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Rescoring is a simple approach that theoretically could improve the original docking results. In this study AutoDock Vina was used
as a docked engine and three other scoring functions besides the original scoring function, Vina, as well as their combinations
as consensus scoring functions were employed to explore the effect of rescoring on virtual screenings that had been done on
diverse targets. Rescoring by DrugScore produces the most number of cases with significant changes in screening power. Thus, the
DrugScore results were used to build a simplemodel based on two binding site descriptors that could predict possible improvement
by DrugScore rescoring. Furthermore, generally the screening power of all rescoring approach as well as original AutoDock Vina
docking results correlated with the MaximumTheoretical Shape Complementarity (MTSC) and Maximum Distance from Center
of Mass and all Alpha spheres (MDCMA). Therefore, it was suggested that, with a more complete set of binding site descriptors, it
could be possible to find robust relationship between binding site descriptors and response to certain molecular docking programs
and scoring functions. The results could be helpful for future researches aiming to do a virtual screening using AutoDock Vina
and/or rescoring using DrugScore.

1. Introduction

Molecular docking is a method in which it is attempted to
find the most probable pose of the ligand in the active site of
a receptor and estimation of the binding energy. Molecular
docking is a computational approach whose applicability in
virtual screening was approved. Comparing with experimen-
tal methods of HTS (High Throughput Screening) it can
save time and cost of a drug discovery project. However, it
suffers from some drawbacks such as a high rate of false
positives [1, 2]. It was shown that docking programs have
a reasonable power to predict correct binding pose of the
ligands. However, their scoring powers were not same for
different protein families and also there is a weak correlation
between docked scores and binding affinities of the ligands
[3, 4].

One of the most cited open source docking engines is
AutoDock Vina [5]. It uses genetic algorithm to search for
the most energy favorable pose of a flexible small molecule
in either a rigid or a flexible binding site of a protein. Here,
AutoDockVinawas employed as a docking engine.Generally,

the docking engines use scoring functions to discriminate
between favorable and unfavorable binding poses of the
same molecule [6]. Furthermore, scoring functions rank the
best binding poses of the different small molecules to find
strong binders among them. The scoring functions deal with
a trade-off between speed and accuracy. Thus, rescoring
and consensus scoring approaches have been investigated
to discover a stable method that possibly could add up the
accuracy of various scoring functions and outperform single
scoring functions [7–11]. However, it has been suggested that
the scoring functions performances are target dependent.
However, the present study is different in some aspects. The
data set is retrieved from DUD-E [12] data set to avoid
bias in the design of active groups and decoys data set for
each protein target. In addition, the protein targets data set
is diverse and we attempted to find possible relationships
between scoring function performances and the binding site
descriptors.

One of the proposed solutions that possibly could
improve the virtual screening results is rescoring. Scoring
functions can fall into three categories [6, 13]: (1) empirical
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scoring functions, including ChemScore [14], (2) knowledge-
based potentials, including DrugScore [15], and (3) force-
field based approaches, including AutoDock Vina [5] and
AutoDock 4.2 [16]. Four metrics can be employed to assess
the performance of a scoring function: the scoring power,
ranking power, docking power, and screening power [6, 17].
Thus, rescoring can be done to find the best conformation
of a single molecule (improvement of docking power) and
for improvement of estimation of the binding energy and
ranking the ligands (scoring and ranking power) or reranking
the hits of a virtual screening to discriminate between decoys
and true binders (improvement of screening power). The
latter is the main concept of this research. A consensus
scoring method so-called rank-by-number that had shown
promising results [9] was also tested in this study. Several
reports [1, 7–11] investigated the possible effects of rescoring
on the differentmetrics of scoring performance.Among them
the main result of more recent studies that have been done
on larger data sets is that scoring function performance is
very dependent on target [1]. In the other words, the current
scoring functions are not universal.

