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Abstract

Control strategies to reduce human schistosomiasis have evolved from ‘snail picking’ campaigns, 

a century ago, to modern wide-scale human treatment campaigns, or preventive chemotherapy. 

Unfortunately, despite the rise in preventive chemotherapy campaigns, just as many people suffer 

from schistosomiasis today as did fifty years ago. Snail control can complement preventive 

chemotherapy by reducing the risk of transmission from snails to humans. Here, we present ideas 

for modernizing and scaling up snail control, including spatiotemporal targeting, environmental 

diagnostics, better molluscicides, new technologies (e.g. gene drive), and ‘outside the box’ 

strategies such as natural enemies, traps, and repellants. We conclude that, to achieve the World 

Health Assembly’s stated goal to eliminate schistosomiasis, it is time to give snail control another 

look.

Targeting snails is a key to success for schistosomiasis control

Soon after Japanese researchers resolved the schistosome life cycle and identified its snail 

hosts in 1913, Japan launched a ‘snail picking’ effort that offered children a 0.5-yen bounty 

per container of snails they collected and destroyed [1]. After seven years, Japan shifted 

from this labor-intensive (and ineffective) effort [1], to controlling snails by cementing 

irrigation canals, draining wetlands, and applying molluscicides. By 1994, this sustained 
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snail control effort plus drug treatment of infected people, led to the eradication of 

schistosomiasis in Japan [2]. Other countries, such as Guadeloupe, Iran, Iraq, Lebanon, 

Martinique, Morocco, Oman, Puerto Rico, Saint Lucia, Saudi Arabia, Tunisia, and 

Venezuela, have also controlled or eliminated schistosomiasis using snail control [3] (Table 

1). Brazil, China, Egypt, Indonesia, the Philippines, and Zanzibar have long used snail 

control alongside preventive chemotherapy and other strategies to suppress schistosomiasis 

prevalence, whereas countries that have not pursued snail control have been less successful 

[3]. Snail control appears to be a key intervention needed to achieve the World Health 

Assembly’s stated goal to eliminate schistosomiasis [3, 4] (Table 1).

Despite these many successes, the modern orthodoxy paints snail control as old fashioned, 

preferring to focus instead on preventive chemotherapy via mass drug administration (MDA) 

of praziquantel [5–7]. Praziquantel’s introduction in the late 1970s and early 1980s, and the 

release of its generic form in the 1990s, led the World Health Assembly to adopt, in 2001, 

preventive chemotherapy as the recommended global strategy for schistosomiasis reduction 

[7, 8] (http://apps.who.int/gb/archive/pdf_files/WHA54/ea54r19.pdf). This is in line with 

recent emphasis on integrated preventive chemotherapy (distributing drugs against various 

preventable diseases). But despite distributing millions of pills in recent decades, sub-

Saharan Africa’s schistosomiasis problem is as serious now as it was before praziquantel’s 

discovery, in part because reinfection after treatment can thwart long-term control [3]. Given 

this disappointing outcome, the World Health Assembly’s 2012 resolution 65.21 advocates 

adding modernized snail control and other control methods to preventive chemotherapy in 

order to achieve schistosomiasis elimination (http://www.who.int/neglected_diseases/

mediacentre/WHA_65.21_Eng.pdf).

Together, preventive chemotherapy and snail control techniques offer our best opportunity 

for schistosomiasis elimination – and current technology for snail control has come a long 

way from snail picking. Here we argue it is time to refocus on snail control in the fight 

against schistosomiasis. We discuss which strategies remain relevant, and propose what 

future snail control might look like.

Snails and the schistosome life cycle

The schistosome life cycle encompasses two transmission processes: human-to-snail 

transmission and snail-to-human transmission (Fig 1). Schistosome eggs from human urine 

or feces reach fresh water, where eggs hatch and release the miracidia larvae that infect 

freshwater snails. After completing asexual reproduction in the snails, the schistosomes then 

release free-swimming cercariae that penetrate human skin, eventually migrating to the 

portal or pelvic veins, depending on the schistosome species.

