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The symmetry and shape of colloidal particles can direct complex
particle motions through fluid environments powered by simple
energy inputs. The ability to rationally design or “program” the
dynamics of such active colloids is an important step toward the
realization of colloidal machines, in which components assem-
ble spontaneously in space and time to perform dynamic (dissi-
pative) functions such as actuation and transport. Here, we sys-
tematically investigate the dynamics of polarizable particles of
different shapes moving in an oscillating electric field via induced-
charge electrophoresis (ICEP). We consider particles from each
point group in three dimensions (3D) and identify the different
rotational and translational motions allowed by symmetry. We
describe how the 3D shape of rigid particles can be tailored to
achieve desired dynamics including oscillatory motions, helical
trajectories, and complex periodic orbits. The methodology we
develop is generally applicable to the design of shape-directed
particle motions powered by other energy inputs.
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The creation of colloidal machines (1)—that is, dynamic as-
semblies of colloidal components that perform useful func-

tions—requires advances in our ability to rationally engineer the
dynamics of active colloids (2, 3) operating outside of thermo-
dynamic equilibrium. Owing to their small size (nanometers to
micrometers), such machines must assemble spontaneously and
operate autonomously in response to simple energy inputs due
to chemical fuels or external fields. Achieving nontrivial dynam-
ical behaviors and ultimately function demands the use of com-
plex components, into which the desired behaviors can be effec-
tively encoded. The challenge is conceptually similar to that of
programmable self-assembly (4), whereby assembly information
encoded in the building blocks directs their organization into a
specific structure. For equilibrium assemblies, this information
takes the form of colloidal interactions, which can be designed
by controlling particle shape (5, 6) and surface chemistry (7–11).
Extending this approach to design colloidal machines will require
control over particle organization in time as well as space—that
is, over dynamics as well as structure. In this context, it is instruc-
tive to consider first the dynamics of a single particle and how it
might be programed to perform increasingly complex tasks [e.g.,
the weaving of microscopic braids (12)]. Understanding the com-
plex motions of individual units is a critical prerequisite to the
design of dynamic assemblies of active particles.

The motion of colloidal particles relative to their fluid sur-
roundings can be driven by a variety of different physicochem-
ical mechanisms. Self-phoretic particles (13) induce local gradi-
ents (e.g., in the electric potential) that propel particle motions
through interfacial “phoretic” effects (e.g., electrophoresis) (14).
By engineering the shape and symmetry of such particles, dif-
ferent dynamical behaviors have been realized, including linear
(15–17), rotational (18, 19), and circular (20) motions. The vari-
ety of possible dynamics for self-phoretic particles in isotropic
media is significantly limited by the translational and rotational
invariance of particle motions (only helical trajectories have yet
to be reported). By contrast, rigid particles within uniform shear

flows move relative to the fluid at velocities that depend on
their orientation, which can lead to complex—even chaotic—
rotational and translational motions (21, 22). Similarly, asymmet-
ric polarizable particles within uniform electric fields are known
to swim through conductive fluids by means of induced-charge
electrophoresis (ICEP) (23). Such motions are well understood
(24) and depend on the symmetry of the particle and its ori-
entation in the applied field (25, 26). Notably, metallodielec-
tric Janus particles (C∞v symmetry) translate away from their
metallic hemispheres and perpendicular to the applied field (27);
Janus doublets (C2h) (28) or active colloidal clusters (Cnh) (29,
30) rotate steadily about the axis of the field. These previous
experimental realizations only hint at the diversity of possible
particle dynamics accessible via ICEP in three dimensions.

Here, we systematically investigate the ICEP dynamics of par-
ticles of different symmetries and discuss how particle shape can
be used to encode a variety of complex dynamical behaviors. We
consider particles from each point group in 3D (31) and identify
the rotational and translational motions allowed by symmetry.
For each qualitatively distinct motion, we create specific real-
izations of the dynamics, using rigid polarizable particles of a
particular shape. The dynamics of such particles are computed
numerically using a boundary integral formulation of the elec-
trostatic and hydrodynamic problems governing ICEP motion.
In addition to linear, rotational, and circular motions reported
previously, our analysis suggests that particles of appropriate
shapes are capable of oscillatory motions, helical trajectories,
and complex periodic orbits. We show how the complexity of
the dynamics grows as the symmetry of the particle is reduced.
We discuss how complex particle trajectories can be rationally
engineered into asymmetric particles through a careful combi-
nation of simpler shapes and their accompanying motions. In
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particular, we demonstrate how ICEP particles can be designed
to achieve effective “foraging” motions within liquid environ-
ments for applications in chemical sensing or remediation (32,
33). While the present focus is ICEP, our approach is readily
extended to other shape-directed particle motions powered by
self-phoresis, hydrodynamic shear, and ultrasonic actuation (34–
36). Overall, this work represents one step toward a broader goal
of programing the organization of active particles in space and
time to create colloidal machines with bio-inspired function.

Results and Discussion
ICEP Dynamics. We consider the motion of an ideally polarizable
particle immersed in an unbounded electrolyte and subject to an
oscillating electric field, E∞(t) = E∞ cos(ωt)ez , with magnitude
E∞ and frequency ω (Fig. 1). For sufficiently small frequencies

A

B

Fig. 1. (A) A rigid, polarizable particle of complex shape is immersed in an
electrolyte and subject to an oscillating electric field, E(t). The force on the
field-induced double layer results in steady streaming flows and the con-
comitant motion of the particle. The dynamical trajectory of the particle (A,
Right) can be “programed” by engineering its symmetry and shape. Here,
the x′ (red), y′ (green), and z′ (blue) axes carve out similarly colored ribbons
to help visualize particle motion. (B) Particle shapes of different symme-
tries organized into their ICEP rotation classes. Particle colors are mapped to
denote the radial distance from the surface to the particle center.

and field strengths, the translational and rotational velocity of
the particle can be expressed as

U =
εa

η
C : E∞E∞, [1]

Ω =
ε

η
D : E∞E∞, [2]

where ε and η are, respectively, the permittivity and the viscosity
of the electrolyte, a is the size of the particle, and C and D are
dimensionless tensors (25). Importantly, these tensors share the
symmetry of the particle and are uniquely specified by its shape
and orientation. Below, we explore the space of possible particle
shapes to enumerate the different types of particle trajectories
implicit in these dynamics.

