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Summary

The metabolic pathways fueling tumor growth have been well characterized, but the specific 

impact of transforming events on network topology and enzyme essentiality remains poorly 

understood. To this end, we performed combinatorial CRISPR-Cas9 screens on a set of 51 

carbohydrate metabolism genes that represent glycolysis and the pentose phosphate pathway. This 

high-throughput methodology enabled systems-level interrogation of metabolic gene 

dispensability, interactions, and compensation across multiple cell types. The metabolic impact of 

specific combinatorial knockouts were validated using 13C and 2H isotope tracing, and, these 

assays together revealed key nodes controlling redox homeostasis along the KEAP1-NRF2 
signaling axis. Specifically, targeting KEAP1 in combination with oxidative PPP enzymes 

mitigated the deleterious effects of these knockouts on growth rates. These results demonstrate 

how our integrated framework, combining genetic, transcriptomic, and flux measurements, can 

improve elucidation of metabolic network alterations, and guide precision targeting of metabolic 

vulnerabilities based on tumor genetics.
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eTOC Blurb

Zhao et al. used combinatorial CRISPR screening to elucidate gene essentiality and interactions in 

the cancer metabolic network. Examination of cell type-specific essentiality revealed a critical 

regulation of redox metabolism along KEAP1-NRF2 signaling axis.

Introduction

Cancer cells are characterized by unchecked cellular proliferation and the ability to move 

into distant cellular niches, requiring a rewiring of metabolism to increase biosynthesis and 

maintain redox homeostasis. This reprogramming of cellular metabolism is now considered 

an essential hallmark of tumorigenesis (Pavlova and Thompson, 2016). Since the metabolic 

network is highly redundant at the isozyme and pathway-levels, reprogramming is an 

emergent behavior of the network and manifests itself in non-obvious ways. For instance, a 

unique metabolic feature of tumor cells is a reliance on aerobic glycolysis to satisfy 

biosynthetic and ATP demands (Hensley et al., 2016). This metabolic rewiring is 

coordinated, in part, by the selective expression of distinct isozymes, which may benefit the 

cell by offering different kinetics or modes of regulation (Chaneton et al., 2012; Christofk et 

al., 2008; Patra et al., 2013). However, isozyme switching is not solely a consequence of 

genomic instability and instead can be a coordinated step in tumorigenesis that facilitates 

cancer cell growth and survival (Castaldo et al., 2000; Guzman et al., 2015). Therefore, 

understanding which isozymes and pathway branch points are important and how they 

interact with and compensate for one another is necessary to effectively target metabolism in 

cancer cells.

In this regard, the advent of CRISPR screening technology now provides a rapid, high-

throughput means to functionally characterize large gene sets (Shalem et al., 2014; Wang et 

al., 2014). This analysis has led to greater annotation of essential genes in human cancers 

and context-dependent dispensability (Hart et al., 2015; Wang et al., 2015). Correspondingly, 

Zhao et al. Page 2

Mol Cell. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



single-gene knockout (SKO) CRISPR screens have been able to identify important genes in 

redox homeostasis and oxidative phosphorylation in conjunction with metabolic 

perturbations (Arroyo et al., 2016; Birsoy et al., 2015). However, in the context of 

mammalian metabolism the SKO CRISPR approach comes with limitations, as redundancies 

and plasticity of the metabolic network may allow the system to remodel around a SKO, 

thereby confounding analyses of impact on cellular fitness. To overcome this challenge, our 

group and others recently developed combinatorial gene knockout screening approaches 

which may provide a more suitable platform to study gene dispensability and also 

systematically map their interactions (Boettcher et al., 2017; Chow et al., 2017; Han et al., 

2017; Shen et al., 2017; Wong et al., 2016).

Utilizing this combinatorial CRISPR genetic screening format, coupled with interrogation of 

metabolic fluxes, we systematically studied the dispensability and interactions within a set 

of genes encoding enzymes involved in carbohydrate metabolism, including glycolysis and 

the pentose phosphate pathway. We illustrated functional relationships between dominant 

and minor isozymes in various families and discovered multiple genetic interactions within 

and across glucose catabolic pathways. Aldolase and enzymes in the oxidative pentose 

phosphate pathway (oxPPP) emerged as critical drivers of fitness in two cancer cell lines, 

HeLa and A549. Distinctions in this dependence are influenced by the KEAP1-NRF2 
signaling axis, which coordinates the cellular antioxidant pathway in response to redox 

stress. We found loss or mutation of KEAP1 E3-ubiquitin ligase upregulates NRF2-mediated 

transcription of genes involved in glutathione synthesis and NADPH regeneration, making 

the oxPPP less important for NADPH production and less critical for cell growth in these 

contexts. Thus, mutation status of the KEAP1-NRF2 regulatory axis should be considered 

when designing therapeutic strategies that target redox pathways in cancer cells.

