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Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and
ultimately on the local climate. Depending on the specific type of vegetation change and on the
background climate, the resulting competing biophysical processes can have a net warming or cooling
effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack
of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we
present a dataset based on satellite remote sensing observations that provides the potential changes i) of
the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now
be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this
dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of
land cover change and to develop the monitoring, reporting and verification guidelines required for the
implementation of mitigation plans that account for biophysical land processes.
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Background & Summary
Changes in vegetation cover influence the climate through both biogeochemical and biophysical
mechanisms1–3. The biogeochemical effect of land processes such as deforestation (typically a net emission
of CO2 into the atmosphere), has global consequences and is at the centre of climate agreements. The
biophysical effects are more local in nature and often result from more complex and bidirectional land-
climate interactions4. For example, converting forests to grasslands typically causes a rapid increase in
albedo5, but also a decrease in evapotranspiration (because grasses typically have shallower roots and thus
access less water). This land conversion may ultimately lead to cooling or warming, depending on which of
the two processes dominates6–8. In cold climates the albedo effect is amplified by snow cover as trees are
more effective than grasses in masking out the radiative cooling effect from snow on the ground, while in
water limited regions variations in evapotranspiration become more relevant. These processes clearly show
how the biophysical effects of land cover change can vary in sign and magnitude depending on the
background climate9 and must therefore be quantified at local levels.

To date policies tackling climate mitigation through land management, such as REDD+ (Reducing
Emissions from Deforestation and Forest Degradation) focus only on biogeochemical mechanisms and
neglect their biophysical consequences, partly because there is a lack of adequate observational data
describing the potential biophysical effects of land cover change. Several strategies have been used to
quantify these biophysical effects following perturbations in vegetation cover. Assessments based on
ground observations, such as those from flux sites and meteorological stations10–13, provide a valuable
insight but typically have insufficient spatial coverage to derive conclusions at the global scale. Earth
system models have also been used to simulate complex land-climate biophysical interactions14–17, but
the capacity of such models to represent accurately these biophysical properties and, in particular, the
partitioning of available energy into latent and sensible heat fluxes, is still uncertain14,18. A third way that
has gained increased traction lies in exploiting the capacity of satellite remote sensing observations to
derive different diagnostics at different scales5,7,8,19,20. Although these studies vary in complexity and
scope, none have resulted in an explicit spatial dataset describing potential changes in i) the full energy
balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the
comprehensive evaluation of land based mitigation plans.

Here we present such a dataset, which resulted from a study attempting to characterize the mark of
vegetation change on the Earth's surface energy balance6. The dataset consists of spatialised information
describing the expected changes in surface properties and energy fluxes resulting from specific vegetation
cover transitions. The variables provided include the different components of the surface energy balance:
shortwave reflected radiation (SW↑), longwave emitted radiation (LW↑), latent heat (LE) and sensible and
ground heat fluxes combined (H+G). The same information is also provided for daytime and nighttime
land surface temperature (LSTd and LSTn), clear sky longwave emitted radiation (LW↑*) and albedo (α).
Two sets of vegetation classes are provided, assuming either 6 broad vegetation transitions or 45 more
specific vegetation transitions (e.g. differentiating various forest types). The information is disaggregated
at monthly scale for a full seasonal cycle representing the median climatological conditions over the
period 2008-2012. All estimates are obtained from satellite measurements from the MODIS instruments
at a spatial resolution of 0.05 using a ‘space-for-time’ substitution approach, which are then summarized
over 1 grid cells to combine with data from the CERES satellite remote sensing instrument. All values are
accompanied by information on uncertainty and the number of samples from which 1 estimates are
made, enabling the production of maps such as those shown in Fig. 1.

We anticipate that this dataset can serve to support the development of land-based plans that target
climate mitigation. The spatialised estimates could prove to be an important asset for integrated
assessment modelling21, as well as for benchmarking and improving land-surface schemes and Earth
system models18. Ultimately, we also expect that our observation-driven dataset could serve as a baseline
in the development of monitoring, reporting and verification guidelines for the implementation of land-
based biophysical climate mitigation and adaptation options, mirroring what is currently done for
biogeochemical land-processes.

Methods
The central concept behind the dataset we present here is the combination, over a local moving window,
of a static map of vegetation cover fractions with datasets of variables describing surface properties of
vegetation that are retrieved from satellite observations. The methodological steps, including steps of
masking, aggregating and cleaning, are summarized in the flowchart in Fig. 2. These steps are already
described in our related work6, but the methodology is also reported here, along with some additional
technical details, in order to facilitate the presentation of the dataset.