It is not easy to eradicate snails, but snail eradication is not necessary for the elimination of 

schistosomes. To break the schistosome life cycle, snail densities must be driven below a 

threshold where snail infection rates are lower than snail death rates [9]. Schistosome and 

snail compatibility is complex and there are many strain differences across the world [10, 

11], but despite this complexity, the simple fact remains that where schistosome-susceptible 

snails have been reduced schistosomiasis has often been eliminated from large areas (even 
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whole countries). In Japan, where schistosomiasis has been eliminated since the 1990s, the 

snail intermediate host, Oncomelania nosophora, persists to this day – although its 

abundance is low enough to merit a vulnerable ranking on the International Union for 

Conservation of Nature (IUCN) red list (http://www.iucnredlist.org) [12]. In Guadeloupe, 

where snail reductions interrupted schistosomiasis transmission (with few to no documented 

cases during the past several decades [13, 14]), Biomphalaria glabrata intermediate host 

snails are still present and still susceptible to infection, at least up to 2005 [15]. The 

recalcitrance of snails to eradication means that snail control must be deployed with other 

approaches to reduce the chance that infected humans will re-introduce the parasite.

‘Old-fashioned’ snail control has included chemical molluscicides, habitat modification, and 

biological control, but modern methods could add ‘outside the box’ strategies – including 

some under development or yet to be devised. Given that snail populations persist, these 

snail control interventions are best complemented with traditional, human-centric 

schistosomiasis control strategies, like human drug treatment (such as mass drug 

administration or targeted testing and treatment), water, sanitation, and hygiene 

infrastructure (WASH), or behavior modification through education. Snail control – or any 

environmental intervention that reduces schistosomiasis transmission and slows reinfection 

after treatment – should decrease the frequency at which preventive chemotherapy is 

required and thus would spare drugs, increase MDA efficacy, reduce costs, and improve 

scalability. Simply put, elimination is possible if human infections can be interrupted via 

preventive chemotherapy, and snail densities can be reduced (Fig 1).

Looking back

Effective ‘old-fashioned’ snail control strategies have included chemical molluscicides, 

reducing snail habitat, and biological control (i.e., intentional or unintentional introductions 

of competitor snails or snail predators) and snail control has sometimes been combined with 

a number of other strategies including human mass drug administration (MDA), human 

testing and treatment campaigns, and engineering interventions (Table 1).

Success with chemical molluscicides

During the 20th century, molluscicides were among the most commonly used snail control 

strategies by governments and public health agencies, but molluscicides fell out of favor as 

costs of the chemicals increased, and concurrently, the cost of praziquantel fell, beginning in 

the 1990s [3]. Although the environmental impacts associated with chemical applications 

limit their acceptability in some circumstances, molluscicides have been effective in 

controlling schistosomiasis [3, 4, 16]. Since the 1960’s, the most-used chemical has been 

niclosamide, a formulation with lethal effects for snails up to 24 hours after application and 

low lethal concentration (LC90) for snails, at <1ppm [4]. In theory, these low concentrations 

are non-toxic to vertebrates including fish and humans, but uneven dispersal can lead to fish 

kills and health concerns [17]. Some countries have imposed restrictions on the use of 

niclosamide in the environment due to health concerns and to concerns regarding its non-

target effects [18]. However, it is interesting to note that niclosamide has been approved for 
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many decades as an anthelminthic treatment in people and has recently been explored as an 

anti-cancer therapy and a treatment for Zika virus [19, 20].

Success with snail habitat modification

Snail habitat modification for schistosomiasis control has taken several forms – including 

vegetation removal, land reclamation (e.g. wetland drainage), cementing canals, and 

occasionally, hydrological interventions to increase or alter stream flow (Table 1). For 

example, these strategies have controlled snails in Japan, Morocco, Saudi Arabia and 

Venezuela [2, 21–23]. In contrast, habitat changes linked to dam construction, irrigation 

expansion, and other water-related changes have resulted in unintentional and sometimes 

dramatic schistosomiasis outbreaks [24, 25].

Success with biological control

Schistosome-transmitting snails have various natural enemies. Some crustaceans, birds and 

fishes eat them. Other snail species compete with them. Non-schistosome trematodes 

castrate them. Such natural enemies can regulate snail populations, but most enemies have 

limited natural ranges, and could have non-target effects where they are non-native. 

Biological control has a bad reputation for non-target effects – but this stems from a few 

examples where spectacular collateral impacts have accompanied ill-conceived strategies 

[26]. Biological control can be both safe and effective in a modern context, especially when 

native species that are natural enemies of pests are used [9, 27].

