aronica et al. 2008;
Lepere et al. 2008; Mochizuki et al. 2002). During the early
stages of the sexual life cycle of these ciliates, the entire
micronuclear genome is transcribed bidirectionally to produce
long double-stranded RNAs (Chalker and Yao 2001;
Mochizuki and Gorovsky 2004b). These double-stranded
RNA precursors are then processed by Dicer-like enzymes,
DCL2/3 in Paramecium and Dcllp in Tetrahymena, to pro-
duce a class of small RNAs called scan RNAs (scnRNAs)
(25 nt and 26-31 nt, respectively) (Chalker et al. 2005;
Malone et al. 2005; Mochizuki and Gorovsky 2004a, 2005;
Sandoval et al. 2014). These scnRNAs are then transported to
the maternal macronucleus where they “scan” the macronu-
clear genome. Although the mechanism of this genome “scan-
ning” is unknown, it is thought to involve interaction between
transported scnRNAs and maternal RNA transcripts present in
the developing macronucleus (Aronica et al. 2008; Lepere
et al. 2008; Mochizuki et al. 2002). scnRNAs with homolo-
gous macronuclear sequence are degraded by an unknown
mechanism, leaving only those corresponding to IESs remain-
ing. According to the current model, the scnRNAs that survive
this filtering step are transported to the developing macronu-
cleus, where in association with PIWI proteins (Ptiwil/9 in
Paramecium and Twilp in Tetrahymena) they are hypothe-
sized to mark IESs for excision and elimination (Bouhouche
et al. 2011; Duharcourt et al. 1995; Mochizuki et al. 2002;
Mochizuki and Gorovsky 2004a; Sandoval et al. 2014). In
both Paramecium and Tetrahymena, this elimination relies
on repressive heterochromatin marks, namely histone H3 ly-
sine 9 and lysine 27 methylation (Kataoka and Mochizuki
2011; Lhuillier-Akakpo et al. 2014; Liu et al. 2007,
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«Fig. 1 Scanning model for DNA elimination in Paramecium tetraurelia.
(a) The micronuclear genome is transcribed bidirectionally by an
unknown RNA polymerase to produce long double-stranded RNAs. (b)
These long dsRNA precursors are processed by the Dicer-like enzymes
DCL2/3 to produce 25 nt long scnRNAs. (c) scnRNAs, in association
with the PIWI proteins Ptiwil/9, are transported to the maternal
macronucleus (MAC). (d) scnRNAs “scan” the macronuclear genome
via interaction with RNA transcripts of somatic DNA. scnRNAs pairing
to homologous macronuclear destined sequences (MDSs) are filtered out
and degraded, leaving only those corresponding to germline internal
eliminated sequences (IESs). (e) Selected scnRNAs, in association with
PIWI proteins Ptiwil0/11, are transported to the developing MAC. (f)
These scnRNAs target the excision of IESs by the excisase PiggyMac
(PGM). (g) Excised IESs circularize, or concatemerize and circularize,
and are transcribed into long dsRNAs. (h) These long dsRNA precursors
are processed by the Dicer-like enzyme DCLS to produce 22-31 nt long
iesRNAs. (i) iesRNAs ensure the precise and efficient excision of all
remaining [ESs from the developing macronuclear genome.
Development of the new MAC is completed, with the newly formed
macronuclear genome matching that of the maternal macronucleus

Mochizuki and Gorovsky 2004a; Taverna et al. 2002; Yao and
Chao 2005). Excision of IES regions is facilitated by a domesti-
cated piggyBac transposase (called PiggyMac in Paramecium),
an endonuclease that creates DNA double-stranded breaks at
MDS/IES junctions, and flanking MDSs are then joined by the
protein DNA ligase IV (Baudry et al. 2009; Cheng et al. 2010;
Dubois et al. 2012; Kapusta et al. 2011). In Paramecium, excised
IESs circularize to become templates for the transcription of a
second class of RNAs called iesRNAs (Allen et al. 2017;
Betermier et al. 2000; Kapusta et al. 2011). These 22—31 nt small
RNAs, complementary to the sequence of excised IESs, are pro-
duced by the Dicer-like enzyme DCLS and act as a quality con-
trol mechanism to ensure the precise and accurate removal of all
remaining IESs from developing macronuclear chromosomes
(Sandoval et al. 2014). A second class of scnRNAs called late-
scnRNAs, expressed later in macronuclear development, has also
been reported in Tetrahymena. These late-scnRNAs are tran-
scribed from IESs prior to their excision and can recognize not
only the IESs from which they are transcribed, but also other IESs
in trans (Noto et al. 2015). The mechanisms by which these lately
expressed sSRNAs recognize IESs within the developing macro-
nuclear genomes remain to be elucidated; however, Paramecium
iesRNAs have been recently shown to bind the previously un-
classified PIWI proteins Ptiwil0 and Ptiwil 1l (Furrer et al. 2017).
It is worth noting that while the Paramecium micronuclear ge-
nome contains close to 45,000 IESs, the majority of which inter-
rupt protein-coding regions, Tetrahymena, have significantly less
(~8000) with very few contained within protein-coding genes
(Amaiz et al. 2012; Fass et al. 2011).