The frequency of the ac field is assumed to be slower than the
rate of ion accumulation at the particle–electrolyte interface—
that is, ω � κ/ε, where κ is the conductivity of the elec-
trolyte. At the same time, we assume that the frequency is
fast enough that oscillatory particle displacements due to elec-
trophoresis are small compared with the particle size—that is,
εζE∞/ωη � a , where ζ ∼ kBT/e is the particle zeta poten-
tial, kB is the Boltzmann constant, T is the temperature, and e
is the elementary charge (27, 28). Under these conditions, the
oscillating field results in steady particle motions independent of
the applied frequency; the results below describe these steady
(time-averaged) motions. The validity of the model also requires
that the surface potential induced by the field be smaller than
the thermal potential—that is, E∞< kBT/ea . The use of large
fields can lead to chaotic flows that disrupt the double-layer
structure and greatly reduce the particle velocity (37). In prac-
tice, however, this simple model accurately captures the phys-
ical features of ICEP motions at intermediate fields in dilute
electrolytes (38).

To describe the rigid-body motion of the particle, we introduce
two coordinate systems: a stationary system and a moving system,
which is fixed to the particle and participates in its motion (Fig.
1). A vector v′ expressed in the moving system is related to the
same vector v in the stationary system as v ′i = Rij vj , where R is
an orthogonal rotation matrix that depends on the orientation of
the particle (e.g., on the Euler angles φ, θ, ψ; Fig. 1A). Similarly,
the components of the shape tensors, C and D, in the stationary
system are related to those in the moving system as

Cijk = RpiRqjRrkC
′
pqr , [3]

Dijk = RpiRqjRrkD
′
pqr . [4]

The components C′pqr and D′pqr are independent of particle
orientation and depend only on particle shape. Knowledge
of these constants allows for computation of the particle
trajectory in accordance with Eqs. 1 and 2 and the kine-
matics of rigid-body motion (Materials and Methods). In
general, there are 18 quantities associated with each shape
tensor (27 components less 9 relations of the form Cijk =Cikj

due to the fact that E∞j E∞k =E∞k E∞j ). As previously observed
(25), particle symmetries can be used to further simplify these
tensors and thereby constrain the types of accessible particle
motions.

Particle Symmetry and Shape. The symmetry of a particle is char-
acterized by the set of operations such as reflections, rotations,
and inversions that leave the particle unchanged; each such oper-
ation can be specified by an orthogonal matrix Q. Invariance
of the particle shape with respect to the operation Q implies
the following relationships among the components of the shape
tensors:

C′ijk = QipQjqQkrC
′
pqr , [5]

D′ijk = |Q|QipQjqQkrD
′
pqr . [6]
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These symmetry relations can be used to reduce the number of
independent quantities needed to specify the shape tensors. As
a specific example, consider a particle which is invariant under
reflection about the z axis:

Q =

1 0 0
0 1 0
0 0 −1

. [7]

Eq. 5 implies that C′ijk = 0 for components with an odd number
of indexes equal to three (e.g., C′113, C′333, etc.); similarly, Eq. 6
implies D′ijk = 0 for components with an even number of indexes
equal to three (e.g., D′111, D′133, etc.). In this way, the number

Table 1. Summary of ICEP dynamics organized by rotation class and symmetry group

Rotation class Point group Primary axis Name Description

Sphere Oh, Ih None Unresponsive Does not translate or rotate.
Td None Cruiser Translates steadily in a constant direction.

D∞h Dnh, Dnd* Cn axis ‖ aligner Aligns ‖ to field.
⊥ aligner Aligns ⊥ to field.

Dn* Cn axis ‖ aligner Aligns ‖ to field with transient translation.
⊥ aligner Aligns ⊥ to field with transient translation.

Cnv* Cn axis ‖ rocket Translates ‖ to axis (‖ to field).
⊥ rocket Translates ‖ to axis (⊥ to field).

D2d S4 axis ‖ aligner Aligns ‖ to field with transient translation.
⊥ shuttle Translates ‖ to axis with φ-dependent rate.

D3h C3 axis ‖ aligner Aligns ‖ to field with transient translation.
⊥ glider Translates ⊥ to axis in φ-dependent direction.

D2h D2h C2 axis† ‖ aligner Aligns ‖ to field.
D2 C2 axis† ‖ aligner Aligns ‖ to field with transient translation.
C2v C2 axis ‖ rocket Translates ‖ to axis (‖ to field).

⊥ rocket Translates ‖ to axis (⊥ to field).
D3d D3d C3 axis ‖ aligner Aligns ‖ to field.

⊥ flipper Aligns ⊥ to field and particle rotates about field.
D3 C3 axis ‖ aligner Aligns ‖ to field with transient translation.

⊥ flipping glider Rotates and translates ⊥ to axis (‖ to field).
C3v C3 axis ‖ rocket Translates ‖ to axis (‖ to field).

⊥ flipping cruiser Traces circular orbits in plane ⊥ to field.
C4h Cnh*, S2n Cn axis ‖ spinner Aligns ‖ to field and rotates about axis.

⊥ spinner Aligns ⊥ to field and rotates about axis.
Cn* Cn axis ‖ spinning rocket Rotates and translates ‖ to axis (‖ to field).

⊥ spinning rocket Rotates and translates ‖ to axis (⊥ to field).
C3h C3 axis ‖ spinner Aligns ‖ to field and rotates about axis.

⊥ spinning glider Traces circular orbits in plane ‖ to field.
S4 S4 axis ‖ spinner Aligns ‖ to field and rotates about axis.

⊥ spinning shuttle Rotates and oscillates ‖ to axis (⊥ to field).
S6 S6 S6 axis ‖ spinner Aligns ‖ to field and rotates about axis.