Results

Combinatorial CRISPR-Cas9 screening to probe metabolic networks

To systematically study the dispensability and interactions of genes underlying carbohydrate 

metabolism, we applied a combinatorial CRISPR screening approach (Shen et al., 2017) to 

interrogate singly and in combination a set of 51 genes, encompassing glycolysis, 

gluconeogenesis, pentose phosphate pathway, and glucose entry into the TCA cycle (Fig 

1A). We generated 3 sgRNAs per gene such that 9 unique constructs were present for every 

gene-pair, resulting in a dual-sgRNA library consisting of 459 elements targeting genes 

individually, as well as 11,475 unique elements targeting two different genes simultaneously 

(Table S1). The dual-sgRNA constructs were synthesized from oligonucleotide arrays, 

cloned into a lentiviral vector, and then transduced into HeLa or A549 cells stably 

expressing Cas9 (Fig 1B and S1A and B). Through sampling of sgRNA frequencies at days 

3, 14, 21, and 28 (Fig S1C and D), both robust gene-level fitness values (fg)) and also 

interaction scores (πgg) were computed. Finally, impact of SKOs and dual-gene knockouts 

(DKOs) on cellular growth and metabolic fluxes were validated in a targeted fashion.
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Mapping metabolic gene dependencies in glucose catabolism

Upon analyzing fitness scores for individual gene knockouts across the metabolic network 

(Table S2), we noted that for most (but not all) isozyme families, a dominant gene showed 

the greatest indispensability (Fig 2A and S2A). Consistent with the notion of a “cancer-

specific” isozyme (Hay, 2016), HK2, ALDOA, PGK1, and PFKL all showed a fitness defect 

greater than two-fold higher as compared to other isozymes. However not all families 

exemplified this dynamic, with ENO1/ENO3 and the lactate dehydrogenase (LDH) family 

showing similar dispensability across gene members (Fig 2A and S2A). The general 

dispensability of SKOs within the LDH family is notable given the critical role of glycolysis 

in the maintenance of cancer cell homeostasis and concomitant need to regenerate cytosolic 

NAD+ when relying on glycolytic flux (Vander Heiden et al., 2009). Importantly nodes 

central to the regeneration of reducing equivalents (NADH and NADPH) – GAPDH, G6PD, 

and PGD – were found to be critical for cellular growth (Fig 2A and S2A).

We hypothesized that gene expression could explain why certain genes were less 

dispensable and why certain families did not display a dominant member. Indeed, lower 

fitness score may be associated with higher gene expression (R = −0.461, p-value = 6.7e-04 

and R = −0.429, p-value = 1.7e-03, for HeLa and A549 cells respectively). These 

expression-driven differences also partially explained dynamics within isozyme families. For 

instance, ALDOA had a much lower fitness score and higher gene expression as compared 

to ALDOB and ALDOC (Fig 2B). ENO1 and ENO3 both displayed negative fitness scores 

and both were more highly expressed than ENO2 (Fig 2B and C). However, the dispensable 

isozyme families LDH and PDH (key for maintenance of glycolytic flux and oxidation of 

pyruvate respectively) were also found to be highly expressed in both cell types (Fig 2B and 

C). With each family having more than two member enzymes, this result demonstrates that 

vital functions of cell metabolism can be carried out by multiple genes and show surprising 

resiliency through isozyme compensation or network behavior.

To this end, SKO knockouts correlated well (R = 0.718, p-value = 3.1e-09) across both cell 

lines (Fig 2C). This correlation extended to expression of all enzymes (R = 0.938, p-value < 

2.2e-16). Furthermore, HeLa fitness scores correlated well with previously published HeLa 

screening data (R = 0.664, p-value = 1.435e-07) (Hart et al., 2015). However, these results 

exemplify the challenge in understanding metabolic topology through screening individual 

genes: few metabolic genes are essential, and essential elements are typically conserved 

across all cell types.

We subsequently hypothesized that gene interactions could provide information on 

metabolic network topology and cell-specific adaptations in these pathways. Indeed, a 

notable number of gene pairs were found to significantly interact (Fig 2D and E, Table S3). 

Specifically, after filtering for genes with RPKM<0.15, we observed 35 interactions (z-score 

< −3) in the combined HeLa and A549 interaction network (Fig S2B and Table S4), of 

which 10 (~30%) have been previously reported as protein-protein interactions (Stark et al., 

2006). Five gene pair interactions were shared across both cell types.

Notably, the conserved interaction of ENO1/ENO3 demonstrates the possible compensation 

observed in SKO results (Fig 2A). Previous results have demonstrated that passenger 

Zhao et al. Page 4

Mol Cell. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deletion of ENO1 in glioblastoma (GBM) cell lines increases their dependence on ENO2 
and generates a GBM synthetic lethality (Muller et al., 2012). As ENO2 is only expressed in 

neural tissues, our results suggest that ENO1 and ENO3 may compensate for one another in 

these cell lines. Additionally, redox-associated genes, GAPDH and PGD, had many 

interacting partners, consistent with their negative SKO fitness scores and metabolic 

functions (Fig 2E). As NAD(P)H is required for both bioenergetics and biosynthetic 

reactions, alteration of cofactor balance or regeneration fluxes could have large impacts on 

distal reactions within the network.

Validation of significant SKO and DKO results on cellular fitness and metabolic fluxes

Next, to functionally validate the screening results, competition assays and metabolic flux 

measurements were conducted in the presence of SKO and DKO pairs. Competition assays 

were performed by mixing control tdTomato+ cells expressing an empty vector, with 

tdTomato− cells expressing a gRNA of interest (Fig 3A), and relative growth rates were 

assayed by quantifying the ratio of +/− cells in the mixture via flow cytometry (Fig 3B). 

Dominant family member isozyme fitness was observed in the ALDO family (Fig 3C), and 

significant gene interactions over additive SKO effects were observed in multiple gene pairs 

(Fig 3D and E). Correspondingly, perturbations in glycolytic flux were observed through 

dynamic labeling of metabolites (i.e. pyruvate, lactate, alanine) from 13C-labeled glucose 

([U-13C6]glucose) (Fig 3F). Notably, DKO of ENO1 and ENO3 significantly decreased flux 

through glycolysis compared to control and SKOs (Fig 3G, S3A, and S3B) and also 

displayed significantly lower fitness (Fig 3H). Finally, we applied specific 13C and 2H 

tracers to quantify how the oxPPP contributed to NADPH regeneration (Fig 3I) (Lee et al., 

1998; Lewis et al., 2014). SKO knockout of oxPPP enzymes was indeed observed to lower 

flux (Fig 3J and K) and fitness (Fig 3L and S3C) through this pathway.

