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Molecular interventions that limit pathogenic CNS inflammation are
used to treat autoimmune conditions such as multiple sclerosis (MS).
Remarkably, IL-1β–knockout mice are highly resistant to experimen-
tal autoimmune encephalomyelitis (EAE), an animal model of MS.
Here, we show that interfering with the IL-1β/IL-1R1 axis severely
impairs the transmigration of myeloid cells across central nervous
system (CNS) endothelial cells (ECs). Notably, we report that IL-1β
expression by inflammatory CCR2hi monocytes favors their entry into
the spinal cord before EAE onset. Following activation with IL-1β,
CNS ECs release GM-CSF, which in turn converts monocytes into
antigen-presenting cells (APCs). Accordingly, spinal cord-infiltrated
monocyte-derived APCs are associated with dividing CD4+ T cells.
Factors released from the interaction between IL-1β–competent my-
eloid cells and CD4+ T cells are highly toxic to neurons. Together, our
results suggest that IL-1β signaling is an entry point for targeting
both the initiation and exacerbation of neuroinflammation.

autoimmunity | blood–brain barrier | experimental autoimmune
encephalomyelitis | interleukin-1β | multiple sclerosis

Multiple sclerosis (MS) is a neuroinflammatory disease
characterized by episodes of inflammatory attacks and

ultimately neurodegeneration of the central nervous system
(CNS) (1). While numerous drugs that target immunological
pathways have shown beneficial effects on patients with relapsing-
remitting MS (2), there is currently no cure for this disease. The
difficulties seen in treating people living with MS arise from the
fact that to this day, the specific causes of the disease are still
unknown. It has been proposed that both genetic and environ-
mental factors have a significant role in the pathology (1). One
of the tools used to understand the immunopathology of MS is
its animal model experimental autoimmune encephalomyelitis
(EAE). Although MS and EAE show important disparities,
some key parallels have been identified over the recent years,
one of which is the involvement of the interleukin-1 (IL-1)
system (3).
The IL-1 pathway is composed of two cytokines, IL-1α and IL-

1β, which bind the same receptor, IL-1R1 (4). Recently, our
group showed that while IL-1α is dispensable for CNS autoim-
munity, IL-1β production by neutrophils and monocyte-derived
macrophages (MDMs) is crucial for EAE development (5).
While the importance of neutrophils in MS and EAE remains
the subject of debate (6), the role of inflammatory monocytes
and their derivatives inside inflamed tissues—that is, macro-
phages and monocyte-derived dendritic cells (moDCs)—in the
pathogenesis of EAE and MS has been much more clearly de-
fined. Indeed, EAE development is severely impacted by the
absence of Ly6Chi CCR2hi monocytes (7–10), while strong as-
sociations implicating monocytes have been reported in MS
patients (11–13). Interestingly, Croxford et al. (10) recently
identified CCR2hi monocytes as the target of the encephalito-

genic cytokine GM-CSF, which ultimately leads to an increase in
their production of IL-1β. Similarly, pertussis toxin, which po-
tentiates EAE induction, has also been shown to induce the
production of IL-1β by myeloid cells in secondary lymphoid or-
gans (14–16). In addition, IL-1R1 was recently shown to be highly
expressed on endothelial cells (ECs) lining leptomeningeal veins
(5, 17).
Nevertheless, we and others have demonstrated that ECs are

not the only relevant IL-1R1–expressing cells in EAE (5, 18).
Indeed, CD4+ T cells are known to be highly responsive to IL-1β,
with TH17 cells expressing significantly higher levels of IL-
1R1 compared with other T-cell subsets (reviewed by ref. 3). One
reported effect of IL-1β treatment on pathogenic T cells is the
increased production of GM-CSF, which correlates with their
encephalitogenecity (10, 15, 19). Interestingly, deletion of the
Il1r1 gene from CD4+ T cells was shown to impact expansion but
not generation of autoreactive TH17 cells, while only mildly af-
fecting EAE development (16).
Here, we sought to investigate the IL-1β–mediated mecha-

nisms that exacerbate EAE and found that they involve both
myeloid and lymphoid cell populations. First, we discovered that
myeloid cell transmigration is greatly affected by their lack of IL-
1β. In particular, we report that IL-1β expression by CCR2hi
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monocytes is necessary for their transmigration across CNS
blood vessels in vivo—a response that occurs before the onset of
disease. Second, we detected a marked reduction in the activa-
tion of pathogenic CD4+ T cells when the Il1b gene is deleted in
antigen-presenting cells (APCs) but not when deleted from
CD4+ T cells. We also demonstrated that these effects are me-
diated directly by the action of APC-derived IL-1β on CD4+

T cells and not through their expression of CD80, CD86, and
MHC class II (MHCII). Importantly, our data revealed that the
production of IL-1β by APCs in the presence of myelin-reactive
CD4+ T cells is absolutely critical to the release of factors that
are highly toxic to neurons. Finally, we report that IL-1β–
deficient mice that possess endogenous MOG35–55-specific
T cells are completely protected from EAE and autoimmunity-
induced death. Collectively, our data show that IL-1β potentiates
the activation and response of autoreactive CD4+ T cells and is
crucial for recruitment of CCR2hi inflammatory monocytes into
the CNS during EAE. Our results suggest that the IL-1β/IL-
1R1 axis is a key component in the initiation and exacerbation of
neuroinflammation during EAE and MS. Consequently, it pro-
vides interesting ways to think about therapeutic avenues for
neuroprotection in CNS autoimmune inflammatory diseases
such as MS.