Plants

Epigenetic inheritance has been most well studied in plants
and generally involves heritable changes in DNA methylation
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states. Although extensive work has been performed to de-
scribe transgenerational silencing of transgenes in plants such
as toadflax, tomato, and maize, here we will focus primarily
on RNA-directed DNA methylation (RdDM) in the plant
Arabidopsis thaliana. Interestingly, compared to mammals,
plants are particularly prone to epigenetic inheritance even
though both types of genomes tend to be saturated with TEs
and other repetitive DNA sequences that must be silenced
(Quadrana and Colot 2016). Arabidopsis and other flowering
plants exhibit the best characterized example of duplication
and functional specification of subunits of the RNA polymer-
ase Il complex. In addition to the canonical RNA polymerase
II machinery, nearly universally composed of 12 core subunits
in eukaryotes, Arabidopsis possesses two additional nuclear
multi-subunit RNA polymerases, named RNA polymerase [V
(Pol IV) and RNA polymerase IV (Pol V) (reviewed in (Haag
and Pikaard 2011) (Kornberg 2007). These plant-specific
RNA polymerases have non-redundant roles in RNA-
mediated gene silencing pathways, specifically in RNA-
directed DNA methylation (RADM) that targets TEs and other
repetitive sequences (Matzke and Mosher 2014; Tucker et al.
2010). Pol 1V is responsible for transcribing short primary
RNA transcripts, which are copied into dsRNAs by an
RNA-dependent RNA polymerase, RDR2 (Blevins et al.
2015; Kasschau et al. 2007; Xie et al. 2004; Zhai et al.
2015; Zhang et al. 2007). After these double-stranded sub-
strates are cleaved by the Dicer-like enzyme DCL3 to produce
24 nt siRNAs, they are stabilized by a 3’ end modification (2'-
0O-CH; group) added by the methylase HEN1 (Li et al. 2005;
Qi et al. 2005; Xie et al. 2004; Yu et al. 2005). These stabile
siRNAs then associate with the Argonaute family protein
AGO4 (or sometimes AGO6 and AGO9) to form an RNA-
induced silencing complex (RISC) (Blevins et al. 2015;
Havecker et al. 2010; Qi et al. 2006; Zhai et al. 2015). Pol V
produces nascent long non-coding RNA (IncRNA) transcripts
from specified regions of the genome which are hypothesized
to base pair with the AGO4-associated siRNAs and this results
in de novo cytosine methylation of the corresponding DNA
template by the DNA methyltransferase DRM2 (Haag et al.
2009; Wierzbicki et al. 2008; Wierzbicki et al. 2009; Zhong
etal. 2014). This often leads to gene silencing through repres-
sive histone modifications (Kanno et al. 2010; Law and
Jacobsen 2010) (Fig. 2). Proteomic analyses have revealed
that Arabidopsis Pol TV and Pol V have a 12-subunit compo-
sition like Pol II. In fact, half of the subunits of Pols II, IV, and
V are encoded by the same genes. The remaining Pol IV- or
Pol V-specific subunit genes arose through duplication and
subfunctionalization of ancestral Pol II subunit genes (Haag
and Pikaard 2011). Unique paralogs of the largest subunit of
Pol IT (NRPB1) make up the catalytic core of the polymerases
and are unique to either the Pol IV or Pol V complex, being
referred to as NRPD1 and NRPE]1, respectively (Herr et al.
2005; Kanno et al. 2005; Onodera et al. 2005; Pontier et al.
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Fig. 2 RNA-directed DNA methylation (RdDM) in Arabidopsis
thaliana. (a) RNA polymerase IV produces single-stranded RNA
transcripts that initiate the process of RADM. (b) These single-stranded
RNAs are used as templates for the transcription of a second strand by the
RNA-dependent RNA polymerase RDR2. (c) These double-stranded
RNA duplexes are cleaved by the Dicer-like enzyme DCL3 to produce
24 nt siRNAs. (d) 24 nt siRNA duplexes are modified by the RNA
methylase HEN1, which adds a stabilizing 3’-O-methyl group. (e) A
single 24 nt strand of RNA is loaded onto the Argonaute family protein

2005). While the NRPB1 C-terminal domain (CTD) contains
heptapeptide repeats, the CTDs of both NRPD1 and NRPE1
lack this signature, likely facilitating their alternative func-
tions. The NRPE1 CTD is extended by approximately 300
amino acids and is shown to associate with AGO4 through
WG/GW repeats, called the Argonaute “hook,” to direct DNA
methylation (Li et al. 2006).