Comparison of metabolic liabilities across cell lines reveals key role of KEAP1-NRF2

We next focused on differences in the screens of these two cell lines to explore how 

oncogenic status contributes to metabolic reprogramming. By conducting screens in A549 

and HeLa cells and comparing fitness results, we could also gain insights into the impact of 

SKO results in combination with endogenous mutations. Notably, screening results 

suggested and we validated that SKO of oxPPP genes (i.e., G6PD and PGD) impacted the 

growth and survival of HeLa cells more dramatically than A549 cells (Fig 4A, S4A, and 

S3C) with observed editing rates in each cell line ≥95% (Fig S3D). Intriguingly, the 

expression of G6PD and PGD in these cell lines showed the opposite trend, with A549 cells 

expressing these genes at significantly higher levels but having a lower dependence on them 

to maintain growth and viability (Fig 4A and S4A). As the oxPPP is critical for maintaining 

redox homeostasis (i.e. NAPDH regeneration) (Kuehne et al., 2015), mutations within 

control points of redox metabolism could drive this differential sensitivity and further extend 

the interactions of metabolic genes to known oncogenes or tumor suppressors.

In this regard, A549 NSCLC cells harbor a loss of function mutation in KEAP1 while this 

regulatory axis is functional in HeLa cells. Loss of function mutation of KEAP1 is observed 

in 20–50% of non-small-cell lung cancers (NSCLCs) (Singh et al., 2006). KEAP1 is a 

redox-sensitive E3 ubiquitin ligase that targets oxidized NRF2, the master transcriptional 
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regulator of the cellular antioxidant response (DeNicola et al., 2011; Ishii et al., 2000; 

Thimmulappa et al., 2002) and previous work has demonstrated an ability of NRF2 to alter 

metabolic fluxes (DeNicola et al., 2015; Mitsuishi et al., 2012; Thimmulappa et al., 2006). 

Consequently, we hypothesized that the mutational status of this pathway potentially 

influenced oxPPP sensitivity.

Knockout of KEAP1 in HeLa cells significantly increased NRF2 levels and expression of 

oxPPP enzymes G6PD and PGD (Fig S3E and 4B) consistent with the increased expression 

levels observed in A549 cells (KEAP1-deficient) relative to HeLa cells (KEAP1 WT) (Fig 

S4A, bottom left). We next determined how oxPPP flux contributed to cytosolic NADPH 

pools using [3-2H]glucose in KEAP1 KO cells (Lewis et al., 2014). For all sgRNAs we 

observed a significant decrease in labeling (Fig 4C), which indicates higher pathway flux 

and loss of label via glutathione-mediated H-D exchange (Zhang et al., 2017). This 

enhanced glutathione buffering capacity is consistent with the greater dispensability of 

oxPPP enzymes observed in A549 cells as compared to HeLa cells (Fig 4A).

We next hypothesized that KEAP1 mutational status could directly alter sensitivity to SKO 

of oxPPP enzymes and quantified the impact of such SKOs on the fitness and metabolism of 

an isogenic panel of A549 cells. Ectopic expression of wild type (WT) KEAP1 decreased 

NRF2 stabilization as compared to constitutively active C273S mutant KEAP1 (Zhang and 

Hannink, 2003) (Fig S4B). Interestingly, overexpression of either mutant or WT KEAP1 
increased NRF2 levels as compared to parental cells (Fig S4B). Re-expression of WT 

KEAP1 in A549 cells increased cell sensitivity to PGD knockout as compared to C273S 

KEAP1 mutant cells (Fig 4D, S4C), highlighting the role of KEAP1 in regulating oxPPP 

enzyme expression and flux. Consistent with these fitness results and the above metabolic 

measurements, WT KEAP1 expression increased the contribution of PGD to cytosolic 

NADPH regeneration (Fig 4E) and decreased expression of oxPPP enzymes (Fig 4F).

Finally, we hypothesized that KEAP1 remodels redox metabolism due to its canonical role 

in the cellular antioxidant response. Indeed, expression of WT KEAP1 was found to both 

decrease expression of NADPH-regenerating enzymes and those involved in glutathione 

(GSH) synthesis (Fig 4G). Consistent with decreased expression of GSH synthesis enzymes, 

intracellular glutathione levels were decreased by 45% upon expression of WT KEAP1 (Fig 

4H). Presumably, the decreased buffering capacity by GSH and lower expression of other 

NADPH regenerating contributes to the increased dependence on oxPPP flux observed in 

cells expressing WT KEAP1. A model therefore emerges from our screening results, 

whereby KEAP1 mutational status alters the relative importance of the oxPPP by 

modulating expression of the redox network to drive GSH synthesis and regeneration (Fig 

4I).

Discussion

While it is clear that cancer cells rely on aerobic glycolysis to maintain biosynthetic fluxes 

and ATP demands (Hsu and Sabatini, 2008), how the underlying metabolic network 

topology changes in response to specific oncogenic events is not fully clear. In this study, we 

comprehensively interrogated metabolic gene dispensability, interaction, and compensation 
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through a combinatorial CRISPR-Cas9 screening approach. Key nodes within glycolysis 

were found to significantly interact with one another (e.g. ALDOA and PGD) in an emergent 

network behavior. Many of these interactions were conserved across cells of different origin, 

implying such enzyme interaction pairs harbor some function that warrant future 

interrogation.