Results
IL-1β Deficiency Affects the Number of Circulating and Splenic
Myeloid Cells After EAE Induction. To understand how mice lack-
ing IL-1β are protected from EAE, we first studied the compo-
sition and numbers of the various leukocyte populations
distributed in the bone marrow, blood, and spleen of naïve or
immunized WT or Il1b−/− mice. Comparable frequencies of
neutrophils and both inflammatory (Ly6Chi) and patrolling
(Ly6Clow) monocytes were observed in the bone marrow of naïve
WT and Il1b−/− mice (Fig. 1 A and B). Although Il1b−/− mice
showed significant reductions in the proportion and total number
of CD4+ T cells, this difference was small (Fig. 1 A and B). At 7 d
postimmunization (d.p.i.), all four of these cell populations were
reduced in number in the bone marrow, suggesting immune cell
egress from the bone marrow to the circulation and lymphoid
organs (Fig. 1B). Accordingly, the total number of blood leu-
kocytes drastically increased (>10-fold over naive) after immu-
nization (Fig. 1D). Interestingly, immunized mice lacking IL-1β
displayed a reduced number of blood neutrophils compared with
WT mice (Fig. 1 C and D). A closer look at the spleen, an im-
portant secondary lymphoid organ and reservoir of myeloid cells,
revealed an important mobilization of blood leukocytes, espe-
cially neutrophils and inflammatory monocytes/macrophages
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Fig. 1. Myeloid cell egress from the bone marrow and homing to lymphoid organs during EAE are compromised in the absence of IL-1β. (A–D) Quantification
of the number of neutrophils, CD4+ T cells, as well as Ly6Chi and Ly6Clow monocytes (CD115+) in the bone marrow (A and B) and blood (C and D) of un-
immunized (naive) mice and immunized (EAE) mice killed at 7 d.p.i. (E and F) Quantification of the number of neutrophils, CD4+ T cells, Ly6Chi monocytes/
macrophages (Ly6Chi Mo/MØ), moDCs, and DCs present in the spleen of WT and Il1b−/− mice at 7 d.p.i. Data are shown either as a percentage of
CD45 leukocytes (A, C, and E) or as total number of cells per femur (B), milliliter of blood (D), or spleen (F). *P < 0.05, **P < 0.01, ***P < 0.001; two-way
ANOVA followed by a Bonferroni post hoc test; data shown are mean ± SEM, n = 5–6 animals per group. Data are representative of at least two independent
experiments.
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(Ly6Chi Mo/MØ), after immunization (Fig. 1F). However, the
ratios and total numbers of splenic neutrophils and inflammatory
monocytes/macrophages were significantly reduced in Il1b−/−

mice compared with WT controls after immunization, results
that are consistent with what was observed in the blood (Fig. 1 E
and F). Together, these results show that the mobilization of
neutrophils and inflammatory monocytes to the blood and spleen
is strongly affected by the presence of IL-1β following EAE
induction.

Monocyte and Neutrophil Transmigration Across CNS ECs Is Severely
Impaired When IL-1β Signaling Is Compromised. We next wanted to
determine whether the reduced number of neutrophils in the
bloodstream of Il1b−/− mice could explain their resistance to
developing EAE. We therefore used a passive transfer strategy in
which we collected neutrophils from the bone marrow of im-
munized WT mice and injected them into immunized Il1b−/−