Data preparation
The input data for the methodology are of two types: surface property variables that change seasonally
and static vegetation cover fraction maps. All have a common spatial resolution of 0.05. The seasonal
variables are α, LE, LSTd, LSTn and LW↑*. They are all derived from measurements from the NASA
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on-board the Aqua and Terra
satellites. They are available at monthly temporal resolution, but a median value for each month is
calculated from the years 2008 to 2012 to generate the 5-year climatology while retaining the seasonal
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cycle. The static vegetation cover fraction maps are derived from different satellite instruments and
represent a single year: 2010. We describe each variable below, along with specific pre-processing each
may have required.

Albedo. Albedo (α) is defined as the proportion of the incident light or radiation that is reflected by a
surface. In this case, we are interested in the monthly average of the proportion of total radiation across
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Figure 1. Overview of the information provided for each variable in the dataset. The example presented is

albedo for the transition Forest to Crops/Grasses in the broad classification scheme (IGBPgen, see text for

details). For the months of January and June: the spatialised variable are shown in a and b; the uncertainty

associated with each value are shown in c and d; and the number of sample used in the aggregation are shown

in e and f.
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the broadband shortwave spectrum reflected by the Earth's surface at 0.05 resolution. The NASA
MCD43C3 albedo product provides 8-daily estimates of both directional hemispherical albedo (black-sky
albedo) and bihemispherical albedo (white-sky albedo) based on multidate multispectral MODIS cloud-
free observations collected over a 16-day moving window and a semi-empirical kernel-driven
bidirectional reflectance model22. These white-sky and black-sky albedos correspond to theoretical
situations in which incident radiation is either completely diffuse or completely direct. To obtain an
estimate of real conditions without information on the fraction of diffuse radiation, we took the mean of
both values. The mean is preferred here for its simplicity, since other techniques such as weighting or
interpolation would require additional information to avoid any subjectivity. To obtain estimates at
monthly temporal resolution, we selected those for which the 16-day period best corresponded with the
15th of each month. Data are available from the NASA LPDAAC website (https://lpdaac.usgs.gov/).

Latent heat flux. Latent heat flux (LE) is the flux of heat from the Earth's surface to the atmosphere
that is associated with evaporation of water at the surface. The land component of this flux consists of
evaporation of rain water intercepted by the canopy before it reaches the ground, transpiration through
stomata on plant leaves and stems, evaporation from wet and moist soil and the sublimation of water
vapour from ice and snow; and is otherwise known as terrestrial evapotranspiration (obtained by dividing
latent heat flux by the latent heat of vaporization). The MOD16A2 product23 provides latent heat
obtained by integrating several MODIS products (land cover, albedo, leaf area index, fAPAR) with
meteorological data, delivered at 0.05 spatial resolution with monthly temporal resolution covering the
regions from 601S until 801N. The data are available from the NTSG website (http://www.ntsg.umt.edu/
project/modis/mod16.php).

Daytime and nighttime LST. These are the radiant temperatures of a surface measured respectively
during the day and at night. The MODIS instrument on board the Aqua platform makes such
measurements twice over its cycle at approximately 13:30 and 1:30 local time at the Equator. These
times are close to those at which the minimum and maximum temperatures are expected. The MODIS land
surface temperature algorithm provides such estimates at a monthly time step at 0.05 spatial
resolution24,25 in the MYD11C3 product (we use collection 5 available from the NASA LPDAAC website
https://lpdaac.usgs.gov/).

Surface upwelling longwave radiation. This is the outgoing infrared radiation emitted by the surface.
A large part of this energy is absorbed by the atmosphere and later re-emitted towards the Earth (by
clouds and greenhouse gases) or outwards to space. The upward longwave radiation (LW↑) can be
calculated from the surface temperature (T) and broadband emissivity (εB) using the Stefan-Boltzmann
law:

LWm ¼ εBσT
4 ð1Þ

where σ is the Stefan-Boltzmann's constant (5.67 × 10− 8 W m− 2 K− 4). We use LSTd and LSTn from the
MYD11C3 product to estimate the mean surface temperature (T) over the entire day span using a simple
average. The MYD11C3 product also provides emissivity estimates for various specific narrow bands in
the middle and thermal infrared spectrum that can be used to obtain εB using the empirical equation
suggested by a dedicated study26:

εB ¼ 0:2122ε29 þ 0:3859ε31 þ 0:4029ε32 ð2Þ
where ε29, ε31 and ε32 are the estimated emissivities in MODIS bands 29 (8400-8700 nm), 31 (10780-
11280 nm) and 32 (11770-12270 nm), respectively. Because the satellite can only measure during cloud-
free conditions, it must be specified that the resulting monthly upwelling longwave radiation only refers
to clear sky conditions, which we will denote using an asterisk: LW↑*.