Other interactions were demonstrative of metabolic compensation within isozyme families 

(e.g. ENO1 and ENO3) and consistent with previously described mechanisms of metabolic 

synthetic lethality (Dey et al., 2017; Muller et al., 2012). These observed network features 

present a new opportunity through combinatorial (pairwise) screening to understand if/how 

cells can adapt around loss of a metabolic enzyme. Knowing if a solid tumor of interest is 

pharmacologically vulnerable to a metabolic inhibitor a priori will allow for future precision 

medicine applications.

In fact, by comparing relative SKO scores across cell types, we were able to elucidate a 

paradoxical resistance to targeting the oxPPP along the KEAP1-NRF2 axis. Even though 

cells potently upregulated expression of oxPPP enzymes upon loss of KEAP1, cells were 

less vulnerable to KO of enzymes in this metabolic pathway. In this case, alternate NADPH 

regeneration pathways and increased antioxidant buffering by GSH pools provides 

compensation and survival benefits to cells. Our NAPDH tracing data demonstrated that 

cells lacking functional KEAP1 exhibit higher oxPPP flux, as evidenced by reduced labeling 

due to increased H-D exchange through glutathione-related pathways (Zhang et al., 2017). 

Indeed, elevated oxPPP enzyme levels and increased glutathione pools would specifically 

increase exchange flux, resulting in the observed decrease in labeling downstream of 

[3-2H]glucose. The integration of such functional measurements with genetic screening and 

transcriptional results provides better context to interpret the observed metabolic 

reprogramming downstream of KEAP1-NRF2.

Our results suggest that KEAP1 mutational status must be considered when targeting the 

oxPPP therapeutically. In fact, recent work has implicated KEAP1 mutational status as a 

driver of metabolic reprograming and potential targeting of glutaminase in pre-clinical 

models of lung adenocarcinoma (Romero et al., 2017). Consistent with our findings, KEAP1 
mutation increases intracellular glutathione levels and need for cysteine, causing an 

increased need for glutamine anaplerosis to support glutamate/cysteine antiporter flux 

(SLC7A11) (Muir et al., 2017; Romero et al., 2017). Other recent work has also implicated 

KEAP1 mutational status as a driver of chemotherapeutic resistance in preclinical models of 

lung cancer and further demonstrates the need for new paradigms connecting oncogenic 

mutations to cancer cell survival (Krall et al., 2017).

Moving forward, it will be important to perform such screens across a larger number of cell 

types to elucidate a more comprehensive picture of metabolic network reprogramming. The 

high throughput methodology presented here increases the feasibility of such studies. We 

note also that comparing the absolute fitness values in screens across cell lines can be 

confounded by various factors. These include differences in relative cell growth and 

expression of CRISPR effectors among others, and thus devising new strategies for 

normalization will be valuable to improve the utility of future screening data sets. We also 
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note the critical importance of sgRNA efficacy, and anticipate that continued improvements 

in sgRNA design (Chari et al., 2015; Doench et al., 2016; Erard et al., 2017) will be critical 

to improving consistency and signal-to-noise in the assays. Finally, layering in data from 

complementary perturbation strategies such as CRISPR activation/inhibition and small 

molecule inhibition should enable charting of more comprehensive networks underlying 

cellular function and transformation.

Discovery of the unique metabolic features in transformed cells has spurred much interest in 

exploiting metabolic vulnerabilities for drug discovery (Vander Heiden, 2011). In fact, 

metabolic inhibitors have been developed as single agent therapeutics and combination 

therapeutics for many different cancer types (Tennant et al., 2010). However, these agents 

have found varying success in the clinic due an inability to determine proper cancer types in 

preclinical development. While cancer cells share common hallmarks of ming, cell-of-origin 

and tumorigenic drivers uniquely influence the direction and extent of metabolic 

reprogramming. The new paradigm of incorporating combinatorial CRISPR screening, 

transcriptomic information, and metabolic flux measurements presented here will provide a 

new platform to address this limitation. By interrogating metabolism at the network-level, 

new therapeutic targets may be identified, and clinicians may become better equipped at 

identifying the most responsive patient populations.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Prashant Mali (pmali@ucsd.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions—HEK293T, A549, HeLa-AAVS-Cas9-Hygro, 

A549-AAVS-Cas9-Hygro cells were grown in DMEM supplemented with 10% FBS, 2 mM 

L-glutamine, 100 units/mL of penicillin, 100 μg/mL of streptomycin, and 0.25 μg/mL of 

Amphotericin B. HeLa-AAVS-Cas9-Hygro and A549-AAVS-Cas9-Hygro cells were 

purchased from GeneCopoeia.

METHOD DETAILS

Dual-gRNA library design and cloning—A set of 51 genes, encompassing glycolysis, 

gluconeogenesis, pentose phosphate pathway, and glucose entry into the TCA cycle were 

selected for this study. Three unique 20-bp sgRNAs were designed for each target gene and 

three scrambled, non-targeting sequence absent from the genome were used as control. The 

dual sgRNA construct library comprised all pairwise gRNA combinations between either 

two genes or a gene and a scramble, resulting in 11,475 double-gene-knockout constructs 

and 459 single-gene-knockout constructs. The dual-gRNA library was generated as 

previously described (Fig S1A) (Shen et al., 2017). Briefly, the oligonucleotides with dual-

gRNA spacers were synthesized by CustomArray Inc., amplified and assembled into the 

LentiGuide-Puro vector (Addgene #52963). Independent bacterial clones obtained in step I 

library were counted to ensure ~50× library coverage. Subsequently, the step I library was 
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digested by BsmBI and an insert contained a gRNA scaffold and a mouse U6 promoter were 

cloned in the middle of two spacers. Again, ~50× library coverage was ensured.