Many biological control strategies have been researched for schistosomiasis control (for 

example, introduction of predators, competitors, and parasites of snails), but few strategies 

have been used widely in practice. One exception is the widespread use of competitor snail 

species that are not competent hosts for schistosome infection in Caribbean countries such as 

Antigua, Guadeloupe, Martinique, Montserrat, Puerto Rico, and St. Lucia; non-competent 

snails were introduced and successfully displaced schistosome-competent intermediate host 

snails. Schistosomiasis control has been pursued through snail introductions with species 

such as: Pomacea glauca, Marisa cornuarietis, Melanoides tuberculata, or Tarebia granifera 
[3, 13]. Displacement can be long-lasting if competitor snail populations are self-sustaining 

[13, 28].

No one-size-fits-all solution

No single strategy will reduce schistosomiasis transmission everywhere. For example, past 

attempts at widespread biological control using snail competitors worked to eliminate 

schistosomiasis on some Caribbean islands but not others [28]; and mass drug 

administration using praziquantel has durably reduced schistosomiasis in some parts of 

Burkina Faso but not others [29]. What worked well in one place or time can be ineffective 

or inappropriate in another. Deploying multiple strategies may help to balance the control 

portfolio. In particular, snail control is likely to be synergistic with traditional drug 

distribution campaigns employed in preventive chemotherapy and other well-established 

interventions like WASH infrastructure improvements, education, and sustainable 

development.
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Looking forward

Future snail control strategies should build on past successes while responding to changing 

conditions and incorporating modern technologies. History has shown that controlling 

complex life-cycle parasites, like Schistosoma spp., requires interrupting transmission from 

humans to intermediate hosts and vice versa. Embracing a synergistic approach might 

deliver lasting disease reductions beyond those achievable by focusing on any single aspect 

of transmission [9]. Public health, conservation and sustainable development goals could be 

aligned if health interventions capitalize on co-benefits – as has been suggested, for 

example, in recent studies that focus on complementing human drug treatment with species 

restoration (of snail predators) to reduce snails, control schistosomiasis transmission, 

alleviate poverty, and restore ecosystems [9, 30–32].

Schistosomiasis, today, is linked to poverty [33, 34] and the long time course required to 

reduce or eliminate schistosomiasis can erode interest by philanthropic organizations and 

individual donors [3]. Economic sustainability therefore remains a pressing concern for the 

future of schistosomiasis control.

For snail control, cost-effectiveness could benefit from strategic improvements such as: i) 

targeting control to where and when most transmission occurs to increase effectiveness 

while reducing coverage needs (e.g. considering hubs and hotspots of transmission in space 

and time), ii) using complementary natural enemies (e.g., predator ducks and their 

echinostome trematodes) that offer affordable win-win solutions that simultaneously reduce 

schistosomiasis and generate revenue or other co-benefits, iii), applying novel technologies 

to improve snail management and control (such as gene drive), iv) discovering molluscicide 

formulations that are less harmful and more sustainable, and finally, v) integrating snail 

control with other available tools, including preventive chemotherapy, education, and 

sanitation.

Understanding the landscape of schistosomiasis infection risk: ecological surveillance, 
network theory, and optimal control

Snail populations and their schistosome parasites can be dynamic and difficult to predict at 

the spatial and temporal scales relevant to control campaigns. Theory and empirical data 

from other disease systems indicate that strategic timing and spatial distribution of control 

effort improves the efficiency of control, but little schistosomiasis-specific research on this 

topic exists [35–39].

Although there are few empirical data on snails and their schistosome parasites, especially 

for Sub-Saharan Africa where most human schistosome infections occur today, the existing 

data suggest that schistosome-infected snails have aggregated distributions, so that infection 

risk is distributed in hotspots [40, 41]. A hotspot might be a particular water access site or 

village, with infection risk varying from village to village (across tens to hundreds of meters; 

e.g., [42–44]). Furthermore, water flow can move cercariae away from high densities of 

infected snails [45], making it harder to pinpoint the source of infection risk to humans.