Fractions of vegetation cover. These are derived from the 300 m global land cover map of the year
2010 provided by the European Space Agency's (ESA) Climate Change Initiative (CCI)27. A dedicated
tool provided alongside the product enables users to transform the UNLCCS classification scheme as
employed28 to continuous cover fractions at coarser scales via a ‘crosswalking’ table, typically to
characterize the plant functional types used in land surface models29. We used this tool to generate two
sets of maps for a set of 4 broad classes and another of 10 detailed classes (Table 1) based on the classes of
the widely-used global vegetation classification scheme of the International Geosphere Biosphere
Programme (IGBP). The crosswalking table we use to pass from UNLCCS to IGBP classifications is
provided in Table 2 (available online only).

Retrieving the local biophysical signal of vegetation change
To identify the biophysical signal due to changes in vegetation cover we establish a relationship between
vegetation cover fractions and the surface variables over a local moving window. As a result of this the
direct biophysical effects of vegetation change considered here are local. This is valid both for the spatial
extent of the cover change, which assumes at most a change of a complete fine resolution pixel
(0.051× 0.051), and for the origin of the change, i.e. we ignore indirect effects due to regional change from
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neighbouring regions. The moving window size is 5 by 5 pixel at 0.051 resolution, covering an area of
approximately 25 km by 25 km over which the local climate is assumed to be uniform. To unmix the
signal resulting from the mixed compositional land cover, for each window we apply a linear regression
using a matrix X containing the vegetation fractions of each of the 25 pixels as explanatory variables and a
vector y containing the 25 values of a given biophysical variable as response variable to obtain a vector of
β coefficients:

y ¼ Xβ ð3Þ
This is equivalent to solving the following system of equations:

y1 ¼ β1x11 þ β2x12 þ :::þ βmx1m
y2 ¼ β1x21 þ β2x22 þ :::þ βmx2m
^

yn ¼ β1xn1 þ β2xn2 þ :::þ βmxnm

8>><
>>:

ð4Þ

in which xij represents the cover fraction of vegetation j in pixel i, for the n pixels in the moving window
and the m classes that are considered. Once identified, we can use the β coefficients to predict the local y
value corresponding to a given composition x, including that composed of a single vegetation cover j by
setting xj= 1 and all other x values to zero.

There is a problem, however, if the compositional predictor dataset X is used directly in the analysis.
Compositional data can behave somewhat differently to ‘ordinary’, open or normal data, because
compositions necessarily sum to one (for this reason they are also sometimes described as ‘closed’ data).
Statistically, this can lead to spurious correlations between compositional components, and/or between
compositional components and the response variable. Analysis of any given subset of compositional
components can lead to very different patterns, results and conclusions30. Geometrically, all points
defined by the compositions must fall in a simplex because their compositions sum to one. For a three
part composition, this simplex is a triangular plane (i.e. it exists on a 2-dimensional surface). Whilst this
compositional matrix has 3 columns, there are only (at most) 2 dimensions. A transformation of X is
needed to reduce appropriately the dimensionality of this matrix for subsequent use in the regression.

The transformation we apply to reduce the dimensionality of X involves a singular value
decomposition (SVD). This procedure is very close to a principal component analysis (PCA). The first
step consists of centring all the columns of the predictor matrix X of vegetation fractions by removing the
column means. We then apply the SVD:

ðX -MÞ ¼ UDV t ð5Þ
whereM is the appropriate matrix of column means, U and V are the matrices containing respectively the
lefthand and righthand singular vectors, and D is a diagonal matrix containing the singular values (the
standard deviations of the ensuing dimensions). Squared values of D indicate how much variance is
explained by each (orthogonal) dimension. We implement a rule where as many dimensions from this
SVD are retained as to conserve 100% of the original matrix's variation. In doing so, we reduce the
dimensionality appropriately as described above, as well as remove what may be additionally redundant
dimensions that can occur locally if, for instance, the only points in which 2 classes are represented have
exactly the same values. To avoid having problems when there is too little or no information (e.g. if all
pixels have exactly the same compositions), we added a pre-condition that there must be at least 10 pixels