In this study it was attempted to evaluate rescoring
performance in virtual screenings conducted on a large set of
predefined ligands and decoys for 32 receptors. In addition,
the aim of this study is to find a method to predict the per-
formance of a scoring function on specific targets. This study
seeks to address two questions. (1) Can employed rescoring
strategies consistently improve discrimination binders from
decoys? (2) Can the performance of docking and/or scoring
be predicted by specification of the receptors binding sites?

2. Methods

2.1. Receptors and Ligand Preparation. 32 diverse targets
were selected from the DUD-E database [12] (Table 1). The
selection was based on the diversity and size of the set to
keep the computational cost as low as possible. The same 3D
structures that had been used in DUD-E for each of the 32
selected targets were retrieved from protein data bank (PDB)
(Table 1). Then, the PDB files were prepared for AutoDock
Vina docking. Cocrystal ligands and water molecules were
removed, hydrogen and partial charges (Gasteiger) were
added, and the coordinates of the 3D structures were saved
in pdbqt format. The ligands from the DUD-E data set were
used following modifications. The ligands in the DUD-E
set have been divided into active compounds and decoy
compounds for each target. There are approximately 50
decoys for each active compound in the whole DUD-E set.
The active group contained some duplicate structures that
differ in their protonation states. As this would generate an
analog bias, the duplicate forms were omitted, and only a
single structure, which was in its physiological protonation
state, was kept.The corresponding decoy structures were also
omitted from the study. All the ligands were converted to
pdbqt files. The number of active groups and decoys for each
target were reported in Table 1.

2.2. Virtual Screening. The AutoDock Vina was employed
for the molecular docking [5]. For each of the targets, a

box was defined to dock the ligands properly in each active
site. In all the docking runs, the exhaustiveness was set to
8. The cocrystal ligand for each target was redocked in the
binding site of the target and the results are available as in
Supplementary Materials (available here).

2.3. Rescoring. Four scoring functions and combinations
of them have been evaluated in this study. These four
scoring methods were from three different categories. Vina
scoring (built-in scoring function of AutoDock Vina) and
AutoDock4.2 scoring functions are force-field based. Chem-
Score is a SYBYL built-in scoring function that is an empirical
scoring function. DrugScore is a knowledge base scoring
function and is available as a standalone scoring function.
All of the best docked poses of the ligands based on the
Vina scoring function were rescored by other three scoring
functions and also by all possible combinations. Thus, 11
consensus scorings were also applied (Tables 2 and 3).

A previously defined consensus scoring (rank-by-
number method [9]) was employed to summarize the results
of multiple scoring functions. Rank-by-number consensus
score is an average of the 𝑍-scaled scores calculated by each
of the individual scoring functions. Individual 𝑍-scaled
scoring function values (𝑍Score) are computed by

𝑍score =
(𝑓𝑖 − 𝜇)

𝑆
, (1)

where 𝑓𝑖 is the scoring value of an individual scoring
function, 𝜇 is the mean value, and 𝑆 is the standard deviation
of this scoring function for entire set.

2.4. Calculation of Binding Site Descriptors. Binding site envi-
ronment properties were retrieved form PLIC [18] database.
This is a database that provides cluster of binding sites. It
uses Fpocket [19] and LPC [20] to generate the following
binding site descriptors: pocket volume, number of alpha
spheres,mean alpha sphere radius, proportion of apolar alpha
spheres, mean local hydrophobic density, hydrophobicity
scores, volume score, charge score, proportion of polar atoms,
alpha sphere density, maximum distance between COM and
alpha sphere,MaximumTheoretical ShapeComplementarity,
observed shape complementarity, and normalized shape
complementarity.

2.5. Statistical Analysis. To assess the performance of each
scoring function and the consensus scoring two parameters
were used: area under the curve (AUC) of the ROC (receiver
operating characteristic) curve and enrichment factor (EF) at
different levels. To evaluate the performance of the scoring
functions in discriminating active groups among decoys the
scoring functions performance was tested on docked active
and decoy compounds. The ROC curve and EF were applied
to determine the performance of each scoring function. The
increase inAUCof the ROC curve can be used as an indicator
of improvement in discrimination between true ligands from
decoys. AUC can have a value between 0 and 1, in which
AUC = 0.5 means that the method of interest performed like
a random selection in average, while AUC = 1 means the
complete discrimination between true and false cases (active



International Journal of Medicinal Chemistry 3

Table 1: Data set characteristics.