Precesser Aligns oblique to field and rotates about field.
Wobbler Axis wobbles about direction ⊥ to field.

C3 C3 axis ‖ spinning rocket Rotates and translates ‖gto axis.
Precessing cruiser Traces helical paths aligned ‖ to field.
Wobbling cruiser Traces complex paths with net translation.

C2h C2h C2 axis ‖ spinner Aligns ‖ to field and rotates about axis.
⊥ spinner Aligns ⊥ to field and rotates with an oscillatory rate.
Aligner Aligns oblique to field with no motion.

C2 C2 axis ‖ spinning rocket Rotates and translates ‖ to axis at a constant rate.
⊥ spinning shuttle Rotates and translates ‖ to axis with oscillatory rate.
Cruiser Translates steadily in a constant direction.

Cs ⊥ to σ ‖ spinning glider Traces circular orbits in plane ⊥ to field.
⊥ spinning glider Traces complex orbits in plane ‖ to field.
Cruiser Translates steadily in a constant direction.

For each particle symmetry, we identify a primary axis and describe the motion relative to this axis. Note that multiple motions are possible within each
symmetry group, depending on the specific geometry of the particle. Names have three components: (i) the stable orientation of the particle axis relative
to the field (parallel, ‖; perpendicular, ⊥; or other), (ii) the type of rotational motion (align, spin, flip, wobble, precess), and (iii) the type of translational
motion (rocket, glide, shuttle, cruise). Each motion is described in more detail in SI Appendix.
*Refers to n ≥ 4.
†Refers specifically to the major C2 axis of the particle.

of independent quantities needed to specify the shape tensors
is reduced from 36 to 18; additional symmetries afford further
simplifications.

We consider particles from each of the possible point groups
in three dimensions, visualized in Fig. 1B and represented by
their Schoenflies notation (31) in Table 1 (SI Appendix, Fig. S1).
For each point group, we define a representation of the asso-
ciated shape tensors C′ijk and D′ijk with a minimal number of
parameters. For example, shape tensors of particles in the pris-
matic groups Dnh with n ≥ 3 can be expressed using a single
parameter: −D′123 = −D′132 = D′231 = D′213 = d with all
other C′ijk and D′ijk equal to zero. Particles from different point
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groups can exhibit identical ICEP dynamics—e.g., the polyhedral
groups Oh and Ih exhibit the same behavior as the sphere with
no rotational or translational motion. It is therefore convenient
to organize the different point groups into classes that share the
same dynamics.

While the symmetry of a particle can significantly constrain its
dynamics, the detailed particle shape is needed to uniquely spec-
ify the shape tensors C′ and D′. Here, we consider the family of
sphere-like particles for which the radial distance is equal to a
linear combination of spherical harmonics

r(θ, φ) =

∞∑
`=0

∑̀
m=0

Re (B`mY m
` (θ, φ)) > 0. [8]

For each particle, the shape tensors are computed numerically
using a boundary integral scheme to solve the electrostatic and
hydrodynamic problems governing particle motion (Materials
and Methods). Finally, we compute the particle dynamics by
integrating Eqs. 1 and 2 starting from a specified orientation.
We neglect effects due to Brownian motion, such that particle
dynamics are fully deterministic. Physically, this approximation
is appropriate for sufficiently large particles and fields such that
εa3E2 � kBT . Fig. 1A shows the computed trajectory for a par-
ticle with D3d symmetry.

Possible Particle Dynamics. We now survey the variety of possible
ICEP motions for particles of different symmetries and shapes.
Owing to the translational invariance of the particle dynamics,
it is possible to fully describe the rotational motion of a given
particle independent of any translational motions. It is there-
fore convenient to organize particles of different point groups
into classes that share common rotational dynamics. Within each
rotation class, the point groups can be further divided based
on the different possible translational motions. This organiza-
tional scheme is illustrated in Table 1 and serves to guide our
exploration through the space of different particle shapes. Each
rotation class is denoted by a prototypical member that pos-
sesses inversion symmetry and therefore exhibits no translational
motion.

Sphere Rotation Class. The electrokinetic flows induced around a
spherical particle are highly symmetric and result in no transla-
tion or rotational motion of the particle. Similarly, particles with
octahedral (Oh) or icosahedral (Ih) symmetry do not translate
or rotate by ICEP. Particles with tetrahedral symmetry (Td ) do
not rotate but can translate in a manner similar to D2d particles
described in the next section.

D∞h Rotation Class. Particles in the D∞h rotation class exhibit
rotational motions characteristic of anisotropic particles with
axial symmetry (e.g., cylindrical rods or spheroids). Such parti-
cles rotate to align their primary axis either parallel or perpen-
dicular to the applied field. The rotation pseudotensor D′ can be
specified by a single parameter, which determines the stable ori-
entation of the particle and the speed at which it approaches that
orientation. Taller particles (e.g., prolate spheroids) align par-
allel to the field while shorter particles (e.g., oblate spheroids)
orient perpendicular to the field (Fig. 2 A and B). More gener-
ally, we find that a particle’s aspect ratio is key to specifying its
preferred orientation in the field.