recipient mice (see SI Methods for details). Importantly, EAE
susceptibility was not restored in Il1b−/− mice upon transfer of
IL-1β–competent neutrophils (Table 1). Having previously
demonstrated that IL-1β production is increased during the
transmigration of myeloid cells across CNS ECs (5), we in-
vestigated the importance of IL-1R1 signaling for the migration
of IL-1β–producing cells into the CNS. We found that ECs of the
spinal cord of immunized WT mice up-regulated intercellular
cell adhesion molecule (ICAM)-1 protein and, to a lesser degree,
vascular cell adhesion molecule (VCAM)-1 protein during the
preonset period (Fig. 2 A and B and Fig. S1 A–D). Similarly,
human brain microvascular endothelial cells (BMECs) also dis-
played a higher expression of ICAM-1 compared with VCAM-
1 following treatment with IL-1β (Fig. S1 E and F). Despite
showing reduced ICAM-1 and VCAM-1 expression compared
with WT controls, CNS ECs from Il1b−/− mice also displayed
increased levels of both ICAM-1 and VCAM-1 after immuni-
zation. Accordingly, although fewer myeloid cells were found in
the blood of Il1b−/− mice, these cells retain their ability to roll
and adhere to spinal cord blood vessels before EAE onset (Fig.
2C and Movies S1 and S2). However, live imaging of the spinal
cord of Il1b−/− mice at 12 d.p.i. revealed that neutrophils and
monocytes were unable to reach the spinal cord parenchyma and
that adherent cells eventually detached from the CNS vascula-
ture (Fig. 2C and Movies S1 and S2). Considering that immune
cell infiltration in the spinal cord of Il1b−/− mice is not observed
until weeks after the onset of EAE in WT controls (5), we next
investigated the involvement of IL-1β signaling in the trans-
migration events leading to the entry of myeloid cells in the CNS
parenchyma. Using an in vitro transmigration assay, we evalu-
ated the capability of IL-1β–producing myeloid cells (neutrophils
and monocytes) to migrate across a monolayer of primary
BMECs (see SI Methods for details). Significantly fewer myeloid
cells migrated across Il1r1−/− BMECs as opposed to across WT
BMECs (Fig. 2D). Similar results were obtained when the cells
were cultured with the IL-1R1 antagonist anakinra or with an
anti–IL-1β blocking antibody (Fig. 2E). Moreover, the trans-
migration of monocytes and neutrophils isolated from Il1b−/−

mice was significantly reduced compared with those isolated
from WT controls (Fig. 2F). Together, these results suggest that

adhesion and transmigration events required for the re-
cruitment of myeloid cells to the CNS are deeply affected by
the lack of IL-1β.

IL-1β Expression Favors the Migration of Inflammatory Monocytes,
but Not Neutrophils, into the Spinal Cord Before EAE Onset. To an-
alyze the effect of IL-1β on the recruitment of myeloid cells to
the spinal cord, we generated mixed bone marrow chimeras us-
ing a 50/50 mix of WT (β-actin–GFP) and Il1b−/− bone marrow
transferred to congenic CD45.1+ recipients (Fig. 3A). We next
immunized BM chimeric mice, collecting peripheral blood and
spinal cord-infiltrating mononuclear cells at two different time
points: before onset of paralysis (“preonset”; EAE score of 0,
11 d.p.i.) and at disease onset (“onset”; EAE score of 0.5–1, 13–
18 d.p.i.) (Fig. 3B). The percentage of WT cells (GFP+) in the
blood accounted for 25% of all CD45.2+ leukocytes under
baseline conditions. This ratio did not significantly change in the
blood from baseline to preonset or onset. Notably, the ratio of WT
versus Il1b−/− neutrophils (CD45.2+CD11b+Ly6G+) in the spinal
cord was comparable to the baseline ratio in the blood at both
preonset and onset, suggesting that neutrophils reach the CNS in
an IL-1β–independent fashion. In contrast, the proportion of WT
inflammatory monocytes (CD45.2+CD11b+F4/80+CCR2hi) mea-
sured in the spinal cord was significantly higher than baseline both
at preonset and at onset of EAE (Fig. 3 D and E). After EAE
onset, the WT-to-Il1b−/− ratio of CCR2+ monocytes decreased
significantly, a result that suggests that IL-1β expression is
mostly important for the first wave of infiltration (Fig. 3 D and
E). While neutrophil numbers in the blood normally exceed
those of CCR2hi monocytes by a ratio of 4:1, the situation
drastically changed in the CNS tissue to reach a 1:1 ratio,
suggesting that recruitment cues favor monocytes over neu-
trophils just before EAE onset (Fig. 3F). Using two-photon
intravital microscopy (2P-IVM) (SI Methods), we confirmed
that the recruitment of CCR2hi monocytes to the spinal cord
occurred within leptomeningeal vessels (Fig. 3 G and H), blood
vessels that express high levels of IL-1R1 (5). Together, these
results suggest that the expression of IL-1β by pioneering
CCR2hi monocytes is required for their migration to the spinal
cord parenchyma.

Spinal Cord-Infiltrated Monocytes Display an APC Phenotype and Are
Associated with Dividing CD4+ T Cells. We next sought to charac-
terize the phenotype of IL-1β–producing cells that entered the
CNS. In the context of adaptive immunity, monocytes play a
crucial role in both priming and propagating tissue-specific
CD4+ T-cell responses. They up-regulate MHCII molecules,
which present cognate antigen to T cells, as well as T-cell cos-
timulatory ligands, such as CD86, which license full T-cell re-
sponses. Further, both MHCII and CD86 have been associated
with the inflammatory (M1) macrophage phenotype in the spinal
cord (20). Using the LysM-eGFP reporter mouse line that ex-
presses eGFP in mature cells of the granulomyelomonocytic
lineage, which mainly includes neutrophils and MDMs, we ob-
served that blood-derived myeloid cells express MHCII and
CD86 (Fig. 4 A and B). Using an antibody directed against Iba1,
a microglia and macrophage marker, we were able to confirm
that most of the MHCII-expressing blood-derived myeloid cells
(LysM+) were MDMs (Fig. S2A). Such cells were not present in
the spinal cord parenchyma of IL-1β–deficient mice. Accord-
ingly, a high density of CD4+ T cells was found in close proximity
to infiltrating myeloid cells in WT but not in Il1b−/− mice (Fig.
4C). Furthermore, the presence of the cell division marker Ki67 in
CD4+ T cells indicated the occurrence of T-cell reactivation in the
spinal cord of WT mice with EAE but not in immunized Il1b−/−