Abbreviation
used in DUD-E Target name PDB code Number of ligands Number of decoys

ADA Adenosine deaminase 2E1W 93 5444
AKT2 Serine/threonine-protein kinase AKT2 3D0E 116 6891
COMT Catechol O-methyltransferase 3BWM 41 3846
CP2C9 Cytochrome P450 2C9 1R9O 120 7435
CXCR4 C-X-C chemokine receptor type 4 3ODU 40 3406

DEF E. coli peptide deformylase complexed with
antibiotic actinonin 1LRU 102 5686

FA7 Coagulation factor VII 1W7X 114 6239
FKB1A FK506-binding protein 1A 1J4H 111 5797
GLCM Beta-glucocerebrosidase 2V3F 54 3799
GRIK1 Glutamate receptor ionotropic kainate 1 1VSO 101 6540
HS90A Heat shock protein HSP 90-alpha 1UYG 88 4848

HXK4
Hexokinase type IV (human pancreatic
glucokinase in complex with glucose and
activator)

3F9M 91 4692

INHA Enoyl-[acyl-carrier-protein] reductase
(Mycobacterium tuberculosis enoyl reductase) 2H7L 43 2297

KIF11 Kinesin-like protein 1 3CJO 116 6844

KITH Stem cell growth factor receptor (KIT kinase
domain in complex with sunitinib) 2B8T 57 2850

MAPK2 MAP kinase-activated protein kinase 2 3M2W 101 6144
MCR Mineralocorticoid receptor 2AA2 90 4835
MK01 MAP kinase ERK2 2OJG 79 4548

MK10 c-Jun N-terminal kinase 3 (mitogen-activated
protein kinase 10) 2ZDT 104 6593

NOS1 Nitric-oxide synthase, brain 1QW6 100 8037

NRAM Neuraminidase (influenza virus
neuraminidase) 1B9V 98 6196

PA2GA Phospholipase A2 group IIA 1KVO 99 5143
PLK1 Serine/threonine-protein kinase PLK1 2OWB 107 6794
PUR2 GAR transformylase 1NJS 50 2694
PYGM Muscle glycogen phosphorylase 1C8K 77 3940
PYRD Dihydroorotate dehydrogenase 1D3G 111 6443
RENI Renin 3G6Z 104 6954
ROCK1 Rho-associated protein kinase 1 2ETR 100 6293
SAHH Adenosylhomocysteinase 1LI4 62 3438
THB Thyroid hormone receptor beta-1 1Q4X 103 7349
TYSY Thymidylate synthase 1SYN 109 6732
WEE1 Serine/threonine-protein kinase WEE1 3BIZ 102 6135
XIAP Inhibitor of apoptosis protein 3 3HL5 100 5143

anddecoys). EF is defined as the fraction of active compounds
found divided by the fraction of the screened library:

EF =
activessampled

activestotal
×
𝑁total
𝑁sampled

. (2)

EF1% and EF2% showed the ability of a particular scoring
method to retrieve true ligands with a high rank among
virtual screening results.

Significance of the difference between the AUC of the
two ROC curves was assessed using online tool at http://

vassarstats.net/roc comp.html. Other statistical tests and
plotting were done using R (R: a language and environment
for statistical computing; R Foundation for Statistical Com-
puting, Vienna, Austria; URL http://www.R-project.org/)
including the following packages: enrichvs and ROCR.

3. Results

The average and difference in AUC of the ROC curve for
each scoring method after rescoring are presented in Tables
2 and 3, respectively. They show the overall performance

http://vassarstats.net/roc_comp.html
http://vassarstats.net/roc_comp.html
http://www.R-project.org/
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Table 2: Average of AUC of the ROC curve and EF at different level obtained with each scoring approach (V: AutoDock Vina, 𝑐: ChemScore,
𝑑: DrugScore, and 𝑎: AutoDock 4.2).