Classification scheme Vegetation class full name Abbreviation Code

IGBPdet Evergreen Broadleaf Forest EBF 1

IGBPdet Deciduous Broadleaf Forest DBF 2

IGBPdet Evergreen Needleleaf Forest ENF 3

IGBPdet Deciduous Needleleaf Forest DNF 4

IGBPdet Mixed Forest MF 5

IGBPdet Savannas SAV 6

IGBPdet Shrublands SHR 7

IGBPdet Grasslands GRA 8

IGBPdet Cropland CRO 9

IGBPdet Wetlands WET 10

IGBPgen Forests FOR 1

IGBPgen Shrublands SHR 2

IGBPgen Crops & grasses C+G 3

IGBPgen Savannas SAV 4

Table 1. Classes of vegetation cover used in the dataset. The codes indicate the numbers used to identify
the classes in the data layers for both detailed IGBPdet and IGBPgen broad classifications schemes.
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with different compositions. The final appropriately transformed predictor matrix of reduced dimension
Z is then obtained by:

Z ¼ ðX -MÞVz ð6Þ
where the subscript z in Vz indicates that the latter is composed of a subset of righthand singular vectors
in V as selected from D as described above. The resulting predictor matrix Z can now be regressed onto
the local biophysical variable y.

y ¼ Zβþ ε ð7Þ
where Z has been augmented with a leading column of 1s to accommodate an intercept term in the
regression. The standard manner to obtain an estimate of β is:

β ¼ ðZtZÞ - 1Zty ð8Þ
Because the compositional predictor matrix X has been transformed to matrix Z, regression coefficients
identified in the regression of Z onto y do not immediately provide information about the association
between the various vegetation cover fractions and the surface property variables. In order to identify the
z values associated with a particular vegetation (in that local analysis) we instead define a ‘dummy pixel’
whose composition contains only that vegetation class, with all other classes in the dummy pixel's
composition set to zero. This pixel's composition is then transformed, and its y value predicted. This is
the y associated with that vegetation type. Since we wish to do this for all compositional components of
interest, we actually define a matrix P with as many rows as these compositional components that we
wish to predict. P is centred on the same column means as above (M, specific to each local analysis), and
then multiplied by the correct number of transposed right hand singular vectors (Vz, again, specific to
each local analysis).

Zp ¼ ðP -MÞVz ð9Þ
Predicted yp values for each vegetation type (identified by predicting the appropriately transformed
‘dummy pixels’) are then calculated as:

yp ¼ Zpβ ð10Þ
The expected change in variable y associated with a transition from one vegetation type to another at the
central pixel of the local window is then the difference between the yp predicted for each `pure' vegetation
type:

ΔyA-B ¼ yB - yA ð11Þ
Beyond our primary interest in the change Δy for a given vegetation transition, we also assess the
uncertainty associated with each of these differences. We consider uncertainty in terms of standard
deviations, and thus, according to error propagation, the uncertainty for the difference due to the
transition from A to B can be determined from:

σA-B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
A þ σ2

B - 2σAB

q
ð12Þ

where σA
2 and σB

2 are the variances in the estimates of y for each vegetation type, and σAB is their
covariance. This covariance term is important as the uncertainties of the individually predicted z values
are not independent given that they derive from the same regression model. The variances and
covariances of all vegetation types can be obtained from the covariance matrix, which in turn is calculated
as:

Σ ¼ ZpVar½β�Zt
p ð13Þ

The diagonal terms in Σ are the variances of individual predictions of (individual) vegetation classes. The
off-diagonal parts of Σ hold the covariances between these predictions.

The whole procedure described above (variable transformation, regression and uncertainty estimation)
is applied globally over 5 by 5 moving windows for the 3 biophysical variables for each of the 12 months
of the year at 0.051 spatial resolution for each vegetation transition considered. The regressions are
applied to data including information of all vegetation types (either 10 or 4, depending on whether the
detailed or broad classification scheme is used) plus 4 non-vegetated classes (urban, water, snow/ice or
bare soil), but predictions are only made for vegetated classes. Symmetric transitions yield identical
results (e.g. ΔyA→B =− ΔyB→A), and thus only a total of (102−10)/2= 45 or (42−4)/2= 6 transitions are
calculated. The resulting maps only provide information for the pixels in which all 25 pixels in the
moving window had information.