mice (Fig. 4D). We have previously shown that IL-1β–activated
CNS ECs express several inflammatory cytokines that are required
for EAE development, including GM-CSF (5). To investigate
whether cytokines secreted by IL-1β–activated BMECs are suffi-
cient to induce an APC phenotype on monocytes, we treated
primary mouse monocytes with conditioned media derived from

Table 1. Transfer of neutrophils to Il1b−/− mice does not restore
EAE

Group Incidence
Mean day of
onset (±SEM)

Max score
(±SEM)

WT 100% 10.83 (0.48) 2.42 (0.37)
Neutrophils → WT* 67% 10.25 (1.11) 1.92 (0.61)
Neutrophils → Il1b−/−* 0% — —

n = 6 per group.
*5 × 106 neutrophils transferred i.p. on day 3, 5, and 7. Animals were fol-
lowed for 21 d.
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BMECs cultured in the presence or absence of IL-1β and assessed
the expression of APC-associated markers in Ly6Chi and Ly6Cint

monocytes by flow cytometry (Fig. 4E). Media from IL-1β–treated
BMECs significantly increased the expression of costimulatory
molecules CD80 and CD86 on Ly6Chi monocytes. However, ex-
pression of MHCII and the activation marker CD11c were un-
changed in Ly6Chi cells upon treatment (Fig. 4F and Fig. S2B).
Ly6Cint monocytes showed a marked up-regulation of CD11c,
CD80, CD86, and MHCII when cultured with conditioned media
from IL-1β–stimulated BMECs (Fig. 4G and Fig. S2C). Given
their intermediate expression of Ly6C and high levels of CD11c,
the immunophenotype adopted by Ly6Cint monocytes was remi-
niscent of that of splenic moDCs (Fig. 1E). Interestingly, the
neutralization of GM-CSF in the media largely abolished the up-
regulation of most APC markers in both monocyte populations,
suggesting that IL-1β–induced GM-CSF release was mainly re-
sponsible for the acquisition of the APC phenotype (Fig. 4 F and
G). IL-1β alone did not impact the expression of the four markers
(Fig. 4 F and G), indicating that adoption of an APC-like phe-
notype by Ly6Cint/hi monocytes was the result of IL-1β–induced
alterations to BMECs and not merely to residual IL-1β in the
conditioned media. Together, these results suggest that blood-
derived monocytes that migrate across the blood–spinal cord
barrier (BSCB) adopt an APC phenotype under the influence of
GM-CSF released by IL-1β–activated CNS ECs and that this re-
sponse contributes to the local reactivation of autoreactive CD4+

T cells.