Scoring AUC EF20% EF10% EF2% EF1% EF0.2% EF0.1%
V 0.671 2.137 2.93 6.394 8.576 11.17 12.74
𝑐 0.61 1.855 2.33 3.567 4.007 4.513 3.54
𝑑 0.65 1.942 2.72 5.253 6.275 8.766 9.242
𝑎 0.623 1.831 2.5 4.441 4.949 7.301 8.866
V𝑐𝑑𝑎 0.668 2.162 3.08 6.714 8.173 8.753 10.01
V𝑐𝑑 0.667 2.174 3.01 6.537 8.768 9.746 9.515
V𝑑𝑎 0.677 2.2 3.21 7.096 9.169 11.72 14
V𝑐𝑎 0.661 2.088 3.01 5.989 7.25 8.371 7.76
𝑐𝑑𝑎 0.652 2.068 2.84 5.158 6.086 7.41 7.47
V𝑐 0.656 2.087 2.93 6.233 7.28 7.564 7.415
V𝑑 0.679 2.14 3.08 7.026 9.292 13.21 14.76
V𝑎 0.671 2.192 3.05 6.074 8.562 11.72 15.66
𝑐𝑑 0.646 2.012 2.77 4.916 5.986 6.896 6.06
𝑐𝑎 0.631 1.895 2.53 4.322 5.057 7.324 6.865
𝑑𝑎 0.658 2.026 2.85 5.579 7.182 8.688 8.51

Table 3: Average of difference between each rescoring approach in terms of AUC of the ROC curve and EF and original AutoDock Vina
scoring (V: AutoDock Vina, 𝑐: ChemScore, 𝑑: DrugScore, and 𝑎: AutoDock 4.2).

Scoring AUC EF20% EF10% EF2% EF1% EF0.2% EF0.1%
V − V 0.000 0.000 0.000 0.000 0.000 0.000 0.000
𝑐 − V −0.061 −0.282 −0.600 −2.827 −4.569 −6.662 −9.201
𝑑 − V −0.021 −0.195 −0.211 −1.140 −2.301 −2.409 −3.499
𝑎 − V −0.048 −0.306 −0.432 −1.953 −3.627 −3.874 −3.875
V𝑐𝑑𝑎 − V −0.003 0.026 0.144 0.321 −0.403 −2.421 −2.736
V𝑐𝑑 − V −0.004 0.037 0.074 0.143 0.192 −1.429 −3.226
V𝑑𝑎 − V 0.006 0.063 0.281 0.702 0.593 0.541 1.263
V𝑐𝑎 − V −0.010 −0.049 0.072 −0.405 −1.325 −2.804 −4.982
𝑐𝑑𝑎 − V −0.019 −0.068 −0.091 −1.236 −2.490 −3.765 −5.271
V𝑐 − V −0.015 −0.050 −0.003 −0.161 −1.296 −3.611 −5.326
V𝑑 − V 0.008 0.004 0.147 0.632 0.716 2.033 2.014
V𝑎 − V 0.000 0.055 0.119 −0.320 −0.014 0.543 2.920
𝑐𝑑 − V −0.025 −0.124 −0.167 −1.478 −2.590 −4.279 −6.681
𝑐𝑎 − V −0.040 −0.242 −0.399 −2.072 −3.519 −3.850 −5.877
𝑑𝑎 − V −0.013 −0.111 −0.084 −0.814 −1.394 −2.487 −4.231

for each scoring method. The individual AUC of the ROC
curve were shown in Table 4 and the details for each receptor
and AutoDock Vina configuration files were presented in
Supplementary Materials. The correlation between different
scoring strategies and binding site descriptors was shown in
Table 5. Screening power of AutoDock Vina original scoring
and DrugScore demonstrated a good correlation with val-
ues of both Maximum Theoretical Shape Complementarity
(MTSC) and Maximum Distance from Center of Mass and
all Alpha spheres (MDCMA). Figure 1 demonstrated this
fair correlation between DrugScore performance and the
binding site descriptor, MTSC. In Table 6 the protein targets
whose AUC of the ROC curve were significantly increased
or decreased after rescoring by DrugScore were emphasized
(Figure 2). According to the various classifications plot (data
not shown) it was found out that these two groups can be

separated based on two descriptors, volume score andMTSC
(Figure 3).