Lentivirus production—One 15cm dish of HEK293T cells at 60% confluent were 

transfected with 3 μg PMD2.G, 12 μg of lenti-gag/pol/PCMVR8.2, and 9 μg of lentiviral 

vector (library or single constructs) using 36 μl of Lipofectamine 2000. Medium containing 

viral particles were harvested 48 h and 72 h after transfection, then concentrated with 

Centricon Plus-20 100,000 NMWL centrifugal ultrafilters, divided into aliquots and frozen 

at −80 °C.

CRISPR/Cas9 dual-gRNA screening—CRISPR Cas9 nuclease stable expressing HeLa 

and A549 cells were obtained from GeneCopoeia and grown in DMEM medium with 10% 

FBS and Antibiotic-Antimycotic. Hygromycin B was added at the concentrations of 200 

μg/ml or 100 μg/ml for HeLa and A549 cells, respectively. For each screen, cells were 

seeded in three 15cm dishes at a density of 1 × 10^7 per ml and transduced with the 

lentiviral dual gRNA library at a low MOI of 0.1–0.3. Puromycin was added at 48 h after 

transduction at a concentration of 5 μg/ml. Then the cells were cultured and passaged for 

every 3–4 days while 1 × 10^7 cells were sampled at days 3, 14, 21 and 28 and stored at 

−80 °C until extraction of genomic DNA. Two biological replicates of the screens were 

performed for each cell line.

Quantification of dual gRNAs abundance—Genomic DNA of the cells were purified 

using Qiagen DNeasy Blood and Tissue Kits. To amplify the dual gRNAs from each sample, 

we used 20 μg of genomic DNA as template across ten 50-μL PCR reactions with Kapa Hifi 

polymerase. By testing the amplification efficiency, we used 22 – 24 cycles at an annealing 

temperature of 55 °C with the following primers:

Forward: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTTATATATCTTGTGGAAAGG

ACGAAACACC G;

Reverse: 

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTTATTTTAACTTGCTATTT

CTAGCTCTA.

The amplicons were pooled and purified with Agencourt AMPure XP bead at a double 

selection of 0.55× and then 0.8×. The samples were quantified with Qubit dsDNA High 

Sensitivity Kit. To attach Illumina sequencing adaptors and indexes, we used 50 ng of 

purified step I PCR product as template across four 50-μL PCR reactions with Kapa Hifi 

polymerase using primers of Next Multiplex Oligos for Illumina (New England 

Biosciences). 7 or 8 PCR cycles were carried out at an annealing temperature of 72 °C. The 

PCR product were purified twice with Agencourt AMPure XP bead at 0.8× ratio, quantified, 

pooled and sequenced on an Illumina HiSeq rapid-run mode for 75 cycles paired-end runs.

Computation of single and double gene knockout fitness and genetic 
interaction scores—Analysis was performed with a previously reported software 

pipeline constructed from Python, R and Jupyter Notebooks (https://github.com/ucsd-ccbb/
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mali-dual-crispr-pipeline). The following details are adapted from our published paper (Shen 

et al., 2017). Briefly, the two gRNA sequences were extracted and trimmed to 19bp from 3′ 
end, and then aligned to the known library sequences with one mismatch allowed. We 

determined a minimum threshold for read counts based on the histograms and masked out 

pairwise gRNA constructs that have read counts below the threshold. The read counts were 

used for analysis of fitness and genetic interaction scores as follows:

(1) Estimation of fitness of each pairwise gRNA construct: The logarithmic 

transformation of the frequency of each pairwise gRNA construct in the population is:

where Nc is the number of cells in the population expressing construct c. We assume that 

each cell subpopulation grows exponentially:

where t is a given time point; fc is the fitness of construct c; f0 is the absolute fitness of 

reference cells which don’t express any constructs. Combining these two equations, we get:

where ac ≡ xc(0) as the initial condition and Σc2xc = 1 in the whole population. Fitting to this 

equation from experimental data of frequencies Xc(t), we minimize the sum of squares:

Here E is invariant under the substitution fc → fc + δ, where δ is an arbitrary constant, 

which can be fixed by setting the mean non-targeting gRNA fitness to zero. To resolve this, 

one should find the minimum of the function:

where λ is the Lagrange multiplier. This solution equals:

When the number of constructs is large, Σc 1 ≫ 1, the approximation solution is:
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and

where the bars indicate means over time points. The ac values do not depend on the choice 

of δ.

(2) Estimation of single gRNA fitness and gRNA–gRNA interactions: For each construct 

containing gRNAs and g and g′, we define:

where πgg′ is the gRNA-gRNA interaction scores. fc is calculated from step (1). fg values 

are found by robust fitting of this equation. The gRNA-level πgg′ scores are the residuals of 

the robust fit.

(3) Computation of gene level fitness based on weighted average of gRNA fitness: We 

ranked the three gRNAs targeting to the same gene as r(g) ∈ {0, 1, 2} in ascending order of |

fg|. The gene-level fitness values are calculated as the weighted means of gRNA fitness 

values with weights given by the squares of gRNA ranks, r2(g). The gene-level interaction 

scores are calculated as the weighted means of gRNA-gRNA interaction scores with weights 

given by the products of gRNA ranks, r(g)r(g′).