APCs from Il1b−/− Mice Are Less Efficient at Activating Autoreactive
CD4+ T Cells. Given that high concentrations of bioactive IL-1β
are detected in the spinal cord of MOG35–55–immunized mice at
both EAE onset and disease peak (5), we next investigated the
effects of myeloid cell-derived IL-1β on the antigen-specific ac-
tivation of CD4+ T cells. We cocultured naïve 2D2 transgenic
CD4+ T cells, which specifically recognize MOG35–55, with
MOG35–55–pulsed APCs harvested from WT or Il1b−/− mice 7 d
after EAE induction (SI Methods). To assess whether T cell-
intrinsic production of IL-1β affected T-cell priming, we addi-
tionally tested CD4+ T cells from 2D2+/−::Il1b−/− mice. We ob-
served that intracellular levels of IFNγ and IL-17A in reactivated
CD4+ T cells were significantly lower when APCs were derived
from Il1b−/− mice compared with WT controls (Fig. 5 A–C).
Extracellular levels of both cytokines, detectable only at the
highest MOG35–55 concentration, were also deeply affected by
the absence of IL-1β in APCs (Fig. 5 B and C). Similarly, a
greater percentage of T cells that went through at least one cell
division was observed when cocultured with APCs that can
produce IL-1β (Fig. 5D and Fig. S3A). While T cell-intrinsic
production of IL-1β was recently found to impact EAE devel-
opment (21), we observed no evidence that IL-1β deficiency in
CD4+ T cells impacted IFNγ or IL-17A production, or T-cell
division (Fig. 5 A–D). To confirm these findings in vivo, we pu-
rified CD4+ T cells from the spleen of WT and Il1b−/− mice at
7 d.p.i. and assessed mRNA expression of multiple markers of
IFNγ+ TH1 and IL-17+ TH17 responses (Fig. S3B). In agreement
with our in vitro data, mRNA levels for Ifng and Il17a were
consistently lower in CD4+ T cells from immunized IL-1β–
deficient mice, as were levels of the TH1 master regulator T-bet
(Tbx21) and RORγt (Rorc) (Fig. S3C). Il1b−/− T cells addition-
ally displayed a reduction in mRNA levels of the T-cell in-
flammatory cytokine GM-CSF (Csf2), IL-1R1 (Il1r1), and IL-
23R (Il23r), the receptor for the TH17-skewing cytokine IL-23.
Interestingly, mRNA levels of Il1r1 and Il23r were unaffected
by the Il1b gene deletion in mice treated with adjuvants only
(CFA + PTX), suggesting that their expression correlates with
IL-1β–dependent and antigen-specific responses (Fig. S3D).
Since the milieu of the spleen and CNS are likely to be different,
we next measured intracellular production of TH1- and TH17-
associated cytokines by CD3+ CD4+ T cells that infiltrated the
spinal cord of Il1r1−/− and WT mice at 24 d.p.i. (Fig. 5 E and F).
Mice lacking the Il1r1 gene had significantly reduced numbers
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Fig. 2. Transmigration through the blood–CNS barrier is impaired when IL-1β
signaling is disrupted. (A and B) Expression of ICAM1 (A) and VCAM1 (B) in
laminin+ blood vessels (BVs) of the spinal cord of unimmunized (naive) and
EAE mice (mean ± SEM). (C) 2P-IVM of the spinal cord of LysM-eGFP (Left) and
LysM-eGFP::Il1b−/− (Right) mice at 12 d.p.i., which corresponds to the onset of
EAE clinical symptoms in LysM-eGFP mice. Mature cells of the granulo-
myelomonocytic lineage express the eGFP reporter protein (green), whereas
BVs were labeled with a solution of Qdot 705 (red). (D) Quantification of the
number of bone marrow Gr1+ cells (neutrophils and monocytes) that trans-
migrated across primary BMECs isolated from WT or IL-1R1–knockout mice
(n = 13, representative of two independent experiments). (E) Quantification of
the number of transmigrated Gr1+ cells following treatment with an IL-
1R1 antagonist (anakinra) or an anti–IL-1β blocking antibody (n = 8–9).
(F) Transmigration assays performed using either neutrophils (Ly6G+) or
monocytes (Ly6GnegGr1+) harvested from the bone marrow of WT and IL-1β–
knockout mice (mean ± SEM, n = 6–7). *P < 0.05, **P < 0.01, ***P < 0.001; †P <
0.05, ††P < 0.01, †††P < 0.001, compared with the naive group of the same
strain; n.s., not significant; two-way ANOVA followed by a Bonferroni post hoc
test. [Scale bar, (C) 100 μm.]
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and frequencies of IFNγ+, IL-17A+, and GM-CSF+ T cells in
their spinal cord compared with WT mice. Together, these re-
sults indicate that the expression of IL-1β by APCs severely
impacts the activation state of autoreactive CD4+ T cells and
their skewing toward a TH1/TH17 profile.

Deficits in IL-1β Signaling, but Not in Antigen Presentation, Are
Responsible for the Reduced T-Cell Activation in Il1b−/− Mice. We
next wanted to determine whether APC-derived IL-1β enhanced
T-cell activation by acting on T cells or via autocrine signaling on
APCs themselves. Using the same coculture system as in Fig. 5,
cells were treated with the IL-1R1 antagonist anakinra or IL-1β
blocking antibody. As shown in Fig. 6A, interfering with the

IL-1β/IL-1R1 pathway significantly reduced the production of
IFNγ and IL-17, thus suggesting that IL-1β/IL-1R1 signaling
plays a key role in CD4+ T-cell activation. Taking advantage of
the pIL-1β–DsRed reporter mouse line, we confirmed that
splenic DCs, moDCs, and neutrophils produced significant levels
of IL-1β (Fig. S4). We next investigated the effects of IL-1β
deficiency on the expression of antigen presentation-associated
molecules by APCs at 7 d.p.i., a time at which they are producing
IL-1β (Fig. S4). Cell-surface expression of CD80 (B7.1), CD86
(B7.2), and MHCII was comparable between WT and Il1b−/−

mice in all three cell populations (Fig. 6 B–E). Although surface
levels of CD80 and MHCII were respectively higher and lower in
moDCs and macrophages of WT compared with Il1b−/− mice,
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those differences were small. Collectively, these results suggest
that the reduced encephalitogenic CD4+ T-cell response ob-
served in IL-1β–deficient mice is caused directly by the lack of
IL-1β/IL-1R1 signaling on CD4+ T cells rather than a reduction
in antigen presentation capability of myeloid cells.