Masking out low vegetation co-occurrences
The method relies on there existing co-occurrences of vegetation classes within the local window.
Furthermore, the statistical methods that are applied to these sets of points are more likely to provide
reliable results when there are large and balanced presences of both vegetation classes of interest. We
designed an indicator to quantify how two vectors describing the presences of two classes of vegetation,
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pA and pB, represent the potential range of compositional variation at the same time (i.e. how evenly
balanced they are against each other, and how abundant they are with respect to the total composition).
In a two dimensional space describing the presences of vegetation class A and vegetation class B, we
consider a set of n points evenly distributed along the line B= 1−A. These points represent the ideal
situation and their positions are stored in vectors qA and qB. For each of these points q, we then calculate
the Euclidean distance to all points in p, and retain only the smallest one that we store in a vector called
dmin:

dmin ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqA - pAÞ2 þ ðqB - pBÞ2

q
ð14Þ

The situation that would generate the largest cumulated distances is when all p points are located in the
origin, i.e. when there is neither any of class A nor any of class B. This vector of maximum distance dmax

is defined as:

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2A þ q2B

q
ð15Þ

The index of vegetation co-occurrence Ic is defined as:

Ic ¼ 1 -
P

idmin;iP
idmax;i

ð16Þ

Ic ranges from 0 to 1, corresponding to a gradient of ‘no presence of either class’ to ‘full and evenly
balanced presence of both classes’. For each pair of vegetation classes, a threshold of Ico0.5 is used to
mask out from the results those pixels whose local windows do not provide enough co-occurrences. This
threshold of Ic= 0.5 represents a situation in which the sum of the minimum distances between all points
p and q is half of the distance between the origin and all q points.

Masking out high topographical variability
Restricting the analysis to a local window reduces the effect of major climatic gradients when comparing
biophysical variables of neighbouring pixels. However, climatic gradients can also occur at much finer
spatial scales as a result of vertical elevation change in a landscape, or topographical relief. To factor out
such a potentially confounding effect, we created a mask to remove areas in which neighbouring pixels
should not be compared because of within pixel differences in relief. This mask is constructed based on
fine-spatial resolution digital elevation models: the gap-filled SRTM 90 m Digital Elevation Database
v4.131 for the region it covers (between 601S and 601N) and GTOPO30 at 1 km for the rest of the globe
(data available from the U.S. Geological Survey and distributed by the Land Processes Distributed Active
Archive Center (LP DAAC), located at USGS/EROS, Sioux Falls, SD. http://lpdaac.usgs.gov). The mean
and standard deviation of the elevation is calculated for each 0.051 by 0.051 grid cell to produce two data
layers: μh and σh. These two layers are used to derive three indicators of local topographical relief using
the values of all i pixels in the 5 by 5 pixel moving window. The first, v1, is just the average standard
deviation across the the moving window:

v1 ¼ 1
n

Xn
i¼1

σh;i ð17Þ

High values of v1 indicate hilly terrain over the considered scale, which should be discarded from the
analysis. The second index, v2, indicates how different the mean elevation within the central pixel is from
the average elevation in the local window:

v2 ¼ 9μh -
1
n

Xn
i¼1

μh;i9 ð18Þ

High values of v2 can further isolate unwanted pixels that may not be identified using v1 alone. The third,
v3, is similar to v2 but compares the central pixel's standard deviation of elevation with the standard
deviation across the moving window:

v3 ¼ 9σh - v19 ð19Þ
High values of v3 can isolate the odd undesirable pixel whose within-pixel elevation has high variance but
an average value close to the average height across the local window. These three indicators are combined
together in a single layer depicting all pixels satisfying all of the following conditions: v1o50 m, v2o100
m and v3o100 m. Pixels that fail any of these conditions are masked out from all the layers of results.

Spatial aggregation
The maps resulting from the local space for time analysis need to be spatially aggregated from 0.051 to 11
grid cells to be used alongside data from the CERES instrument, which provides the information
necessary to close the energy balance. Aggregating to 11 also has other advantages, namely: (1) a mean
difference of a variable associated with change from one vegetation type to another may be assumed to be
more accurate than any individual estimate at finer scale; (2) this scale is simpler to map and visualize at
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global level; and (3) it is more comparable to results from land surface models. Because each 0.051
estimate of Δy includes an associated estimation of its uncertainty, this uncertainty can be used to down-
weight less reliable values during the aggregation procedure. The typical approach to do so is weighting
based on the inverse of the uncertainty:

Δy
� ¼

P
iΔyi=σ

2
iP

i1=σ
2
i

ð20Þ

where Δy ̅ is the mean aggregated value, whose uncertainty is calculated as:

σ2
Δy
� ¼ 1P

i1=σ
2
i

ð21Þ

However, these formulations do not account for the spatial auto-correlation generated by the moving
window (1 to 20 pixels may be common between two nearby estimates depending on the possible overlap
of their respective 5 by 5 windows). This auto-correlation problem may be compounded further when
only a clustered set of 0.051 samples are available within the 11 by 11 area. This can occur due to the
topographical masking, or because two vegetation types only co-occur over a small part of the 11 grid cell.