Sokolow et al. Page 5

Trends Parasitol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Planning and assessing the success of snail control requires mapping and tracking snail 

abundance and infection prevalence, but the most common traditional snail sampling 

technique is timed snail counts (Box 1). Although useful for evaluating relative risk among 

sites or across time within a single study, the relative abundance method does not measure 

absolute risk, which is best expressed as infected snail density (combined with information 

on the density of cercariae emitted from snails through time, Box 1). The use of relative 

abundance snail sampling methods has been rationalized by invoking investigator safety, 

time constraints, and the need for simple, straightforward sampling designs when working in 

challenging field conditions. Absolute sampling using quadrats – that is, the kind of 

quantitative invertebrate sampling used in other aquatic habitats [46]–is time-consuming and 

logistically challenging, but yields a more useful, quantitative measure of snail abundance.

In addition to improved methodologies to assess snail abundance and to sample transmission 

stages, species distribution models (habitat suitability models), environmental DNA, 

network models, and optimal control theory might improve current snail sampling efforts. 

Some indirect sampling methods might become cost-effective with additional refinement. 

For example, species distribution modeling [47, 48] encompasses various methods to 

correlate species occurrences to underlying habitat variables, such as temperature, rainfall, 

vegetation cover, etc. This technique could help generate maps that predict schistosomiasis 

transmission hotspots using readily available data, like land features and environmental 

variables [49]. For example, recent reviews [50, 51] concluded that spatial risk profiling for 

schistosomiasis using remotely sensed data is an under-used strategy in schistosomiasis 

research and control. Species distribution modeling might be particularly effective where 

strong seasons lead to dramatic snail-habitat ephemerality that is easily mapped, as in 

Burkina Faso and Cote D’Ivoire [52, 53]. These models still require ground truthing using 

environmental data for training and validation. An alternative indirect approach is to use 

environmental DNA (eDNA) to track snail density or parasite presence by detecting genetic 

material directly from water, soil, or other environmental samples without evidence of their 

biological source [54, 55]. The eDNA technique also requires more refinement and 

validation [54], especially before it can be calibrated for quantitative assessments. 

Furthermore, because schistosome eDNA might arise from DNA in living or dead miracidia 

or living or dead infectious cercariae, it might be hard to translate an eDNA signal to 

infection risk.

Schistosomiasis transmission maps onto where people work, live, and travel. Understanding 

the spatial and seasonal connectivity among snail and human populations (e.g. through 

network modeling, which tracks populations and their interconnections) could indicate 

critical links where control would be most effective. For example, targeting snail control 

based on identification of villages that are important hubs of transmission could reduce costs 

and improve scalability [37].

In Senegal, network models including human mobility – tracked through mobile phone 

records – predicted schistosomiasis prevalence better than models assuming homogenous 

mixing of people across cities and villages [37]. Ciddio et al. showed how a network model 

tracking human mobility and water-mediated snail and cercarial dispersal could be used to 

target environmental interventions to reduce human exposure and contamination risks [56].
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In addition to network modeling, there is little published work on how to apply optimal 

control theory to neglected tropical diseases, including schistosomiasis. Yet, this approach, 

which is often used in optimization problems from engineering and economics [57] and 

more recently from biology and epidemiology [58], could provide a platform to tackle 

schistosomiasis transmission control, considering a complex landscape of competing costs 

and benefits [52, 59]. By incorporating economic considerations in the form of a cost 

function and considering control strategies that can vary continuously through time along an 

optimal path (rather than an “either or” or a “one size fits all” approach), these models could 

offer insight needed for ecosystem-specific decision-making on complex trade-offs in health, 

economic, and environmental factors influencing the management and control of 

schistosomiasis.

Future molluscicide formulations

New molluscicides (or new niclosamide formulations) that are safer, more effective, more 

specific, or that disperse more evenly would be beneficial in the fight against 

schistosomiasis. For example, some promising research areas include: slow-release 

niclosamide formulations [16], extracts from molluscicidal plants such as endod and others 

[4, 16, 60], and surfactant formulations that help disperse niclosamide or other molluscicides 

more evenly, delivering snail-killing efficacy with less opportunity for accumulating unsafe 

concentrations. Although some of these strategies have been investigated at small scales for 

many decades (e.g. molluscicidal plants), the investment of time, energy, and funding has 

not yet been sufficient to allow scale-up [61]. Understanding the spatiotemporal 

heterogeneity in snail and trematode abundance, as discussed above, could contribute to 

better targeting of molluscicide applications in space and time, and improve safety, efficacy, 

and cost-effectiveness for this historically successful, chemical-based snail control strategy.