Members of this rotation class that exhibit no translational
motion include the point groups Dnh and Dnd with n ≥ 4 (e.g., an
eight-tooth gear). Other point groups—namely, Dn with n ≥ 4
(e.g., a quadruple helix)—exhibit transient motions that cease
upon reaching their stable orientation. In Table 1, these parti-
cles are labeled as aligners, which are further distinguished by
their preferred orientation parallel (‖) or perpendicular (⊥) to
the applied field. By contrast, particles of Cnv symmetry with

C∞v

A B

F

D∞h D∞h

E

C∞v

D2d

D3h

E

E

C D

Fig. 2. Representative dynamics of particles in the D∞h rotation class. (A
and B) Parallel and perpendicular aligners orient their primary axes parallel
and perpendicular to the field E. Particle shapes are characterized by the
nonzero coefficients B20 = 0.4 and−0.4, respectively. (C and D) Parallel and
perpendicular rockets align in the field and translate along their primary
axes; here, B30 = ±B20 = 0.2. (E) A perpendicular shuttle translates along its
primary axis in a direction perpendicular to the field. The velocity depends
on the particle’s orientation about that axis; here, φ = 1

4π (Top) and φ =

− 1
4π (Bottom) with B32 = −B20 = 0.5. (F) A perpendicular glider translates

perpendicular to its axis along a direction that depends on the particle’s
orientation about that axis; here, φ = 1

8π (Left) and φ = 5
24π (Right) with

B33 = −B20 = 0.4 (Movie S1).

n ≥ 4 (e.g., a pear) translate steadily in a direction parallel to
their primary axis upon reaching their final orientation. We refer
to such particles as rockets, which can move parallel or perpen-
dicular to the applied field, depending on their aspect ratio (Fig.
2 C and D). Such steady translational motion has been explored
in experimental studies on Janus particles, which belong to the
C∞v point group (27).

While the members of the D∞h rotation class have no
preferred orientation about their primary axis (i.e., no pre-
ferred φ in Fig. 1), some members exhibit translational motions
that depend on this orientation. When aligned perpendicular
to the field, particles with D2d symmetry will translate forward or
backward along their primary axis, depending on their orienta-
tion about that axis (Fig. 2E). We refer to such particles as shut-
tles, which are capable of bidirectional motion. When aligned
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perpendicular to the field, D3h particles will translate perpen-
dicular to their primary axis in a direction that depends on their
orientation about that axis (Fig. 2F). We refer to such particles as
gliders.

To summarize, particles in this rotation class are all capable
of aligning parallel or perpendicular to the applied field. We fur-
ther distinguish three particle types capable of steady translation:
Rockets move parallel to their primary axis at a constant velocity;
shuttles move parallel to their axis with a velocity that depends
on the orientation φ; and gliders move perpendicular to their axis
in a φ-dependent direction.

D2 h Rotation Class. Particles in the D2h rotation class (e.g., ellip-
soids) also rotate to align their primary axis parallel to the
applied field. However, owing to their lack of axial symmetry,
these particles exhibit transient rotations about the major axis as
they orient in the field. The translational motions of particles in
this class are similar to those of the D∞h class described above.
D2 particles exhibit transient translational motions that cease
upon reaching their stable orientation; C2v particles translate
steadily in a direction parallel or perpendicular to the applied
field depending on their aspect ratio.

D3 d Rotation Class. Particles in the D3d rotation class (e.g., an
ethane molecule) are capable of an additional elemental motion
we call flipping. When such particles align their primary axis per-
pendicular to the field, they rotate or flip head over tail at a
steady rate about the axis of the field (Fig. 3A). Particles in the
D3d point group possess inversion symmetry and therefore do
not translate. By breaking this symmetry, however, one can com-
bine flipping motions with the translational motions characteris-
tic of gliders and rockets.

When D3 particles orient perpendicular to the field, they glide
perpendicular to their axis while flipping (Fig. 3B). The net

C

D3d

D3

C3v

E

E E

A B

Fig. 3. Representative dynamics of particles in the D3d rotation class. (A)
Perpendicular flippers rotate steadily about the field axis; here, iB43 = B20 =

−0.3. (B) Perpendicular flipping gliders translate parallel to the field while
rotating about an axis parallel to the field; here, B53 =−iB43 =−B20 = 0.2.
(C) Perpendicular flipping cruisers orient perpendicular to the field and
translate perpendicular to the field while rotating about an axis parallel
to the field; here, iB43 = iB33 =−B30 = B20 =−0.2 (Movie S2).

motion is reminiscent of a rotating corkscrew that swims through
viscous surroundings. This example shows how similar motions
are achieved using very different particles—e.g., Cnv rockets and
D3 flipping gliders both translate at a steady rate along the field
axis (compare Figs. 2C and 3B). In another example, C3v parti-
cles that orient perpendicular to the field exhibit steady flipping
motions while translating along a constant direction oblique to
the particle axis. We refer to this most general form of transla-
tional motion as cruising. Such C3v flipping cruisers swim along
circular orbits within the plane perpendicular to the field (Fig.
3C). The size of the circular orbit is determined by the relative
rates of rotation and translation, which can be tuned by varying
the particle shape.

C4 h Rotation Class. Particles in the C4h rotational class (e.g., a
twisted star) exhibit steady rotational motions we call spinning
(Fig. 4 A and B). In contrast to flipping, spinning refers to rota-
tional motion about the primary axis of the particle, which can be
oriented either parallel or perpendicular to the field. Particles of
Cnh or S2n symmetry with n ≥ 4 exhibit these rotational motions
without translation. By contrast, Cn particles (e.g., a pinwheel)
lack the fore–aft symmetry of Cnh particles and therefore rocket
along their primary axis while spinning. These spinning rock-
ets move at a constant rate either parallel or perpendicular to
the field.

S6 Rotation Class. Particles in the S6 rotational class are capable
of increasingly complex rotational motions, which can be viewed
as a combination of spinning and flipping. Indeed, the rotation
tensor for these particles can be expressed as a superposition of
the C4h and D3d tensors. When such particles align their three-
fold rotation axis parallel to the field, they spin steadily just like
particles from the C4h group. Other S6 particles orient their rota-
tion axis oblique to the field and rotate steadily about the field
axis (Fig. 5A). This motion—termed precessing—is similar to
flipping but with the particle axis tilted with respect to the field.
Finally, some S6 particles are capable of simultaneous rotation
about multiple axes, which we called wobbling (Fig. 5B). The spe-
cific conditions for which each motion occurs are detailed in SI
Appendix.