(4) Correction by replicates: As we performed biological replicates for each experiment, 

we combine replicates for more power rather than looking for two fc separately. We fit a 

single optimal fc from all data points excludes those below the threshold, with the 

assumption that fc does not change across experiments while the initial conditions ac may be 

different. The raw P value associate to each fc is:

where SE(fc)is the standard error of fc:

The raw P values then are transformed into posterior probabilities, PPc, according to the 

theory of Storey. To scale the genetic interaction scores for comparison across different 
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experiments, we calculated a genetic interaction z score by dividing the πgg′ of each two 

genes by  of genetic interaction pairs in a given experiment. We 

consider an interaction to be a meaningful candidate if it has an absolute z score above 3.

(5) Calculation of false discovery rates by numerical Bayesian ensemble of 
experiments: We assign a fitness value to each construct c on the basis of change in fitness 

relative to the standard deviation of repeated measurements. The assigned value is either 0 

with probability (1 − PPc), or a random number within f̄c ± s.d. We perform 1000 

permutations and reported gene level fg and πgg′ for each permutation. The false discovery 

rate (FDR) of genetic interactions (π) is calculated as the odds ratio between the observed 

and permuted results in the null model, which is obtained by mean-centering of the marginal 

distribution of every πgg′.

Single-gRNA construct cloning—The LentiGuide-Puro vector were linearized using 

restriction enzyme BsmBI at 55 °C for 3 hours. For each individual gRNA, two 

oligonucleotides containing the spacer sequences were synthesized as listed in Supplemental 

Table S1. The two oligos were annealed and extended to make a double stranded DNA 

fragment using Kapa Hifi polymerase. The fragment was purified and subjected to Gibson 

assembly (New England Biolabs) with the linearized LentiGuide-Puro vector.

Competitive cell growth assay—We developed a competitive cell growth assay to 

assess the effect of gene perturbations by mixing control tdTomato+ cells with tdTomato− 

cells expressing a gRNA of interest (Fig 3A) and sampling relative growth rates through 

time by flow cytometry. Cas9-expressing cells were transduced with EF1A- tdTomato-T2A-

puromycin lentivirus and cultured under puromycin selection for stable expression of 

tdTomato. To measure the negative impact of a gRNA introduced gene perturbation on the 

cellular proliferation rate, the Cas9-expressing cells were cultured in 12-well-plate and 

transduced with gRNA lentivirus at a high MOI (>5). The day after transduction, the Cas9-

expressing cells were resuspended, counted, mixed with tdTomato+ Cas9-expressing cells, 

and re-seed into 12-well-plate. The cells were sampled every 3 or 4 days to score the 

tdTomato+/tdTomato− ratio by longitudinal flow cytometric analysis. By assuming the 

exponential growth of the cells, from time t1 to t2, the growth of cells (tdTomato+ or gRNA 

expressing) in the mixture population fits to the equation:

where Nc is the cell number of the certain cell subtype, f0 is the absolute fitness of reference 

cells which in this case is the tdTomato+ cells, and Δfc is fitness measurements of the certain 

cell subtype. For a certain gRNA (or a pair of gRNA), ΔfgRNA the is able to be calculated 

easilyaccording to the equation without measuring the absolutely fitness of reference cells 

f0:
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Although the percentage of tdTomato+ cells in the mixtures with the cells expressing non-

targeting control gRNAs was stable over time, we normalize the fitness of gRNA of interest 

to non-targeting control gRNAs for side by side comparisons. The cell viability of a gRNA 

of interest (non-log transformed fitness) relative to non-targeting controls showed in Fig 3 is 

as follows:

The expected cell viability of a pair of gRNAs calculated according to:

In addition, f0 is able to be measured by counting of the absolute cell number over time base 

on the equation (1). Then the effects of a gene perturbation (eg. PGD) relative to non-

targeting controls (NTC) in a certain cell subtype (eg. KEAP1 mutations) are calculable as 

follows:

RNA sequencing data analysis—RNA sequencing data were obtained from the 

ENCODE project (GSE30567, sample GSM765402 and GSM758564 for HeLa and A549 

cell lines respectively). The results were expressed as the average value of reads per kilobase 

of transcript per million mapped reads (RPKM) across two biological replicates. The 

average RPKM values were log2 transformed for Pearson correlation analysis.

Stable isotope tracing—For isotopic labeling experiments, cells were cultured in 

glucose- and glutamine-free media (Gibco) supplemented with 10% dialyzed FBS, 100 

U/mL penicillin/streptomycin, 4mM glutamine (Sigma), and 20 mM of either [3-2H]glucose 

(98%, Cambridge Isotope Laboratories), [U-13C6]glucose (99%, Cambridge Isotope 

Laboratories), or [1,2-13C]glucose (99%, Cambridge Isotope Laboratories).

Cells were rinsed with PBS before addition of tracing media. For glycolytic measurements, 

basal media was changed 1hr before addition of tracer media and extracted at indicated time 

intervals. For measurement of shunting through oxPPP, cells were traced for 4hrs. For 

estimation of PGD contribution to cytosolic NADPH, cells were traced for 48hrs.

Metabolite Extraction and GC-MS Analysis—Cells were rinsed with 0.9% (w/v) 

saline and 250 μL of −80°C MeOH was added to quench metabolic reactions. 100 μL of ice-

cold water supplemented with 10 μg/mL norvaline was then added to each well and cells 

were collected by scraping. The lysate was moved to a fresh 1.5 mL eppendorf tube and 250 

μL of −20°C chloroform supplemented with 4 μg/mL D31 palmitate was added. After 

Zhao et al. Page 13

Mol Cell. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vortexing and centrifugation, the top aqueous layer and bottom organic layer were collected 

and dried under airflow.