Gene drive technologies for snail control

We might soon engineer snail hosts with new genetic properties similar to gene drive 

engineered malaria-resistant Anopheles gambiae mosquitos [62]. In 2016, a CRISPR-Cas9-

based gene drive was used to insert genes conferring sterility to female A. gambiae 
mosquitos, revealing the potential for gene drive technologies to reduce malaria transmission 

[63]. Despite the fitness costs to the mosquitos that result from sterility-inducing genes, the 

gene drive system successfully increased the allele frequency of these genes in lab-reared 

populations over six generations.

The CRISPR-cas9 gene drive system deserves to be explored as an avenue to 

schistosomiasis control. Some barriers to employing this technology have already been 

surmounted: genes that confer schistosome resistance have been identified in wild snail 

populations [15]; the Biomphalaria glabrata genome has been sequenced [64] and CRISPR-

cas9 gene editing has been carried out in a marine gastropod [65]. However, a caveat is that 

Biomphalaria and Bulinus spp. snails (but not Onchomelania spp.), are hermaphroditic and 

can self-fertilize, making gene drive systems for population suppression more challenging, 

because drives intended to suppress population growth might lead to compensation by the 

wild-type snails in the form of more asexual reproduction (selfing) [66]. Gene drives that 

confer schistosome resistance are an alternative strategy, but seem limited in application 
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given that existing resistance genes do not spread to fixation in host snails [67] (presumably 

due to associated fitness costs of resistance in uninfected snails). Though it is often implied 

to be highly precise, CRISPR-cas9 gene editing can produce off-target mutations with 

unpredictable effects so more work is required to ensure safety of releasing gene-edited 

snails into the wild [68]. Ethical limitations and methodological hurdles notwithstanding 

[69], the potential for this new gene drive technology to revolutionize control for human 

disease, including schistosomiasis and other vector-borne and environmentally transmitted 

diseases, is tantalizing, so long as safety, efficacy, and implementation constraints can be 

surmounted.

Thinking outside the box: traps, repellants, and natural enemies

Attempts to trap and kill snails or schistosomes emitted from snails, or repel them from 

humans, have not yet been applied widely in practice, but such ‘outside the box’ strategies 

could prove useful if new technologies make them more effective, feasible, or scalable. For 

instance, snails are attracted to lettuce homogenates (specifically, the amino acids glutamate 

and proline [70]) and wheat germ cereal [71] which could be used to bait traps. Snails can be 

repelled by molluscicides [71], artificial shade [72], and topical lipid formulations of N,N-

Diethyl-meta-toluamide (DEET) applied to exposed skin [73].

Snail predators – particularly crustaceans, fish and birds – have been effective at reducing 

snail populations in the past, warranting more research to develop and scale-up the use of 

snail predators for disease control. For example, Louisiana crayfish (Procambarus clarkii) 
introduced to Kenya and Egypt can reduce snail abundance and therefore human 

schistosomiasis transmission [3, 74, 75]. More recently, native river prawns have been 

proposed as snail control agents in their native coastal ranges, where human-driven 

environmental change (e.g. dam building) has reduced prawn numbers [24, 32]. Dams are 

associated with greater increases in human schistosomiasis risk within river prawn native 

ranges than outside them, suggesting that prawns might have once controlled snail 

populations [24]. Indeed, reintroducing native river prawns (Macrobrachium volenhovenii) 
into Senegalese water access points – where they had been present before the nearby Diama 

Dam was built [32] – resulted in a reduction in snail density and human schistosomiasis re-

infection rates [9]. In theory, prawn ladders designed to help juvenile prawns surmount dams 

could help restore river prawn migration pathways [76]. Other crustaceans might suppress 

snails and thus schistosomiasis transmission. For example, the Malaysian river prawn, 

Macrobrachium rosenbergii – in the same genus as the African river prawn – also eats 

schistosome-hosting snails [77]; unlike the African-native, M. rosenbergii is domesticated, 

and could therefore be deployed as a biological control agent in managed landscapes [9, 31, 

77].

Some fish eat snails [78, 79]. The observation that fish might control snails has inspired 

efforts to use fish as a biological control tool, with mixed results [80]. However, one snail-

eating cichlid, Trematocranus placodon, has shown promise [78], as has the African catfish, 

Clarias gariepinus [81].