4. Discussion

The calculated performance of AutoDock Vina on individual
target can be used for selection of this docking engine
for virtual screenings on specific targets. Furthermore, the
results showed slight general improvement in discrimination
between decoys and ligands by using consensus rescoring
method which consisted of Vina and DrugScore scoring
functions. By active site analysis it was shown that DrugScore
improved the discrimination power of AutoDockVina signif-
icantly in case of receptors that had both high volume score
and MTSC. In addition, it was shown that AutoDock and
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Table 4: AUC of the ROC curve obtained with each scoring method for individual targets (V: AutoDock Vina, 𝑐: ChemScore, 𝑑: DrugScore,
and 𝑎: AutoDock 4.2; sorted based on AutoDock Vina performance).

V 𝑐 𝑑 𝑎 V𝑐𝑑𝑎 V𝑐𝑑 V𝑑𝑎 V𝑐𝑎 𝑐𝑑𝑎 V𝑐 V𝑑 V𝑎 𝑐𝑑 𝑐𝑎 𝑑𝑎

WEE1 0.949 0.828 0.841 0.555 0.917 0.909 0.927 0.915 0.853 0.916 0.930 0.910 0.852 0.776 0.800
FA7 0.917 0.890 0.876 0.878 0.929 0.936 0.926 0.927 0.909 0.935 0.929 0.920 0.908 0.897 0.898
MAPK2 0.886 0.775 0.776 0.717 0.877 0.850 0.877 0.888 0.848 0.861 0.849 0.891 0.809 0.826 0.823
KIF11 0.858 0.845 0.806 0.840 0.860 0.860 0.856 0.865 0.846 0.867 0.852 0.864 0.842 0.849 0.835
TYSY 0.847 0.607 0.698 0.770 0.781 0.768 0.820 0.778 0.726 0.760 0.822 0.829 0.675 0.710 0.762
PYRD 0.826 0.749 0.768 0.730 0.791 0.807 0.795 0.784 0.767 0.803 0.817 0.789 0.778 0.747 0.763
PUR2 0.819 0.393 0.856 0.691 0.749 0.762 0.827 0.667 0.702 0.641 0.869 0.777 0.696 0.557 0.801
MK01 0.806 0.767 0.632 0.629 0.748 0.777 0.719 0.774 0.702 0.816 0.747 0.748 0.726 0.721 0.639
AKT2 0.778 0.744 0.699 0.803 0.801 0.788 0.810 0.794 0.795 0.776 0.786 0.806 0.765 0.785 0.799
THB 0.777 0.484 0.490 0.578 0.632 0.630 0.665 0.700 0.504 0.693 0.670 0.777 0.480 0.523 0.510
MK10 0.746 0.701 0.653 0.598 0.694 0.721 0.682 0.697 0.666 0.737 0.716 0.684 0.692 0.659 0.633
FKB1A 0.693 0.755 0.657 0.668 0.730 0.745 0.697 0.734 0.724 0.755 0.702 0.690 0.738 0.736 0.676
INHA 0.688 0.680 0.715 0.693 0.719 0.722 0.719 0.708 0.712 0.705 0.723 0.702 0.712 0.696 0.714
KITH 0.688 0.532 0.699 0.621 0.646 0.655 0.667 0.628 0.632 0.631 0.692 0.654 0.636 0.592 0.658
SAHH 0.677 0.290 0.708 0.615 0.590 0.575 0.719 0.516 0.539 0.478 0.726 0.685 0.512 0.391 0.694
ROCK1 0.666 0.660 0.594 0.654 0.668 0.662 0.659 0.678 0.657 0.680 0.642 0.674 0.645 0.666 0.641
CXCR4 0.661 0.726 0.604 0.723 0.706 0.687 0.685 0.729 0.706 0.718 0.640 0.712 0.682 0.735 0.681
XIAP 0.632 0.676 0.789 0.678 0.724 0.739 0.722 0.681 0.741 0.669 0.741 0.668 0.772 0.694 0.742
RENI 0.620 0.686 0.781 0.588 0.694 0.733 0.688 0.638 0.707 0.664 0.742 0.605 0.759 0.642 0.703
PLK1 0.619 0.628 0.668 0.548 0.628 0.653 0.625 0.605 0.625 0.629 0.659 0.588 0.659 0.592 0.620
CP2C9 0.613 0.604 0.552 0.563 0.597 0.607 0.588 0.605 0.582 0.622 0.593 0.597 0.588 0.587 0.564