To tackle this auto-correlation, we employ a more generic weighting approach. The weights depend
not only on the uncertainties estimated from the regressions as above, but also on how each window is
correlated with every other window within the area of 11 grid cell. This information is summarized in a
400 by 400 matrix Ra containing the fraction of overlap between every pair of windows. The information
in Ra is combined with that of the pixel-wise uncertainties that are embedded in Da, a diagonal matrix
containing the uncertainties in its diagonal, to build a covariance matrix Σa (the subscript a is used to
differentiate these matrices involved in this aggregation step from those used before):

Σa ¼ DaRaDt
a ð22Þ

The vector of weights is then obtained as:

w ¼ 1

1tΣ - 1
a 1

Σ- 1
a 1 ð23Þ

which can then be used to calculate the aggregated Δy ̄ as:

Δy ̄ ¼
X
i

wiΔyi ð24Þ

while the aggregated uncertainty σΔy ̄
2 is given by:

σ2
Δy ̄ ¼ wtΣaw ¼ 1

1tΣ - 1
a 1

ð25Þ

When the windows have no auto-correlations, both equations 24 and 25 fall back to the simpler
weighting formulas of equations 20 and 21. The aggregation procedure is applied to all data layers.

Detection and treatment of outliers
Despite all efforts to characterise uncertainty and reach representative values, the results can still contain
unrealistic values. The main reasons for this might be that uncertainties in the input data (the remote
sensing surface property variables and the vegetation cover fraction maps) are not explicitly taken into
account. As a final step to remove possible outliers, we remove all values for grid cells in which there are
not at least 20 samples at 0.051 spatial resolution. Lastly, we also remove values that are statistical outliers
based on the distribution of the entire dataset. All data layers are available with their associated
uncertainty.

Closing the surface energy balance
The local unmixing step can only be applied to those variables available at the 0.051 spatial resolution
(namely α, LE, LW↑*, LSTday and LSTnight), meaning some components of the surface energy balance are
missing. The full surface energy balance is expressed as:

SW↓ - SWm þ LW↓ - LWm ¼ H þ LE þ G ð26Þ
SW↓, SW↑, LW↓ and LW↑are respectively the downwelling and upwelling radiative fluxes in the shortwave
or longwave parts of the spectrum, LE is the latent heat flux, H is the sensible heat flux and G is the
ground heat flux. We derive the terms of the energy balance combining MODIS-based datasets with the
EBAF-Surface Product derived from the NASA Clouds and the Earth's Radiant Energy System (CERES)
instrument. This dataset (CERES EBAF-Surface Ed2.8) provides a closed and gap-filled surface energy
balance at 11 that is consistent with CERES top-of-atmosphere irradiance measurements32. For the
specific goals of this analysis we are interested in how the terms of this equation change according to a
change in vegetation cover, i.e.:

ΔSW↓ -ΔSWm þ ΔLW↓ -ΔLWm ¼ ΔH þ ΔLE þ ΔG ð27Þ
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Figure 2. Schematic overview of the processing steps to generate the dataset. The different output files of the

dataset correspond to the effects of vegetation cover change for: shortwave reflected radiation (SW↑), longwave

emitted radiation (LW↑), latent heat (LE), sensible and ground heat fluxes combined (H+G), daytime and

nighttime land surface temperature (LSTd and LSTn), clear sky longwave emitted radiation (LW↑*) and

albedo (α).
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We make the assumption that the changes in vegetation cover that are considered here are too small (i.e.
maximum 0.051) to generate strong feedbacks in the cloud regime, and as a consequence we assume
ΔSW↓= 0 and ΔLW↓= 0. The change in reflected shortwave radiation can be expressed in terms of albedo
(α) and incoming shortwave radiation (ΔSW↑=Δα× SW↓), the latter being available from CERES data at
1°. Although we derived estimates of changes in upwelling longwave flux satellite measurements at 0.051,
these refer to clear-sky conditions only (i.e. when the satellite instrument can measure the ground
unobstructed by clouds) while other fluxes are representative of all cloud conditions. As a proxy for the
effect of cloudiness, we used a correction factor based on the ratio of all sky (LWC↑) to clear sky (LWC↑*)
longwave upwelling estimated by CERES (ΔLW↑= (ΔLWC↑/LWC↑*) ×ΔLW↑*, where the asterisk indicates
values for clear sky conditions). By re-writing and simplifying the equation above, the expression describing
the change in the residual flux, composed of both sensible and ground heat fluxes, becomes:

ΔðH þ GÞ ¼ - ðΔαÞSW↓ - ðΔLWCm=LWCmÞ ´ΔLWm -ΔLE ð28Þ
We apply this expression to every 11 pixel for every month of the time-series and every vegetation transition
based on the previously calculated datasets of Δα, ΔLW↑* and ΔLE. To have all terms of the energy balance
on equal footing and with the same sign convention, we also explicitly produced datasets of shortwave
reflected radiation (ΔSW↑) and full-sky longwave emitted radiation (ΔLW↑)

Code availability
Most of the processing has been done using R version 3.3.2. The code can be made available upon request
on a case by case basis. The aggregation and transformation of the ESA CCI land cover maps is done
using the dedicated user tool (version 3.12) that can be accessed at: http://maps.elie.ucl.ac.
be/CCI/viewer/download.php#usertool

Data Records
The entire dataset (Data Citation 1) is composed of 16 separate netCDF files, as listed in Table 3 (8
variables, for each of two vegetation cover classifications). The 8 variables are: (1) those based only on
MODIS data (LE, albedo, LWsfc, LSTday and LSTnight); (2) those requiring a combination of one of the
previous along with CERES data (SWreflected and LWemitted); and (3) those requiring a combination of
all the former (HG). The vegetation classifications are either detailed (IGBPdet, 10 classes) or generic
(IGBPgen, 4 classes) as described in the methods section and in table 1. The names of the netCDF files
include both the variable and the land cover classification scheme (e.g. HG_IGBPdet.nc for Δ(H+G)
given the detailed land cover scheme, and that therefore includes 45 transitions).
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Figure 3. Summary of annual changes in all variables due to a given type of vegetation cover change
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of the entire population prior to aggregation in climate space. The climate values come from CRUNCEP and

cover the period 2008–2012.
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All files provide information across the global domain at a spatial resolution of 1° × 1° and monthly
temporal resolution over a climatological year representing the period 2008-2012. Each netCDF file has
the same structure based on 4 different dimensions: latitude (lat), longitude (lon), month (mon) and
vegetation transition code (iTr). Three dependent variables are recorded over these 4 dimensions for each
variable Z: the difference in variable Z for a given vegetation transition (Delta_Z), the uncertainty
(provided as a standard deviation) associated with the estimation of this difference in Z (SD_Delta_Z),
and the number of fine spatial resolution (0.05° × 0.05°) samples from which each aggregated (11× 11)
value is derived (N_Z).

The vegetation transition code (iTr) is a two or three digit number, representing the class of origin
(first digit), and the class of destination (second, or second and third digit), with classes coded as in table
1. For example, for the 10 class system IGBPdet, the code iTr= 19 represents the transition from class 1
(EBF) to class 9 (CRO), while the code iTr= 23 represents the transition from class 2 (DBF) to class 3
(ENF). Because there are 10 classes, any transition from classes 1-9 to class 10 will result in a three digit
transition code (e.g. iTr= 110 represents the transition from class 1 (EBF) to class 10 (wetlands, WET)).
There is no ambiguity with a three digit transition code, they are always from a (1 digit) class to class 10.
Transitions from a larger number to a smaller number are not encoded as they are equal to the transition
from the smaller number to the greater number, albeit with a change of sign (e.g. iTr= 32 would be
equivalent to iTr= 23 with a negative sign added to the mean change).