Breaking the fore–aft symmetry of the S6 particles to create
C3 particles allows for translational motions. For C3 particles in
the precessing regime, the addition of steady translation oblique
to the particle axis results in helical trajectories oriented parallel
to the field (Fig. 5C). For C3 particles in the wobbling regime, we
encounter complex trajectories that combine periodic rotational
motions about multiple axes with orientation-dependent transla-
tion. During each rotation cycle, the particle translates some net
distance along a common direction. The translational motions
performed during each cycle vary widely, depending on details
of the particle shape. Fig. 5D shows one example where a C3

particle follows a zig-zag trajectory reminiscent of the patterns
used in search and rescue operations. Such complex motions
may offer desirable characteristics for improving mass transfer
to/from active colloids for applications in sensing or remediation
(32, 33).

C2 h Rotation Class. Particles in the C2h rotational class (e.g.,
the letter S) introduce a new capability—namely rotation at a
time-varying rate. The rotation tensor for these particles can be
expressed as a superposition of the C4h and D2h tensors. When
oriented perpendicular to the field, C2h particles exhibit two
competing tendencies: the steady spinning motion of C4h parti-
cles and the major-axis alignment of D2h particles. When the for-
mer tendency dominates, the particle rotates about its axis with
a speed that oscillates between fast and slow over a period of
π radians (Movie S5). Alternatively, when alignment dominates,
the particle approaches a fixed orientation (Movie S5). C2h
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C4h

B

C4h

S4C3h
t

E E

E E

A

Fig. 4. Representative dynamics of particles in the C4h rotation class. (A and
B) Spinners orient parallel or perpendicular to the field and rotate about
their primary axis; here,−iB88 = B44 = ±B20 = 0.3. (C) Spinning gliders can
trace circular orbits within planes parallel to the field; here, iB66 = −B33 =

B20 = −0.4. (D) Spinning shuttles can oscillate along a line perpendicular to
the field; here, −iB88 = B44 = −B20 = 0.3 and B32 = 0.1 (Movie S3).

particles that orient parallel to the field spin at a constant rate
as demonstrated experimentally for doublets of metallodielectric
Janus particles (28). The conditions for each possible motion are
detailed in SI Appendix.

Within this rotation class, particles of C2 or Cs (C1h) symme-
try are capable of translational motions. As in the classes above,
the breaking of fore–aft symmetry (C2h to C2) allows for transla-
tion along the particle axis to create spinning rockets that move
parallel to the field. Interestingly, those C2 particles that move
perpendicular to the field do so at an oscillatory rate as spinning
shuttles (Fig. 6A). Particles with one plane of mirror symmetry
(Cs) are of particular practical interest as they are readily fabri-
cated using common lithographic methods. When such particles
are short (plate-like), they orient their axis perpendicular to the
field and trace complex periodic orbits within a plane parallel to
the field (Fig. 6B). Tall particles orient parallel to the field and
trace circular orbits in the plane perpendicular to the field (Fig.
6C). Both C2 and Cs particles are capable of steady translation
in a fixed direction relative to the field.

Programing Particle Motion. So far, we have shown how the sym-
metry of a particle can constrain its dynamics to permit cer-
tain translational and rotational motions; the detailed shape of
the particle further specifies its unique trajectory. We now con-
sider the inverse problem: Given a desired dynamical behavior,
we seek to determine the particle shape that “encodes” those
dynamics. We limit our discussion to those motions described in
the previous section such that the necessary particle symmetry is
implied by the desired particle motion. For example, to achieve
helical motions along the field axis, one would select particles of
C3 symmetry (Fig. 5C).

The desired motion is characterized by a set of features F
such as the radius, pitch, and speed of the helical trajectory.
More generally, particle trajectories can be well approximated
by truncated Fourier series. The particle shape is specified by
some weighted combination of basis functions, which are cho-
sen to preserve the desired symmetry of the particle. Here, we
use linear combinations of spherical harmonics; however, other
choices are possible. In the forward problem, the basis function
weights B are used to specify the particle shape, compute the
shape tensors, integrate the particle motion, and determine the
features of the particle trajectory. The features are therefore a
function of the weights, F = F(B).

In designing a C3 particle, one might consider contributions
such as Y 0

2 to tune the aspect ratio, Y 0
3 to break the fore–aft sym-

metry, and a combination of Y 3
3 and Y 6

6 to control the threefold
rotational symmetry. For near-spherical particles, increasing the
magnitude of a particular basis function increases the speed of
the associated particle motions. Increasing the Y 0

2 contribution
(D∞h symmetry) causes the particle to align more quickly in the
field; increasing the Y 0

3 contribution (C∞v symmetry) results in
faster translation; and increasing the Y 3

3 and Y 6
6 contributions

(C3h symmetry) drives faster spinning motions. In general, these
changes in the particle velocity are neither linear nor indepen-
dent from one another.

In the inverse problem, we are given the desired features F0

and seek to determine a set of weights such that F(B) = F0. When
the number of weights is equal to the number of features, this
problem involves solving a system of nonlinear equations, which
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Fig. 5. Characteristic dynamics of particles in the S6 rotation class. (A) A
precesser aligns its primary axis oblique to the field and rotates about an
axis parallel to the field; here, −iB66 = B43 = 0.7 and B20 = 0.1. (B) The
primary axis of a wobbler traces periodic orbits as the particle spins about
that axis; here, −iB66 = B43 = 0.3 and B20 = 0.04. (C) A precessing cruiser
aligns its primary axis oblique to the field and translates along a helical
trajectory; here, iB66 = B20 = −0.09726, B43 = 0.2024, and B30 = 0.3889.
(D) A wobbling cruiser translates in different directions, depending on its
orientation as it rotates; here, −iB66 = B43 = B33 = 0.5 and B20 = −0.1
(Movie S4).
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Fig. 6. (A) A perpendicular spinning shuttle translates along its primary
axis in a direction perpendicular to the field while rotating about that axis
at an oscillatory rate; here, −iB44 = B32 = 0.5, B30 = 0.01, and B20 = −0.4.
(B) A perpendicular spinning glider translates perpendicular to its axis as it
rotates about its axis; here, −iB88 = B44 = 0.3, B33 = 0.1, and B20 = −0.2.
(C) A parallel spinning glider translates perpendicular to its axis as it rotates
about its axis, leading to orbital motions in a plane perpendicular to the
field; here, −iB88 = B44 = 0.3, B33 = 0.5, and B20 = 0.2 (Movie S5).