With respect to birds, non-native, domestic ducks reduce snail density in Zimbabwean 

ponds, but present many logistical challenges – including high costs for duck breeding, 
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maintenance, and protection against poaching [82]. Another role for birds might be in the 

trematodes they carry. Non-schistosome trematodes that use birds as final hosts, such as 

Ribeiroia guadeloupensis, castrate host snails and outcompete schistosomes inside infected 

snails [83], and other similar trematode species have been investigated for similar 

applications [84].

Competition with other species can suppress snails or schistosomes. Past schistosomiasis 

control strategies have been successful in using competitor snails and this strategy could be 

revisited for deployment in modern schistosomiasis hotspots (see Looking Back section). In 

addition, schistosome species are outcompeted in their snail hosts by other trematode species 

that produce rediae – jawed reproductive structures that can kill sporocysts [85]. Indeed, 

many echinostome species including Echinostoma spp.[86, 87] as well as Exorchis sp. [88], 

Cotylurus lutzi [89], paramphistomoids [90] and others have been investigated for this 

purpose. However, other trematode species might facilitate schistosome infection, possibly 

by reducing the host’s immune defenses; evidence for this comes from Calicophoron 
microbothrium [91] and Zygocotyle lunata [92]. Such differences must be well understood 

before deploying trematodes as natural enemies. ‘Decoy hosts’ – non-competent snails and 

other aquatic organisms, such as fish and amphibians – absorb schistosome miracidia 

without becoming infected, potentially diverting miracidia from competent snail hosts and 

reducing infected snail prevalence. Though this effect has been observed in laboratory [93] 

and meso-cosm experiments [94] its success in scaled up control programs has not yet been 

demonstrated. The parasites’ free living stages also have predators that consume them 

directly (such as Chaetogaster spp., filter feeders, and small fish [95]); the use of trematode 

predators in schistosomiasis biological control is beyond the scope of this paper but remains 

an interesting and relatively unexplored alternative strategy that may – in some instances – 

complement snail control for schistosomiasis reduction.

Concluding Remarks

“Without snails, there can be no schistosomiasis.” This quote, from the World Health 

Organization Working Group on Schistosomiasis in 2005 (http://apps.who.int/iris/bitstream/

10665/69482/1/TDR_SWG_07_eng.pdf) represents a necessary but insufficient assessment. 

Indeed, where the snail intermediate hosts for schistosome parasites cannot persist, there is 

no opportunity for schistosomiasis transmission, but even where snails and schistosomes co-

exist, schistosome transmission might not be successful. Therefore more ecological research 

on schistosome-hosting snails and the conditions permissive to schistosome transmission 

seems warranted.

For the past century, snail control has been successful in reducing schistosomiasis 

transmission in many countries, but has fallen out of favor in the last few decades. Here, we 

have discussed how both new and old fashioned snail control technologies can be used to 

reduce the risk of schistosome transmission from snails to humans, but many questions 

remain unanswered (see Outstanding Questions box). We presented some ideas for 

modernizing, improving, and scaling up snail control, such as spatial targeting, temporal 

targeting, gene drive technologies, affordable environmental diagnostics, and outside the box 

strategies such as traps, repellants, natural enemies, and decoys. The goal of snail control is 
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to reduce transmission. This can be maximized by better synergy between mass drug 

administration and environmental interventions that affordably slow human reinfection after 

treatment. A synergistic approach spares drugs and likely improves efficacy, cost 

effectiveness, and scalability.

Most of the two and a half billion dollars disbursed each year to treat and control neglected 

tropical diseases [96, 97] is directed toward mass drug administration. Although treatment 

has been effective, control has not, because there is not enough praziquantel to reach all 800 

million people at risk today and drugs, alone, cannot address the environmental components 

of transmission [98, 99]. Coupling drug delivery with snail control has proven effective in 

the past, and seems the most cost effective option for the future global fight against 

schistosomiasis.
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Box 3

Quantifying snails and their trematode infections

Researchers define and measure human risk for schistosomiasis transmission in several 

ways: prevalence or density of infected snails assessed through snail surveys [189, 190], 

cercarial density measured via cercariometry or molecular detection in water, [191, 192], 

or density of infective cercariae derived through mouse exposure [193]. Because snail 

densities vary widely, the prevalence of infected snails is a poor way to estimate infection 