Factors Released from the Interaction Between IL-1β–Competent
Myeloid Cells and Myelin-Reactive CD4+ T Cells Are Highly Toxic to
Neurons. Having demonstrated that myeloid cell-derived IL-1β
actively participates in activation of peripheral CD4+ T cells, we
next sought to assess the effects of this activation on neuronal
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growth. CD11b+ cells isolated from the spleen of either WT or
Il1b−/− EAE mice (7 d.p.i.) were placed in coculture with CD4+

T cells from 2D2 mice in the presence of MOG35–55. After 4 d,
the media was collected and placed in the presence of freshly
isolated cortical neurons (SI Methods). The mean neurite out-
growth was calculated after 24 h, and a conditioned media
without any cells was used as a control (average neurite length of
36 ± 13 μm per neuron). The conditioned media derived from
CD11b+ cells or CD4+ T cells alone did not significantly impact
neurite outgrowth compared with control levels. However, the
medium generated from CD4+ T cells cocultured with WT
CD11b+ cells severely reduced neurite outgrowth (Fig. 7 A and
B). This neurotoxicity was significantly undermined by the ab-
sence of IL-1β production from CD11b+ cells. Interestingly, for
CD4+ T cells to reach their neurotoxic potential, a higher
number of CD11b+ cells from Il1b−/− EAE mice was required,
compared with WT cells (Fig. 7 A and B and Fig. S5). These data
suggest that the activation threshold of encephalitogenic CD4+

T cells is lower when myeloid cells produce IL-1β. An alternative
explanation could be that factors that caused neuronal toxicity
were released by IL-1β–competent myeloid cells themselves
when cultured in the presence of CD4+ T cells. To investigate
this issue in vivo, we crossed mice harboring endogenous
MOG35–55–reactive T cells (2D2+/−) with IL-1β–deficient ani-
mals, thus bypassing the generation of autoreactive CD4+ T cells.

As expected, the active immunization of 2D2 mice led to very
severe paralysis accompanied by a high mortality rate (>60%), a
phenomenon that was not observed in 2D2+/−::Il1b−/− mice (Fig.
7 C and D). Taken together, these results suggest that IL-1β
signaling is essential to the proper activation of MOG-reactive
T cells as well as their encephalitogenic effector functions.

Discussion
Previous research found that the development of EAE requires
IL-1β signaling through IL-1R1 in both ECs and T cells. Here,
we provide evidence that inflammatory CCR2hi monocytes are
particularly dependent on IL-1β to cross the blood–CNS barrier
before EAE onset. Inside the CNS, blood-derived monocytes
adopt an APC phenotype under the influence of IL-1β–induced
secretion of GM-CSF by ECs and then associate with pro-
liferating CD4+ T cells. Myeloid cell-derived IL-1β is directly
responsible for the reactivation of MOG35–55–specific CD4+

T cells and their acquisition of an encephalitogenic phenotype. A
critical finding of our study is that only the combined presence of
IL-1β–competent myeloid cells and autoreactive CD4+ T cells is
associated with neuronal toxicity in culture and EAE patho-
genesis in vivo.
The bone marrow and spleen are major reservoirs of neutro-

phils and monocytes that contribute to myeloid cell recruitment
at sites of inflammation (22, 23). In this study, we demonstrate
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that the bone marrow and spleen encounter important immune
cell movements after EAE induction. Although both WT and
Il1b−/− mice exhibited a marked reduction in total cell numbers
for all bone marrow leukocyte populations after immunization,
inflammatory monocyte and neutrophil cell numbers were in-
creased to a significantly lesser degree in the blood and spleen of
mice lacking IL-1β. A possible explanation for this difference
may come from the fact that IL-1β signaling was recently shown
to promote expansion of granulocyte–macrophage progenitors
(GMPs) and pregranulocyte cell populations in the bone marrow
(24–26). Additionally, splenic monocytopoiesis is also regulated
by IL-1β during acute inflammation, as suggested by Leuschner
et al. using an animal model of acute myocardial infarction (27).
Thus, it is important to take into account that although Il1b−/−

mice have normal white blood cell counts, these animals have a
slightly reduced ability to generate myeloid cells under in-
flammatory conditions compared with WT mice.
We found that inflammatory monocytes, but not neutrophils,

are recruited into the spinal cord of EAE mice via an IL-1β–
dependent mechanism. Interestingly, a study by Lalor et al. (28)
reported that mice treated with a caspase-1 inhibitor display a
reduced number of macrophages, but not neutrophils, in their
CNS. We previously reported that neutrophils and MDMs pro-
duce pro–IL-1β upon migration across the BSCB during EAE
(5). We now extend this observation by showing that the trans-
migration of CCR2hiLy6Chi monocytes across the BSCB before
EAE onset is compromised in the absence of IL-1β. This key
finding is in line with recently published work by the group of
Steffen Jung that showed that the migration of inflammatory
monocytes in the spinal cord is accompanied by a marked up-