Technical Validation
The dataset successfully reproduces the major patterns that are expected following vegetation cover
change. Figure 3 reports the mean annual effect of deforestation for each of the 8 variables in the dataset,
summarized across climatic gradients of mean annual temperature and annually cumulated precipitation
(both from CRU data v4.00 at 0.5° × 0.5° resolution). The change in albedo (and shortwave reflected
radiation) is a consistent brightening in all climates (since forest are generally darker than crops or
grasses1), but with much higher values in cold climates, where the snow effect is expected to exacerbate
the change, and very dry areas, where grasses remain dry for large parts of the year or crops are not so
densely sown and crop seasons are shorter, allowing a stronger influence of the bright dry soil on the
signal. The change in longwave emitted radiation and daytime LST is stronger in warmer climates where
an increase is expected caused by the strong decrease in latent heat, which in turn is caused by the fact
that herbaceous plants typically have shallower roots and less access to water than trees. The changes in
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Figure 4. Comparison of the dataset against individual paired sites of flux-tower measurements.
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nighttime LST are milder than those during daytime, but they do show a change in sign, with a decrease
in colder climates and a slight increase in warmer ones. The reason behind this is probably the reduction
in surface roughness going from trees (particularly needleleaf which dominate in colder climates) to
crops/grasses, causing a stable stratification of the air at night, which is particularly evident in colder
climates and at lower levels of radiation. The changes in the residual fluxes (H+G) are the consequence of
all the other fluxes in the surface energy balance.

A validation with ground-based measurements of surface energy balance fluxes would be desirable to
make a proper detailed evaluation of the present dataset. However, no such network of measurements
currently exists. The closest candidate are the flux-tower measurements from FLUXNET2015, but there
are insufficient sites with comparable climate conditions and contrasting vegetation types to cover the
spatial and thematic (i.e. vegetation type transitions) extents in the datasets. In the absence of proper
validation, an indicative evaluation is proposed based on a selection of paired FLUXNET sites that satisfy
similarity criteria based on ERA-Interim reanalysis data at each site. These criteria require that to be
paired, sites must have: (1) less than 10% difference in cumulated annual precipitation; (2) less than 2°C
difference in mean annual air temperature; and (3) similar degree of continentality, defined as less than
0.51 difference in standard deviation of monthly air temperature. Only paired sites including transitions
between forests and grasses or crops are considered, resulting in 9 pairs whose difference in turbulent
fluxes are compared with the values from the present dataset at each site in Fig. 4 (radiative fluxes were
not sufficiently available in the dataset). These comparisons are not expected to match closely as the
spatial supports are radically different: the flux-tower measurements represent a specific patch of area of
less than 1 km2 while the remote sensing data pixels cover the average conditions over 1° × 1°. However,
the seasonal profiles of our datasets do generally show a reasonable degree of similarity with those from
the paired sites, and this similarity increases when they are aggregated according to general classes as
shown Fig. 5.

Usage Notes
Several assumptions were necessary when constructing this dataset, and should be considered when
interpreting or reusing it. An important point to emphasise is that, although the data layers are provided
with a spatial resolution of 1°, the values themselves represent a spatial average of effects that would occur
for vegetation cover change at the scale of 0.05° or less, and thus represent direct local effects. A total
change of vegetation cover over an area of 1° × 1°, which is highly unrealisitic, would potentially cause a
much larger perturbation involving both direct and indirect effects.

We also assume vegetation cover is the only driver of changes in biophysics within the local moving
window of 0.25°. Areas with strong elevation gradients are masked out to filter topographic effects,
but other changes, in soil properties for example, are disregarded. To close locally the surface energy
balance, we also need to assume that changes of vegetation cover within the 0.05° × 0.05° area do not
generate indirect cloud feedbacks with the atmosphere that would further change the energy balance.
For example, due to their higher roughness forested landscapes can induce more cloud formation than
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Figure 5. Comparison of the dataset against averaged paired sites of flux-tower measurements. The value
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www.nature.com/sdata/

SCIENTIFIC DATA | 5:180014 | DOI: 10.1038/sdata.2018.14 12



grasslands33, and these small clouds can change the energy balance by reducing incoming shortwave
radiation, increasing incoming longwave radiation and exporting latent heat. Differences in soil moisture
under contrasting vegetation covers could also contribute to indirect changes in the surface energy
balance that cannot be resolved in this dataset. Assessing these kind of effects would require the use
of land surface models coupled with dynamic regional climate models which are beyond the scope of
this work. The assumption to neglect these feedbacks relies on the fine scale of the analysis and on
the typical lateral movement of air masses due to wind that ultimately advect air masses to different
grid cells.

The dataset is based on satellite observations obtained during the period 2008–2012. These
values should remain valid for various years in the past or the future if the background climate does
not change substantially9. Changes in background climate, such as an average increase in temperature
that reduces the length of the snow cover period or intensifies heat stress in summer, will change the
albedo and the evapotranspiration signal respectively. User are not encouraged to project these values
in scenarios of future climates without considering carefully the associated changes in climate at
every pixel.
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