PA2GA 0.607 0.795 0.692 0.814 0.791 0.760 0.768 0.783 0.812 0.746 0.696 0.744 0.771 0.821 0.801
PYGM 0.594 0.597 0.561 0.446 0.561 0.597 0.543 0.555 0.540 0.608 0.583 0.530 0.588 0.522 0.502
NOS1 0.570 0.551 0.506 0.492 0.545 0.545 0.533 0.570 0.533 0.570 0.533 0.569 0.533 0.551 0.506
DEF 0.541 0.262 0.632 0.578 0.502 0.465 0.602 0.456 0.485 0.384 0.602 0.569 0.427 0.415 0.621
GRIK1 0.538 0.464 0.492 0.442 0.483 0.500 0.493 0.480 0.460 0.503 0.518 0.495 0.480 0.439 0.467
NRAM 0.526 0.522 0.608 0.443 0.537 0.574 0.537 0.496 0.537 0.530 0.581 0.478 0.589 0.481 0.536
COMT 0.525 0.371 0.363 0.736 0.575 0.398 0.645 0.646 0.593 0.431 0.439 0.750 0.340 0.688 0.690
ADA 0.520 0.377 0.500 0.435 0.438 0.444 0.479 0.428 0.417 0.430 0.509 0.474 0.416 0.395 0.459
HX4 0.515 0.552 0.590 0.534 0.550 0.554 0.549 0.533 0.563 0.532 0.555 0.524 0.573 0.545 0.566
MCR 0.498 0.656 0.639 0.563 0.628 0.634 0.571 0.589 0.691 0.584 0.571 0.495 0.699 0.665 0.634
GLCM 0.486 0.471 0.548 0.541 0.520 0.506 0.536 0.506 0.528 0.484 0.517 0.520 0.515 0.507 0.559
HS90A 0.250 0.321 0.393 0.369 0.308 0.290 0.295 0.316 0.346 0.270 0.296 0.294 0.338 0.310 0.378
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Figure 1: Significant correlation between performance of Drug-
Score and MTSC descriptor (correlation coefficient = 0.719, 𝑝 value
< 0.001).

DrugScore Screening powers had significant correlation with
MTSC and MDCMA.

AutoDock Vina is free for academics and has showed a
good scoring power in a recent study on large and diverse
data set [4]. Thus, it was selected as a docking engine for
pose prediction in the present study. The screening power
of AutoDock Vina was correlated with MTSC andMDCMA.
The reported AUC of the ROC curve and enrichment factor
could be used for prediction of AutoDock Vina performance
on each target. Furthermore, MTSC and MDCMA values
could be used as a possible indicator of successfulness of
AutoDock Vina in a virtual screening on a specific target
protein. It was suggested [21] that AutoDockVina had a better
average performance for 31 protein targets’ virtual screening
than DOCK [22]. As AutoDock Vina is an open source
and shows good performance compared with other docking
engines, improvements of AutoDock Vina code in different
aspects such as parallel run [23] have been conducted during
recent years.

It was suggested that the performances of docking pro-
gram and scoring functions were target dependent [1, 4]. The
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Figure 2: The cases with significant improvement in AUC of the ROC curves after rescoring with DrugScore (before: blue line; after: red
dots).
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Table 6: Difference between calculated AUC of the ROC curve after
rescoring with DrugScore and original AUC of the ROC curve for
each target (∗statistically significant changes).