regulation of IL-1β mRNA (29). Interestingly, IL-1β was shown
earlier to activate a nonclassical MyD88–ARNO–ARF6 pathway
downstream of IL-1R1 that leads to the permeability of dermal
ECs in vitro (30). The data presented in this study may explain
why Il1b−/− neutrophils can adhere to inflamed spinal cord blood
vessels of EAE mice to a similar degree than WT neutrophils (5).
Because neutrophil infiltration in the spinal cord of Il1b−/− mice
is not observed until weeks after immunization, we speculate that
IL-1β–competent CCR2hiLy6Chi monocytes may be needed to
disrupt vascular permeability and allow neutrophil entry. Also
supporting this hypothesis is the fact that the passive transfer of
IL-1β–producing cells on the spinal cord of immunized Il1b−/−

mice was sufficient to induce the recruitment of peripheral leu-
kocytes and provoke paralysis (5).
That inflammatory monocytes are key players in CNS auto-

immunity is a concept that is rapidly evolving. One of the most
recent discoveries related to this concept is the demonstration
that mice lacking the receptor for GM-CSF specifically in
CCR2+ cells fail to develop EAE (10). This study further
revealed that CNS-infiltrating moDCs, the derivatives of in-
flammatory monocytes inside inflamed tissues, require responsiveness
to GM-CSF to be able to up-regulate IL-1β expression. GM-CSF is a
cytokine shown to license autoimmunity and drive tissue damage in
the CNS (31). This once again reinforces the existence of an in-
flammatory amplification loop between IL-1β and GM-CSF, as we
recently suggested (3). These findings implicate a role for IL-1β in the
transmigration of GM-CSF–activated CCR2hiLy6Chi monocytes in-
side the CNS.
Our data demonstrate that inflammatory monocytes need to

produce IL-1β to cross the blood–CNS barrier and in return that
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activation of IL-1R1 signaling in CNS ECs dictates the differ-
entiation of Ly6C+ monocytes toward professional APCs. Work
with primary brain ECs treated with IL-1β indicates that GM-
CSF is the main cytokine responsible for the induction of this cell
differentiation process. That monocytes can mature into cells
with antigen-presenting capacity under the influence of GM-CSF
secreted by CNS ECs following their transmigration across the
inflamed blood–CNS barrier was initially proposed by the
A. Prat laboratory (32). However, the present study shows that
secretion of GM-CSF by CNS ECs occurs as a result of the ac-
tivation of endothelial IL-1R1 by IL-1β secreted by the in-
filtrating monocytes themselves.
While IL-1β has been known to be a potent lymphocyte-

activating factor for almost 40 y, it is only recently that its role
as a T cell-polarizing factor in EAE has been recognized (for
reviews, see refs. 3 and 33). In this study, we report that IL-1β
produced by myeloid cells in secondary lymphoid organs directly
contributes to the activation of autoreactive CD4+ T cells, as
demonstrated by their release of IFNγ and IL-17. Moreover,
flow cytometric and histological analysis of the EAE mouse
spinal cord suggests that local T-cell reactivation by infiltrating
inflammatory monocytes occurs at the level of the blood–CNS
barrier after disease onset. Interestingly, the conditioned media
derived from brain microvascular ECs stimulated with IL-1β was
sufficient to induce an APC phenotype in primary monocytes, an
effect that depended mainly on the production of GM-CSF. This
phenotype was more pronounced in Ly6Cint monocytes, which
have been shown to produce more IL-1β than Ly6Chi macro-
phages in the CNS (34). In addition, we have demonstrated that
MOG-reactive CD4+ T cells display a more activated and ag-
gressive phenotype when cocultured with IL-1β–competent my-
eloid cells. While we were unable to detect GM-CSF in our in
vitro coculture experiments, we have established that Csf2
mRNA levels were significantly reduced in CD4+ T cells isolated
from mice lacking IL-1β, a phenotype that strongly correlated
with their low expression of both Ifng and Il17a.
Interestingly, we have shown that MOG-reactive T cells

interacting with IL-1β–competent myeloid cells acquire a neu-
rotoxic phenotype that almost completely prevented neurite
growth. While the encephalitogenic phenotype of T cells is re-
quired for normal EAE development, recent work has established
that it can be bypassed by genetically increasing GM-CSF levels in
polyclonal TH cells or myeloid cells alone (35). Considering that
the main targets of GM-CSF are inflammatory monocytes and

that the neurological deficits acquired by GM-CSF–overexpressing
mice were completely independent of antigen specificity, these
results suggest that demyelination and neuronal death are mainly
caused by myeloid cells (10, 35). Hence, it is possible that the
soluble factor(s) causing neurotoxicity in our coculture experiment
could be released by myeloid cells themselves, especially by acti-
vated monocytes. Using live imaging in the spinal cord, the labo-
ratories of Misgeld and Kerschensteiner have found that axonal
degeneration is initiated in close proximity to macrophages rather
than T cells in acute EAE lesions (36). Moreover, a recent study
by the group of Ransohoff presented strong evidence that
monocyte-derived cells are responsible for the initial CNS de-
myelination (37). From all this, we can speculate that during EAE
and possibly MS, both T cells and CNS ECs are acting as major
sources of GM-CSF, which acts as a key regulator of inflammatory
monocyte trafficking and effector function inside the CNS
parenchyma. We further propose that this mobilization of
CCR2hiLy6Chi monocytes is responsible for the permeabilization
of the blood–CNS barrier and subsequent entry of additional ef-
fector cells in the CNS, a response that is strongly dependent
on IL-1β/IL-1R1 signaling.
The results obtained from the immunization of 2D2::Il1b−/−