can be solved numerically (e.g., using Newton’s method). When
the number of weights is greater than the number of features, the
problem is underdetermined, and the constraints must be aug-
mented by an additional objective function to be minimized. We
solved this optimization problem using sequential quadratic pro-
graming (SQP) (39) with the objective function O(B) = B · B.
This choice ensures that the particle is as “sphere-like” as possi-
ble while retaining the desired dynamical features. Fig. 5C shows
the helical trajectory of a C3 particle that was rationally designed
to have a radius of precisely 7a , a pitch of 5a , and a speed of
0.05εaE2

∞/η.
It is important to note that there are particle motions which

cannot be accessed by ICEP. Owing to the invariance of the
dynamics with respect to rotation about the axis of the field,
the angular velocity of the particle depends on only two vari-
ables (e.g., Euler angles φ and θ). Chaotic motions are therefore
prohibited by the Poincare–Bendixson theorem (40); the particle
orientation evolves in time to a constant value (a fixed point) or
to a periodic function of time (a limit cycle).

In experimental practice, the “encoding” of colloidal motions
into particle shapes remains challenging. Recent advances in col-
loidal synthesis offer routes to low-symmetry particles such as
colloidal doublets, trimers, and tetramers (5, 6, 41); however,
most of the particles described here are currently inaccessible
to bottom–up synthetic approaches. By contrast, top–down fab-
rication techniques such as two-photon lithography (42, 43) now

enable one to “print” micrometer-scale particles of arbitrary, 3D
shapes with features on the scale of tens of nanometers. As a
demonstration, we printed a C2 particle of prescribed shape with
a radius of 5 µm (SI Appendix, Fig. S20). Such polymeric parti-
cles could be coated with a metal layer by electroless deposition
to create the kinds of polarizable particles studied here (44, 45).

Sensitivity on Particle Shape. The ability to precisely prescribe a
particle’s motion demands similar precision over the particle’s
shape, which may be difficult to achieve in experiment. It is there-
fore important to consider the sensitivity of such motions with
respect to perturbations in the particle shape. Specifically, we
consider how the shape tensors, C′ and D′, respond to small
changes in the basis function weights B (here, the coefficients
B`m). We limit our discussion to small perturbations, for which
the shape tensors are linear functions of the perturbations ∆B
about the desired shape B0,

C′(B) ≈ C′(B0) + ∆B·∇BC
′(B0). [9]

The sensitivity matrix ∇BC
′(B0) characterizes how the particle

velocity changes upon small changes in its shape.
For a spherical particle (B0 = 0), there are only few basis

functions that contribute to particle motions at first order. The
addition of spherical harmonics Y m

` with `= 2 leads to rota-
tional motions like those of aligners with D∞h or D2h symme-
try. Perturbations with `= 3 lead to translational motions like
those of rockets (C∞v , C2v ), gliders (C3h), and shuttles (D2d ).
Motions associated with other rotation classes (e.g., flipping,
spinning, wobbling, etc.) are prohibited at this order (SI Appen-
dix, Fig. S16).

A particle’s sensitivity to small perturbations depends on its
shape (i.e., on B0). Spheroidal particles with D∞h symmetry are
susceptible to the same perturbations that affect spheres but also
to new perturbations of lower symmetry. In particular, the addi-
tion of spherical harmonics Y 1

4 and Y 3
4 leads to spinning and

flipping motions characteristic of C2h and D3d particles, respec-
tively. In general, particles of lower symmetry are susceptible to
more types of perturbations in their shape.

In the linear regime, the effects of individual perturbations can
be added together to describe the particle’s response. Higher-
order mixing of two or more perturbations is prohibited. For
example, there exists no small defect that will cause a D∞h

aligner to spin about its axis like a C4h particle. Creating four-
fold rotation symmetry without the mirror symmetries of D4h

particles cannot be achieved by a single spherical harmonic. By
contrast, D4h aligners, whose dynamics are otherwise indistin-
guishable from those of D∞h particles, are susceptible to linear
perturbations that lead to spinning motions.

For low-symmetry shapes, just about any perturbation will
alter the shape tensors at first order but by different amounts.
The addition of spherical harmonics of low order ` has a larger
impact on particle motions than the addition of those of higher
order. This observation suggests that large-scale defects accom-
panying particle fabrication are more likely to disrupt the desired
particle motions than small-scale defects due to surface rough-
ness. The sensitivity of particle motions to defects could likely be
mitigated by altering the objective function O(B) to favor parti-
cle shapes that are less sensitive to specified perturbations.

Brownian Motion. The effects of Brownian motion may be sig-
nificant for smaller particles or weaker fields. The relative
importance of electrokinetic vs. diffusive particle motions is
quantified by dimensionless Péclet numbers for translation and
rotation: Pet =Ua/Dt and Per = Ω/Dr , respectively, where
Dt = kBT/6πηa and Dr = kBT/8πηa

3 are the translational and
rotational diffusivities for spherical particles of comparable size.
The above analysis assumes that the Péclet numbers are large
(Pet � 1 and Per � 1), which is often the case in experiment
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(e.g., Pe ∼ 103 in ref. 27). Nevertheless, it is interesting to con-
sider how shape-dependent diffusive motions may interact with
those due to ICEP of smaller particles subject to weaker fields.

We therefore simulated the Brownian dynamics of parti-
cles subject to applied fields at various dimensionless tem-
peratures β= kBT/a

3εE2
∞ corresponding to different Péclet

numbers (Pe∼β−1; Materials and Methods). At long times, par-
ticles exhibit anisotropic enhancements in their translational dif-
fusion due to the applied field. Such motions are characterized
by diffusion coefficients D‖ and D⊥ for displacements paral-
lel and perpendicular to the field. In general, these coefficients
are different from one another and greater than that of pas-
sive particles in the absence of the field. To understand these
trends, it is instructive to consider the dynamics of a parallel
rocket (Fig. 2C). In the absence of Brownian motion, such par-
ticles align and translate parallel to the field. At finite temper-
atures β ∼ 1, the particle orientation fluctuates, causing it to
translate sometimes with and other times against the direction
of the field. The particle thereby performs a random walk along
the field axis, resulting in field-enhanced diffusion, D‖>Dt (SI
Appendix, Fig. S18). Motions perpendicular to the field can be
similarly enhanced (SI Appendix, Fig. S19). The specific values of
D‖ and D⊥ depend on the particle shape and the dimensionless
temperature β.