risk in humans. Infection rates in sentinel mice are the most direct way to measure risk in 

humans. However, mouse exposures are expensive and pose ethical concerns to some 

[192]. Next best is cercarial density, but filtering for cercariae is challenging because 

waters are often turbid, cercariae have short lifespans (hours), are small, and have soft 

bodies [194]. Newly available environmental DNA sampling still requires ground 

truthing and cannot distinguish cercariae (infective to humans) from miracidia (infective 

to snails). Therefore, snail sampling via timed searches (e.g. [9, 52, 59]) has been by far 

the most common way to measure risk in research studies and monitoring efforts for the 

last several decades. In a traditional search, trained technicians spend a set time (e.g., 15 

minutes) searching for potential snail habitat at water access points, then agitate the 

substrate or vegetation with fine-mesh scoops (~ 1–2 mm mesh size, pictured) – and 

retrieve the scoops and pull out the snails [194] (Figure I). Collected snails are put in 

vials under bright light to shed cercariae, which can then be identified and used to 

estimate which snails are infected[194]. Such timed searches are quick and inexpensive, 

but by targeting snail habitat, the actual measure probably reflects snails density within 

snail habitat rather than overall snail density, perhaps explaining why many past studies 

conclude that infected snail density at a site does not correlate well with measures human 

infection rates [195, 196]. On the contrary, studies using systematic or random quadrat 

sampling (including dissecting snails to examine for trematode infections) have found 

more robust correlations between infected snail density and human infection rates [197]. 

Future work should aim to develop cost-effective and accurate ways to assess infection 

risk.

In recent years, advances in molecular genetic techniques, spatial statistics, and GIS 

mapping have made it possible to examine schistosomiasis transmission risk at fine-

grained spatial scales [198]. These technologies, coupled with more robust and spatially 

quantitative snail sampling techniques – borrowed from ecological studies on freshwater 

invertebrates (e.g. [46, 197]) – could improve prediction capabilities for schistosomiasis 

transmission.
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Figure I. 
Two different snail scoops designed and deployed to sample snails in schistosomiasis 

transmission sites in Senegal. Image courtesy of The Upstream Alliance (http://

wwwtheupstreamalliance.org), under the terms of the Creative Commons Attribution 

License CC BY 2.0.
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Trends Box

• Despite a rise in the global effort towards preventive chemotherapy, just as 

many people suffer from schistosomiasis today as did fifty years ago

• Snail control can complement medical treatment, especially where 

transmission is endemic and reinfection after treatment is a common 

occurrence

• It is time to give snail control another look

• Modernizing snail control is a priority and might benefit from more research 

on spatiotemporal targeting, environmental diagnostics, better molluscicides, 

new technologies, and ‘outside the box’ strategies such as natural enemies, 

traps, and repellants
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Outstanding questions

1. Can network analysis of schistosomiasis transmission reveal hotspots and 

hubs to target for more efficient snail control?

2. At what spatial scale does schistosomiasis transmission occur? Can 

understanding transmission improve control (i.e., the spatial extent that must 

be treated to protect humans using a given water body).

3. Might CRISPR-cas9 gene editing and gene drive technologies be a safe and 

effective way to reduce schistosomiasis-infected snails?

4. Are molluscicides outdated or are there future formulations that could deliver 

successful snail control with fewer non-target effects?

5. How can natural enemies, repellants, traps, and decoys be used for snail 

control?

6. What is the most efficient and synergistic use of preventive chemotherapy and 

environmental controls, including snail control, in the global fight against 

schistosomiasis?

7. Can environmental DNA (eDNA) technology be used to indirectly track snail 

or schistosome presence and distribution in the environment?

8. Can optimal control theory contribute to an improved strategy for 

schistosomiasis elimination?
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Figure 1. The Schistosoma sp. lifecycle and snail control strategies
human to snail transmission occurs via free-living miracidia released from eggs in urine and 

feces; and snail to human transmission occurs through free-living cercariae that exit infected 

snails into the water, seeking new vertebrate hosts. Control strategies should combine (A) 

human drug treatment or preventive chemotherapy with praziquantel (PZQ) with (B-F) 

creative methods to control infected snails such as: (B) chemical molluscicides; (C) natural 

enemies; (D) habitat modification; (E) creative technologies such as gene drive; (F) traps or 

repellants and other out of the box strategies.
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