Receptor 𝑑 − V
THB∗ −0.2876
MK01∗ −0.1738
COMT∗ −0.1625
TYSY∗ −0.1491
WEE1∗ −0.1083
MK10∗ −0.0929
AKT2∗ −0.0787
ROCK1 −0.0715
NOS1 −0.0641
CP2C9 −0.0605
PYRD −0.0582
CXCR4 −0.0569
KIF11 −0.0518
GRIK1 −0.0467
FA7 −0.0403
FKB1A −0.036
PYGM −0.0327
ADA −0.02
KITH 0.0107
INHA 0.0262
SAHH 0.0303
PUR2 0.0364
PLK1 0.0492
GLCM 0.062
HX4 0.0753
NRAM 0.0812
PA2GA∗ 0.0854
DEF∗ 0.0906
MCR∗ 0.1411
HS90A∗ 0.1439
XIAP∗ 0.1577
RENI∗ 0.1605

nature of the active site of the proteins, the choice of scoring
functions, and the set of ligands used for comparisons all
affected the performance in scoring and ranking compounds
[11]. Some studies concluded that consensus scoring (rank-
by-number, consisting of three or four scoring functions)
outperformed individual scoring performance [9]. Inmost of
the studies that were conducted on more diverse and larger
data sets, there is no strong correlation between affinity and
scoring function predictions [4, 10]. In this study, only the
ranking power of the scoring functionwas estimated. In over-
all consensus scoring with both DrugScore and Vina scoring
functions, rescoring with DrugScore slightly improved the
ranking metrics (AUC of the ROC curve and EF), but it was
not statistically significant.

Rescoring by DrugScore produces most cases with sig-
nificant increased or decreased screening power (assessed
by changes in the AUC of the ROC curve) with respect to

400 500 600 700 800

3.8

4.0

4.2

4.4

4.6

Maximum �eoretical Shape Complementarity

Vo
lu

m
e s

co
re

MK01 AKT2

COMT

MK10

THB

TYSY

WEE1

HS90A

DEF

MCR

PA2GA

RENI

XIAP

Figure 3: Separation of good and bad responders to DrugScore
rescoring based on volume score and MTSC descriptors.

the original Vina scoring. Therefore, these data were used
to find possible binding site descriptors that could predict
the performance of DrugScore rescoring in improvement
of original virtual screening results. Finally, after exploring
different descriptors it was found that a simple model based
on two descriptors (volume score and MTSC) could fairly
predict the improvement of virtual screening results after
rescoring by DrugScore for a target protein. DrugScore has
been also successful in some other rescoring campaigns [8,
24] and was one of the best performers in a ranking power
assessment among 16 scoring functions [7].

MTSC indicates the shape complementarity of a binding
site with the specific cocrystalized ligand. Here, it was shown
that the performance of DrugScore as well as AutoDock
Vina docking and subsequent scoring are correlated with the
value of MTSC. It could be due to the better performance
of AutoDock Vina docking algorithm in finding near native
pose of active groups in the case of a binding site with
high MTSC. The values of the volume score descriptor were
correlated with the improvement of virtual screening results
by DrugScore rescoring. This could be explained as better
performance of DrugScore in the case of the higher number
of ligand-protein interactions in the bigger binding sites.

5. Conclusion

The results consistent with those previous studies suggested
that performance of docking and scoring functionswas target
specific. Working on new scoring functions that include
terms for aromatic-aromatic or 𝜋-cation or halogen pro-
tein interactions has been suggested. A correlation between
screening power of AutoDock Vina and DrugScore and
two binding site descriptors, MTSC and MDCMA, was
found.The improvement after rescoring with DrugScore was
predicted by two descriptors: volume score and MTSC. The
ultimate goal of this study was to determine which of the
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scoring functions or combinations of them would yield the
best results in terms of enrichment when used in a virtual
screening study.The results could provide useful information
for people to select the most appropriate target for using
AutoDock Vina and/or DrugScore in their studies.
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