Boundaries and Interactions. Realizing the 3D motions described
here would likely require density-matched materials to avoid
sedimentation of the microparticles onto system boundaries.
The presence of such boundaries—neglected in the present
analysis—can alter the dynamics of active colloids by modifying
the electric field and the accompanying fluid flows (46). For a sin-
gle planar wall oriented normal to the applied field (z direction),
the particle velocity is still described by Eqs. 1 and 2 such that
Ui ∝ C′i33 and Ωi ∝ D′i33. However, the shape tensors are no
longer constant; they depend on the orientation and position of
the particle relative to the wall. As a result, new types of particle
motions become possible.

Such motions are constrained by the symmetry of the particle–
wall system, not just the particle itself. For example, a sphere
near a wall has C∞v symmetry; the particle velocity must share
this symmetry such that U = [0, 0,U3] and Ω = 0. Spheres are
attracted or repelled by walls at a rate dependent on the surface
separation. Additional physical considerations reveal that con-
ductive spheres are attracted to conducting walls normal to the
field but repelled by insulating walls parallel to the field (46).
Notably, the symmetry constraints of ICEP motions near a pla-
nar wall are identical to those of self-phoretic colloids near a wall,
as illustrated by the specific case of Janus spheres (46–48).

The symmetry of the particle–wall system can change, depend-
ing on the particle orientation. A C4h spinner might orient its
rotation axis parallel or perpendicular to the field to create a sys-
tem with C4 or Cs symmetry, respectively. In the parallel orien-
tation, C4h particles are expected to spin about their axis while
translating to or away from the wall. In the perpendicular orien-
tation, particles of the same symmetry can spin while translating
perpendicular to the particle axis to perform complex periodic
orbits superimposed on steady motions parallel and/or perpen-
dicular to the field (compare Fig. 6B). Interestingly, the same
particle may even switch its preferred orientation as a function
the surface separation, thereby changing the symmetry of the sys-
tem in time.

Within bulk dispersions, long-ranged particle interactions can
also influence ICEP motions. In the far field, each particle cre-
ates an electrostatic disturbance like that of a charge dipole as
well as a hydrodynamic disturbance like that of a force dipole
[a so-called stresslet of the “puller” variety (49)]. These distur-
bances cause particles to attract one another along the direction
of the field and then repel along a perpendicular direction (50,

51). Combined with linear self-propulsion, such hydrodynamic
interactions can lead to stable “flocks” of particles moving in
a common direction (52). These and other collective motions
should depend on the individual particle trajectories and their
near-field interactions, both of which are controlled by parti-
cle shape. It may therefore be possible to extend the present
concept of shape-based programing to direct colloidal dynamics
within ensembles of active particles. Recent experimental results
highlight opportunities for creating complex dynamic assemblies
using shape-directed ICEP motions (29, 30, 53, 54).

Conclusions
Low-symmetry particles can exhibit complex dynamics powered
by induced-charge electrophoresis in three dimensions. In con-
trast to motions of self-phoretic particles, the ICEP velocity
depends on the particle orientation relative to the applied field.
The field can therefore serve to guide particle motions along
intricate cycles of rotation and translation. These motions are
largely dictated by particle symmetry and can be uniquely pre-
scribed by engineering particle shape. The diversity of particle
trajectories described here may offer useful functions as col-
loidal clocks (C2h), oscillators (S4), and foragers (C3), as well as
switchable dispersions, in which the application of a field intro-
duces new length scales (e.g., the radius and pitch of a helical
trajectory) and thereby new properties (e.g., a change in optical
response). Beyond ICEP, it will be interesting to systematically
explore the types of shape-directed particle motions powered by
other energy inputs such as hydrodynamic shear and asymmetric
acoustic streaming. Beyond the motions of individual particles,
shape is also expected to influence the collective dynamics of
more concentrated dispersions of active colloids. Just as particle
shape has played an essential role in directing colloidal assem-
blies at equilibrium, we anticipate the role of shape will only grow
in pursuit of dissipative assemblies or colloidal machines capable
of dynamic functions.

Materials and Methods
The formulation of the ICEP problem below follows closely that of Squires
and Bazant (26). Additionally, we introduce a boundary integral formulation
of the problem and describe its numerical solution.

Electrostatics. The electric potential Φ(x) surrounding the particle satisfies
the Laplace equation

∇2
Φ(x) = 0, [10]

where the origin of the position vector x is chosen as the center of the
particle. This expression assumes that the electric double-layer thickness is
much smaller than the size of the particle, such that there is no free charge
in solution. At the particle surface Sp, the normal component of the ionic
current is zero such that

n · ∇Φ(x) = 0 for x ∈ Sp, [11]

where n is the unit normal vector directed out from the surface. Far from the
particle, the potential approaches the externally applied potential Φ∞(x),

Φ(x) = Φ
∞(x) = −E∞ · x for |x| → ∞, [12]

where E∞ is the constant electric field. Eqs. 10–12 imply that the electric
potential on the surface of the particle is governed by the integral equation

Φ(x) = Φ
∞(x)−

∫
Sp

[Φ(y)− Φ(x)]
n(y) · r
4πr3

dS(y), [13]

where r = y − x (see SI Appendix for details) (55). As detailed below, the
integral Eq. 13 is solved numerically to determine the potential and the
potential gradient on the particle surface.