To be considered truly transgenerational, these DNA meth-
ylation landscapes must be heritable and maintained in subse-
quent generations after their initial establishment.
Maintenance of DNA methylation patterns through DNA rep-
lication requires the cooperation of several protein factors
(Law and Jacobsen 2010). In Arabidopsis, DNA methylation
is well maintained across TEs and genes and relies primarily
on the de novo DNA methyltransferase (DMTase) MET1 for
maintenance of CG methylation (Vongs et al. 1993). For
maintenance of CHG methylation, an additional
chromomethylase called CMTS3 is necessary and specifically
binds histone H3 lysine 9 dimethylation, while asymmetric
CHH methylation maintenance relies on DRM2 and CMT?2,
only requiring CMT3 at specific loci (Cao etal. 2003; Du et al.

AGO4 to form an active RNA-induced silencing complex (RISC). (f)
This sSRNA bound RISC complex is then recruited to growing
transcripts produced by RNA polymerase V, where direct interaction
between AGO4-bound sRNAs and nascent transcripts is thought to
occur. (g) De novo cytosine methylation of the corresponding DNA
sequence is mediated by the methyltransferase DRM2. This ultimately
leads to the removal of active histone marks and the establishment of
repressive ones, leading to silencing of specific genomic regions

2015; Johnson et al. 2007; Lindroth et al. 2001; Lindroth et al.
2004; Stroud et al. 2014; Stroud et al. 2013). Evidence sug-
gests that methylation patterns across TEs and repetitive se-
quence elements are transmitted from parent to offspring upon
fertilization, although CHH methylation must be reestablished
as the embryo develops (Hsieh et al. 2009; Jullien et al. 2012).
CHH methylation is guided by maternally inherited 24 nt
siRNAs that are present upon fertilization (Calarco et al.
2012; Lu et al. 2012; Mosher et al. 2009). Plants tend to
undergo significantly less germline reprogramming of DNA
methylation patterns than mammals, displaying an excellent
example of transgenerational epigenetic inheritance (Heard
and Martienssen 2014).

Perspectives
Both plants and ciliates exhibit a case of RNA-mediated epi-
genetic inheritance, utilizing classes of small RNAs, but the

mechanisms by which they perform such a feat are quite dif-
ferent. While RNA polymerase IV and RNA polymerase V are
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involved in the transcription of SRNA precursors and the na-
scent transcript targets in plants, this process is much less clear
in ciliates. Plants use an RNA-dependent RNA polymerase
(RDRP) to transcribe the second strand of RNA before
Dicer-like cleavage, but it is hypothesized that in ciliates, tran-
scription occurs bidirectionally to form dsRNA substrates,
although the polymerase responsible has yet to be identified.
Interestingly, however, additional RNA polymerase II sub-
units have also been identified in ciliates that may play similar
roles to plant Pols IV and V. For example, Oxytricha has
additional largest and second largest Pol I subunit paralogs
(RPB1b and RPB2b) that are highly upregulated during mac-
ronuclear development and likely play roles in the transcrip-
tion of either small RNA precursors or the guide RNAs de-
scribed in the process of gene unscrambling (Khurana et al.
2014; Neeb et al. 2017). These systems also use two distinct
types of Argonaute family RNA-binding proteins to target
regions of the genome for silencing or excision, using the
AGOs or Piwis, respectively. AGOs are completely absent
from ciliate genomes and Piwis have taken on the roles of
these proteins. It remains unclear how Piwi-bound small
RNAs “target” particular regions of the genome, but one can
imagine the involvement of nascent transcripts within the de-
veloping macronucleus. Interestingly, plant AGO4 which
binds siRNAs is most similar to Ptiwil0, known to bind
iesRNAs in Paramecium during the second IES removal step
of the “scanning model,” suggesting a possible similar mech-
anism (Furrer et al. 2017). Potentially, the most striking dif-
ference between these two systems is the fact that while both
plants and ciliates silence particular regions of the genome
using repressive histone modifications, plants merely form
heterochromatin, while ciliates like Tetrahymena use repres-
sive histone marks to excise and degrade large segments of the
genome entirely, taking this process to the extreme. It remains
to be elucidated whether ciliates and plants share additional
commonalities in how they accomplish epigenetic inheritance
and additional studies are needed to fill in the remaining gaps
in our understanding of these models.

Conclusion

Ciliates and plants represent unique and fascinating systems to
study RNA-mediated transgenerational epigenetic inheri-
tance. Both genomes must protect against the invasion of
transposable elements and other foreign DNA, and this comes
in the form of silencing expression, and in some cases exci-
sion, of entire DNA sequences to carefully defend the
germline and subsequent generations. With the power of
next-generation sequencing (NGS) of entire genomes and
epigenomes, along with reverse genetic approaches, it will
be possible to investigate the roles of epigenetic inheritance
in other biological processes and contexts. Although
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transgenerational inheritance is clearly demonstrated and well
described in ciliates and plants, further work is needed to
investigate the implications in mammalian systems and how
widespread this process is among other eukaryotes.
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