mice also suggest that even in the presence of endogenous
myelin-reactive T cells, the development of autoimmunity re-
quires the recruitment of CCR2hi monocytes to the CNS, at least
in part via their expression of IL-1β. This affirmation is sup-
ported by several facts. First, CCR2-knockout mice are re-
fractory to the development of EAE (7–10). Second, induction of
GM-CSF production leads to neuroinflammation characterized
mainly by myeloid cell infiltrates and CNS tissue damage in-
dependent of T-cell receptor specificity (35). Notably, splenic
inflammatory monocytes, but not neutrophils, increased their IL-
1β production in mice overexpressing GM-CSF (35). Third, the
artificial transfer of IL-1β–competent Gr1+ cells to the CNS of
Il1b−/− mice—but not, as shown here, the transfer of IL-1β–
competent neutrophils i.p.—is sufficient to restore EAE weeks
before that normally seen in these animals (5). Thus, it appears
that the pathological role of IL-1β during EAE mainly occurs at
the level of the blood–CNS barrier. This could explain why mice
with specific deletion of the Il1r1 gene in CD4+ T cells are only
partially resistant to EAE induction (16). We propose that the
major detrimental effect of IL-1β in EAE and MS is to provoke
the initial disruption of the cerebrovascular stability and allow
subsequent entry of a toxic mix of leukocytes into the CNS.
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Fig. 7. Coculture of IL-1β–competent myeloid cells and myelin-reactive CD4+ T cells triggers the release of neurotoxic factors. (A) Representative images of
primary cortical neurons treated for 24 h with the indicated conditioned media and then stained against β-tubulin (white signal). (B) Quantification of the average
neurite length normalized to the control condition. Cocultures were performed using a 1:1 ratio of CD11b+ and CD4+ cells. (C) Clinical EAE scores of immunized
2D2+/− and 2D2+/−::Il1b−/− mice. (D) EAE incidence (full lines) and survival (doted lines) of immunized 2D2+/− (black) and 2D2+/−::Il1b−/− (red) mice (mean ± SEM).
Data in C and D are representative of two independent experiments. **P < 0.01, ***P < 0.001; †P < 0.05, †††P < 0.001 versus control; (B) one-way ANOVA followed
by a Bonferroni post hoc test (n = 3–7); (D) two-way repeated-measures ANOVA followed by a Bonferroni post hoc test (n = 17–18). [Scale bar, (A) 50 μm.]
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In summary, we present new evidence that IL-1β triggers CNS
autoimmunity by acting on several fronts. In addition to its
demonstrated role in the expansion of encephalitogenic GM-
CSF–producing TH17 cells, we now report that pioneer CCR2+

monocytes must express IL-1β to be able to cross the blood–CNS
barrier and initiate neuroinflammation in EAE. Furthermore, we
show that IL-1β is a critical regulatory cytokine for GM-CSF
production by CNS ECs, which in turn induces the differentia-
tion of monocytes into APCs within the perivascular space of
CNS blood vessels. We speculate that this inflammatory feed-
back loop triggers the local reactivation of autoreactive T cells.
The data presented in this study also reveal that direct activation
of myelin-reactive T cells by myeloid cell-derived IL-1β leads to
the production of neurotoxic factors. Thus, IL-1β and GM-CSF
are regulating each other at many levels, including at the level of
the blood–CNS barrier. Based on our work and that of others, we
propose that the interactions between these two cytokine systems
are at the center of a vicious feedback loop of CNS inflammation
that ultimately leads to myelin and neuronal damage.

Methods
All animal experiments were approved by the Animal Welfare Committee of
Université Laval in accordance with the Canadian Council on Animal Care policy.
Primary cultures of human BMECs were prepared from temporal lobe tissue
obtained during surgical resection in patients suffering from epilepsy, as pre-
viously described (5). Informed consent and ethical approval were obtained before
surgery (ethical approval number BH07.001 to A. Prat). See SIMethods for detailed
information regarding animals, production of mixed bone marrow chimeras, EAE
induction and clinical scoring, biological sample collection and processing for
cytometry, neutrophil transfer, flow cytometry, quantitative real-time RT-PCR,
stimulation of MOG-reactive CD4+ T cells, immunostaining and histology, mouse
BMEC andmonocyte cultures andmyeloid cell transmigration assay, human BMEC
culture, 2P-IVM, primary cortical neuron culture, and statistical analysis.
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