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Abstract

Background: To individualize treatment decisions based on patient characteristics, identification of an interaction
between a biomarker and treatment is necessary. Often such potential interactions are analysed using data from
randomized clinical trials intended for comparison of two treatments. Tests of interactions are often lacking statistical
power andwe investigated if and how a consideration of further prognostic variables can improve power and decrease
the bias of estimated biomarker–treatment interactions in randomized clinical trials with time-to-event outcomes.

Methods: A simulation study was performed to assess how prognostic factors affect the estimate of the
biomarker–treatment interaction for a time-to-event outcome, when different approaches, like ignoring other
prognostic factors, including all available covariates or using variable selection strategies, are applied. Different
scenarios regarding the proportion of censored observations, the correlation structure between the covariate of
interest and further potential prognostic variables, and the strength of the interaction were considered.

Results: The simulation study revealed that in a regression model for estimating a biomarker–treatment interaction,
the probability of detecting a biomarker–treatment interaction can be increased by including prognostic variables
that are associated with the outcome, and that the interaction estimate is biased when relevant prognostic variables
are not considered. However, the probability of a false-positive finding increases if too many potential predictors are
included or if variable selection is performed inadequately.

Conclusions: We recommend undertaking an adequate literature search before data analysis to derive information
about potential prognostic variables and to gain power for detecting true interaction effects and pre-specifying
analyses to avoid selective reporting and increased false-positive rates.

Keywords: Biomarker–treatment interaction, Randomized trial, Stratified medicine, Predictive covariates, Variable
selection

Background
Treatment individualization, i.e. finding the right treat-
ment with the right dose at the right time for a spe-
cific patient based on certain patient characteristics, is
one of the great goals in modern medicine [1]. One
requirement for treatment individualization based on,
e.g. a certain biomarker like a genetic characteristic or a
blood parameter, is the existence of a relevant associa-
tion between the biomarker and the treatment effect [2],
often referred to as the biomarker–treatment interaction.
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Only a small number of trials have been planned to analyse
biomarker–treatment interactions [3], but often the asso-
ciation between one or more biomarkers and a treatment
effect is evaluated post hoc in data collected in ran-
domized clinical trials intended for overall comparison of
treatment groups, like e.g. the detection of the association
between the response to cetuximab and the presence or
absence of the K-ras mutation in the tumours of patients
with advanced colorectal cancer [4].
While often the treatment effect is analysed in dif-

ferent subgroups (pre-specified or post hoc specified)
to identify patients that benefit from one or another
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treatment [5], it is widely recognized that the compar-
ison of treatment groups in many different subgroups
can lead to spurious results [6]. Therefore, it is often
recommended to assess the biomarker–treatment inter-
action in a regression model, which directly allows us to
estimate and test for an interaction effect under com-
monmodel assumptions [7]. Various authors who provide
methods for estimating biomarker–treatment interactions
stress the importance of the adequate inclusion of prog-
nostic factors in the model [8, 9]. For treatment effect
estimation in a randomized clinical trial, the European
Medicines Agency’s guideline on ‘Points to consider on
adjustment for baseline covariates’ recommends including
other prognostic factors, i.e. covariates that are assumed
to be associated with the outcome, as covariates in the
regression model to increase the precision of the esti-
mate of the treatment effect [10]. Furthermore, it has
been shown that the estimate for the treatment effect is
biased in a Cox regression model, if relevant prognos-
tic covariates are not included [11]. While defining the
model used for effect estimation and hypothesis testing
a priori and including all relevant covariates can be con-
sidered as best practices [12], adequate information about
prognostic factors might not be available for all research
questions, especially whenmolecular information that has
not been well studied and for which limited informa-
tion from prior investigations is available is included in a
regression model. Various approaches to determining the
covariates that are to be included in a regression model
are presented in the literature [13].
The focus of this article is estimating the interaction

between one certain pre-specified biomarker of major
interest and the treatment. A simulation study was per-
formed to evaluate how the presence and inclusion of
further prognostic covariates affect the estimate of the
biomarker–treatment interaction. Different strategies for
model building, such as including only the main effects
of treatment, the biomarker and their interaction, addi-
tionally including covariates that are significantly associ-
ated with the outcome, or using variable selection meth-
ods based on Akaike’s information criterion (AIC) [14]
are considered. Scenarios with varying proportions of
censored observations, different strengths of association
of the prognostic covariates and the outcome, differ-
ent correlations between prognostic covariates and the
biomarker of interest, and different numbers of potential
prognostic covariates are considered. The different strate-
gies of covariate inclusion are compared in the control
of type I error probabilities and the power to reject the
null hypothesis of no biomarker–treatment interaction.
A special focus was placed on the so-called rule of ten
[12, 15]. This is often considered for predictive models,
but (to the best of our knowledge) has not been investi-
gated for the number of additional covariates considered

in a regression model, when the primary goal was estima-
tion of an interaction effect.