Derivatization of aqueous metabolites was performed using the Gerstel MultiPurpose 

Sampler (MPS 2XL). Methoxime-tBDMS derivatives were formed by addition of 15 μL 2% 

(w/v) methoxylamine hydrochloride (MP Biomedicals) in pyridine and incubated at 45°C 

for 60 minutes. Samples were then silylated by addition of 15 μL of N-tert-

butyldimethylsily-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-

butyldimethylchlorosilane (tBDMS) (Regis Technologies) and incubated at 45°C for 30 

minutes. Aqueous metabolites were analyzed by GC-MS using a DB-35MS column (30m × 

0.25mm i.d. × 0.25μm, Agilent J&W Scientific, Santa Clara, CA) in an Agilent 7890B gas 

chromatograph (GC) interfaced with a 5977C mass spectrometer (MS). Electron impact 

ionization was performed with the MS scanning over the range of 100–650 m/z for polar 

metabolites. For separation of aqueous metabolites the GC oven was held at 100°C for 1 min 

after injection, increa sed to 255°C at 3.5°C/min, and finally increased to 320°C at 15°C/min 

and held for 3 min.

Dried organic fraction was saponified and esterified to form fatty acid methyl esters 

(FAMEs) by addition of 500 μL of 2% (w/v) H2SO4 in MeOH and incubated at 50°C for 

120 minutes. FAM Es were then extracted by addition of saturated NaCl and hexane before 

collection and drying of the inorganic layer. Derivatized fatty acids were analyzed by GC-

MS using a select FAME column (100m × 0.25mm i.d. × 0.25μm; Agilent J&W Scientific) 

as above, with the MS scanning over the range 120–400 m/z. For separation the GC oven 

was held at 80°C for 1 min after injection, increased to 160°C at 20°C/min, increase d to 

198°C at 1°C/min, and finally increased to 250°C at 5°C/min and held for 15 min.

Metabolite integration and isotopomer spectral analysis (ISA)—Mass isotopomer 

distributions and total abundances were determined by integration of mass fragments 

(Supplemental Table S1) and correcting for natural abundances using MATLAB-based 

algorithm. Glycolytic flux was estimated by normalizing pyruvate, lactate, or alanine 

abundance by the sum of intracellular branched-chain amino acids abundance and M+3 

label. Oxidative PPP shunting was estimated by  labeling on pyruvate from 

[1,2-13C]glucose (Lee et al., 1998). Isotopomer spectral analysis (ISA) was performed to 

estimate contribution of oxPPP to cytosolic NADPH as previously described (Lewis et al., 

2014). ISA compares experimental labeling of fatty acids to simulated labeling using a 

reaction network where C16:0 is condensation of 14 NADPHs. Parameters for contribution 

of PGD to lipogenic NADPH (D value) and percentage of newly synthesized fatty acid (g(t) 

value) and their 95% confidence intervals are then calculated using best-fit model from 

INCA MFA software (Young, 2014).

Immunoblotting—Cultured cells were washed with cold PBS and harvested on ice with 

mPER (Pierce Biotechnology) with freshly added 1x HALT inhibitor (Thermo Fisher 

Scientific). Protein concentration was determined by BCA assay and equal amounts of 

protein were resolved on SDS-PAGE gel and transferred to nitrocellulose membrane. 

Membrane was blocked with 5% milk in TBST (Tris-buffered saline with 0.1% Tween 20) 

for 2–3hrs and incubated overnight at 4C with primary antibody: anti-Vinculin (Abcam), 
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anti-G6PD (Cell Signaling Technologies), anti-PGD (Santa Cruz Biotechnology), anti-

KEAP1 (Proteintech), anti-HA (Abcam), or anti-Nrf2 (Cell Signaling Technology). Blots 

were then incubated with secondary antibody for 1hr at room temp, Anti-Rabbit HRP-

conjugate (Cell Signaling Technology) or Anti-Mouse HRP-conjugate (Cell Signaling 

Technology). Finally blots were incubated with ECL substrate (BioRad) and imaged.

RT-PCR—Total mRNA was isolated from cells using RNA isolation kit (RNeasy Mini Kit; 

Qiagen). Isolated RNA was reverse transcribed using cDNA synthesis kit (High-capacity 

cDNA Reverse Transcription Kit; Thermo Fisher Scientific). Real-time PCR was performed 

using SYBR green reagent (iTaq Universeal SYBR Green Supermix; Bio-Rad). Relative 

expression was determined using Livak (ΔΔCT) method with RPL27 and RPLP0 as 

housekeeping gene. Primers used were taken from Primerbank (Wang et al., 2012) and 

tabulated in Supplemental Table S1. All commercial kits were used per the manufacturer’s 

protocol.

Glutathione measurement—Intracellular glutathione was measure using Glutathione 

Assay Kit (Sigma) per manufacturer’s protocol. Ten centimeter dishes of cells were assayed 

in quintuplicate and cells were counted in parallel for normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless indicated, all results shown as mean ± SEM of biological triplicates. P values were 

calculated using a Student’s two-tailed t test; *, P value between 0.01 and 0.05; **, P value 

between 0.001 and 0.01; ***, P value less than 0.001

DATA AND SOFTWARE AVAILABILITY

Analysis was performed with a previously reported software pipeline constructed from 

Python, R and Jupyter Notebooks (https://github.com/ucsd-ccbb/mali-dual-crispr-pipeline, 

Shen et al., 2017).