Hydrodynamics. The fluid flows around the particle are described by the
Stokes equations for creeping flow,

∇ · σ = −∇p + η∇2u = 0 and ∇ · u = 0, [14]

where u(x) is the velocity, p(x) is the pressure, σ(x) is the stress tensor, and η
is the fluid viscosity. The particle moves as a rigid body with a translational
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velocity U and angular velocity Ω. Here, we adopt a moving frame of refer-
ence centered on the particle. In this frame, there is no flow normal to the
particle surface

n · u = 0 for x ∈ Sp. [15]

The force of the electric field on the field-induced double layer induces a
slip velocity us tangential to the particle surface

t · u = t · us = t ·
(
ε

η
ζ(x)∇Φ(x)

)
for x ∈ Sp, [16]

where t is a unit vector tangent to the surface, and ζ(x) is the spatially
dependent zeta potential. Here, ζ(x) = C − Φ(x), where C is a constant
chosen such that surface averaged zeta potential is zero. Far from the parti-
cle, the velocity approaches

u(x) = −(U + Ω× x) for x→∞. [17]

The translational and rotational velocities are determined by the constraints
that there is no net force or torque acting on the particle,

F =

∫
Sp

f(y)dS(y) = 0 and L =

∫
Sp

y× f(y)dS(y) = 0, [18]

where f = σ · n is the stress on the surface. Rather than solve this problem
directly, it is convenient to make use of the Lorentz reciprocal theorem to
obtain (26, 56)

F̂ · U + L̂ ·Ω = −
∫

Sp

us(y) · f̂(y)dS(y), [19]

where f̂ = σ̂ · n is the stress due to the same particle undergoing pure
translational or rotational motion through a quiescent fluid; F̂ and L̂ are the
force and torque due to this associated Stokes flow. The stress f̂(x) is given
by the integral equation

0 = û∞
j (x)−

1

8πη

∫
Sp

(
δij

r
+

rirj

r3

)
f̂i(y)dS(y), [20]

(see SI Appendix for details). The velocity far from the particle is that due to
pure translation and/or rotation

û∞(x) = −(Û + Ω̂× x) for x→∞. [21]

Solving the integral Eq. 20 numerically gives the stress f̂(x), from which the
force F̂ and torque T̂ are evaluated. The desired particle velocity U and Ω

are computed using Eq. 19.

Numerical Solution. The integral equations above are solved numerically
using Lebedev quadrature (57) over surfaces parameterized by the spher-
ical angles θ and φ. In this approach, integrals are approximated as∫ 2π

0

∫ π

0
g(θ, φ) sin θdθ dφ ≈

N∑
q=1

wqg(θq, φq), [22]

where the grid points (θq, φq) have octahedral rotation and inversion sym-
metry, and the grid weights wi enable the exact integration of spherical
harmonics up to a given order. To circumvent the challenges associated with
the singular integrand in Eq. 13, we introduce an alternative Green’s-like
function Gα(x, y) for the potential at point y due to a Gaussian charge dis-
tribution of width α1/2 centered at point x. This function approaches the
standard Green’s function for a point charge in an unbounded medium in
the limit as α→ 0. The integral Eq. 13 for the potential is then divided into
two components: (i) a far-field contribution using the Gaussian-modulated

Green’s function and (ii) a near-field correction that contains the singular-
ity. The first component is nonsingular and can be computed numerically
using Lebedev quadrature and a linear solver [MATLAB’s gmres() function];
the second one is nonzero only in the vicinity of the singularity and can be
approximated analytically. We use an analogous approach for computing
the hydrodynamic integral Eq. 20 with a similarly filtered Green’s function
(58) (see SI Appendix for details).

For a given orientation of the applied field, the above approach was
used to compute the translational and rotational velocity of the par-
ticle. This process was repeated for multiple orientations—typically, the
38 points of the ninth-order Lebedev grid. The nonzero tensor coeffi-
cients were then estimated by linear regression of Eqs. 1 and 2. Given
the shape tensors, the equations of motion were integrated numer-
ically using MATLAB’s ode113() Adams–Bashforth–Moulton solver (59);
particle orientation was represented and integrated using unit quater-
nions (60).

Effects of Brownian Motion. To describe the effects of Brownian motion on
the shape-directed dynamics of particles moving by ICEP, we start from the
Langevin equation for translational and rotational motion,

m ·
dU
dt

= FE + FH + FB, [23]

where m is a generalized mass/moment-of-inertia tensor, U = (U, Ω) is the
particle translational/rotational velocity vector, FE =(FE , LE) is the electric
force/torque vector, FH is the hydrodynamic force/torque vector, and FB

is the stochastic force/torque that gives rise to Brownian motion (61). At
low Reynolds numbers, the hydrodynamic force on the particle is linearly
related to its velocity as veFH =−R · U , where R is the hydrodynamic
resistance tensor. Consistent with Eqs. 1 and 2 for the ICEP velocity, the
electric force is equal and opposite to the hydrodynamic force, FE =−FH.
The stochastic force/torque FB arises from thermal fluctuations and is
characterized by

〈FB〉 = 0 and 〈FB(0)FB(t)〉 = 2kBTRδ(t), [24]

where kBT is the thermal energy, the angle brackets denote an ensemble
average, and δ(t) denotes the delta function.

Like the shape tensors C′ and D′, the resistance tensor in the particle
frame is constrained by the particle symmetry (62). In particular, the sym-
metric resistance tensor can be divided as

R =

(
RFU RFΩ

RLU RLΩ

)
, [25]

where RFU is the symmetric translation tensor, RLΩ is the symmetric rota-
tion tensor, and RLU = RT

FΩ is the coupling pseudotensor. These tensors
and pseudotensors satisfy symmetry relations analogous to Eqs. 5 and 6.
With these constraints, the resistance tensors were computed numerically,
using the boundary integral formulation detailed in the previous section.
The Langevin equation (Eq. 23) was integrated numerically in the over-
damped regime, using Fixman’s midpoint scheme with a constant time step
of ∆t = 0.1η/εE2

∞ (63). As in the deterministic simulations, the particle
orientation was parameterized using normalized quaternions.
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