Information of paired guide RNA designs and raw read counts of screens: Supplementary 

Table S1

Single gene fitness: Supplementary Table S2

Genetic interactions (pi) scores: Supplementary Table S3

Top hits of genetic interactions: Supplementary Table S4

Original imaging data have been deposited to Mendeley Data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CRISPR screen reveals gene essentiality and interactions in the metabolic 

network

• Isozyme families display redundancy and compensation with single-gene 

knockout

• Integration of CRISPR screen and MFA link genotype to cell-specific 

phenotype

• KEAP1 mutation alters cancer redox network and essentiality of oxidative 

PPP genes
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Figure 1. Experimental design
(A) Schematic pathway diagram of carbohydrate metabolism, and list of 51 targeted 

enzymes. (B) Schematic overview of the combinatorial CRISPR-Cas9 screening approach. 

A dual-gRNA library in which each element targets either gene-gene pairs or gene-scramble 

pairs, to assay dual and single gene perturbations, was constructed from array-based 

oligonucleotide pools. Competitive growth based screens were performed, and the relative 

abundance of dual-gRNAs were sampled over multiple time points. The fitness and genetic 

interactions were computed via a numerical Bayes model and key hits were validated using 

both competitive cell growth assays and measurement of metabolic fluxes. See also Figure 

S1 and Table S1.
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Figure 2. Combinatorial CRISPR screens reveal metabolic network dependencies
(A) SKO fitness scores for HeLa cells, plotted as fg (day−1), with a more negative score 

representing a loss in fitness with SKO. Plotted as mean ± SD. (B) Multi-isoform family 

member fitness scores and gene expression for HeLa (top) and A549 (bottom) cells. (C) 

Relative comparison of SKO fitness scores (fg) across both cells. (D) Relative comparison of 

genetic interaction scores (πgg) across both cell lines. (E) Combined genetic interaction map 

of both cell lines. Green solid line represents interactions observed in both cell lines. Red 

and blue lines represent significant genetic interactions in A549 and HeLa cells respectively. 

See also Figure S2 and Table S2–S4.
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Figure 3. Screening results validated through targeted fitness and metabolic flux measurements
(A) Schematic of cell competition assay used to validate growth. A Cas9-expressing cell is 

transduced with a sgRNA lentivirus of interest (tdTomato−) and mixed with a control Cas9-

expressing cell transduced with a tdTomato lentivirus (tdTomato+). The cells are grown 

together and the percentage of control (tdTomato+) cells is used to assess relative fitness of 

SKO. (B) Non-targeting control (top) is stable for duration of experiment and shows no 

fitness changes. SKO of ALDOA (bottom) shows decreased fitness over time as control cells 

take over population. (C) SKO competition assay of ALDO isozyme family. ALDOA shows 

greatest loss of fitness. (D) Growth validation of PFKM/PGD genetic interaction. DKO 

(green) shows significantly greater decrease in fitness over additive SKO effect (black). (E) 

Growth validation of ALDOA/GAPDH interaction. (F) Atom transition map depicting 

glycolysis. Fully labeled ([U-13C6]glucose) leads to fully labeled pyruvate, lactate, and 

alanine. (G) Metabolic validation of DKO interaction in ENO1/ENO3. DKO significantly 

lowered flux through glycolysis over control or SKOs. † indicates statistical significance 

(p<0.05) for all conditions as compared to DKO (H) Growth validation of ENO1/ENO3 
interaction. (I) Atom transition map depicting oxPPP tracing. [3-2H]glucose labels cytosolic 

NADPH through oxPPP. Labeling on glycolytic intermediates from [1,2-13C]glucose is 

changed by shunting of glucose through oxPPP. (J) Metabolic validation of PGD SKO at day 

4. oxPPP contributes less NADPH with PGD knockout. Plotted as mean ± 95% CI. * 

indicates statistical significance by non-overlapping confidence intervals. (K) Metabolic 

validation of G6PD SKO at day 7. Less glucose is shunted through oxPPP with G6PD 
knockout. (L) SKO competition assay of oxPPP enzymes. All experiments were performed 

in HeLa cells. (C–E, G–H, K–L) Data plotted as mean ± SEM. See also Figure S3.
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Figure 4. KEAP1 mutational status alters redox metabolism and impact of oxPPP gene 
knockouts on cellular fitness
(A) Plot of cell-specific fitness scores for expressed genes. Positive scores are SKOs that are 

essential in A549s and negative scores are SKOs more essential in HeLa cells. The cell-

specific essentiality scores respond to the z-score transformed residuals of linear regression 

of HeLa and A549 SKO fitness, shown in Figure S4A. (B) Immunoblot of KEAP1 SKO in 

HeLa cells. (C) Contribution of oxPPP to cytosolic NADPH with KEAP1 SKO in HeLa 

cells. Plotted as mean ± 95% CI. * indicates statistical significance by non-overlapping 

confidence intervals. (D) Relative PGD SKO effect in A549s with KEAP1 mutant panel. (E) 

Contribution of oxPPP to cytosolic NADPH in A549s with KEAP1 mutant panel. Plotted as 

mean ± 95% CI. * indicates statistical significance by non-overlapping confidence intervals. 

(F) Immunoblot of A549s with KEAP1 mutant panel. (G) Normalized relative gene 

expression of A549s with KEAP1 mutant panel. (H) Glutathione measurement in A549 with 

KEAP1 mutant panel (n=5). (I) Schematic of how KEAP1 mutational status alters relative 

metabolism and oxPPP dispensability. (D, G, H) Data plotted as mean ± SEM. See also 

Figure S4.
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