Methods
Assessing the biomarker–treatment interaction
The interaction between a continuous biomarker of major
interest B, or a continuous covariate in general, and treat-
ment T, which is assumed to be binary throughout the
article (T ∈ {0; 1}), can be assessed by including an inter-
action term between the biomarker and the treatment
in an adequate regression model. This means the prod-
uct of B and T is included in the regression model as
an additional covariate (see e.g. [13]). The Cox regres-
sion model [16], also known as the proportional hazards
model, is commonly considered in the analysis of survival
data in medical research. In the Cox model, the effect of
the biomarker B, the treatment T, their interaction T × B
and K other covariates described through the matrix Xk
on the hazard rate λ(t) is modelled as

λ(t|T,B,Xk)=λ0(t)exp(βTT+βBB+βT×BT × B+βT
k Xk),

(1)

where a linear association between a covariate and the log-
hazard ratio is assumed. In Eq. (1), λ0(t) is the (unspeci-
fied) baseline hazard rate, βT the regression coefficient for
treatment T, βB the coefficient for the biomarker of inter-
est B, βT×B the regression coefficient for their interaction
term and βk the vector of regression coefficients for the
K additional covariates, X1, . . . ,XK . When an interaction
term is present, the main effects of the treatment T and
the biomarker B can be interpreted as the expected treat-
ment difference at a (fictitious) biomarker value of B = 0
and the effect of the biomarker B under treatment T = 0
conditional on all other covariates. Regression coefficients
are estimated by numerical maximization of the partial
log-likelihood PL(β). The variance-covariance matrix of
the estimated regression coefficients can be derived as the
inverse of the observed information matrix I−1(β̂) (see
e.g. [16] or [17] for more details).

Strategies for covariate inclusion
In the simulation study, various approaches for including
covariates are compared. In all models, the main effects
of the treatment and biomarker as well as their interac-
tion term are included. Obviously, the best choice would
be to fit the true model to the data, which includes all
covariates that are truly associated with the outcome and
ignoring those covariates that are not. This model will be
estimated using the simulated data, but in practice the
true model will not be known and therefore, the model
must be chosen based on plausibility and previous knowl-
edge or based on information gathered from the observed
data. Therefore, the following models and strategies were
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investigated. The names are used for themodels/strategies
in the figures and tables presented in this article:

• Main: A model including only the main effects of
treatment T and the biomarker B and their
interaction T × B, ignoring all other possible
prognostic covariates.

• True: A model including the main effects of
treatment T, the biomarker of interest B and their
interaction T × B, as well as all covariates that are
truly associated with the outcome, indicating perfect
prior knowledge of relevant covariates.

• AICA: A model that includes the main effects of
treatment T and the biomarker B and their
interaction T × B and additionally all covariates that
were selected in a forward variable selection
procedure based on Akaike’s information criterion
(AIC) [14] given T, B and T × B are included (a
model including T, B and T × B was used as a
starting and minimal model). Additional covariates
were selected as long as the AIC criterion

AIC = 2 ll(β̂) − 2p (2)

was increased, where ll(β̂) is the partial log-likelihood
evaluated at the maximum likelihood estimator β̂ and
p is the number of estimated regression coefficients.

• AICB: A modelling strategy similar to AICA described
above, but prognostic factors were selected based on
the AIC criterion considering just the main effect of
treatment T as a starting model and not including B
or T × B in the variable selection process. After
prognostic factors were chosen according to the AIC
criterion, B and T × B were added to the model to
estimate the biomarker–treatment interaction.

• Significance: A model that includes the main effects
of treatment T, the covariate of interest and their
interaction, as well as all covariates that were
significantly associated with the outcome in a Cox
regression model including only one covariate (often
referred to as univariate Cox models in the medical
literature). While this strategy is generally not
recommended from a statistical point of view [18], it
appears to be a quite popular approach in practice.

• Full: A model that includes the treatment T, the
biomarker B and their interaction T × B as
covariates as well as the main effects of all K potential
predictors X1, . . . ,XK .

Data generation and simulation settings
Numerous different settings were considered to evalu-
ate the modelling strategies under varying conditions. For
each simulation scenario, 500 subjects were generated.
The matrix of continuous covariates (covariate of inter-
est B and potential predictorsX1, . . . ,XK ) was drawn from

a multivariate normal distribution using the R package
mvtnorm [19]. For each variable, a mean of 0 and a stan-
dard deviation of 1 were used. The correlation structure
was specified as described below. Since a randomized con-
trolled trial was intended to be simulated, the treatment
variable was drawn independently from all other patient
characteristics with Pr(T = 1) = Pr(T = 0) = 0.50 for
each individual. For all scenarios, βT and βB were chosen
as βT = ln(0.75) = −0.288 (i.e. exp(βT ) = 0.75) and
βB = ln(1.25) = 0.223 (i.e. exp(βB) = 1.25).
For each scenario, a time-constant baseline hazard rate

of λ0(t) = 1 was used. The hazard rate for each indi-
vidual was calculated according to Eq. 1 considering the
patient’s characteristics and the regression coefficients for
the specific scenario. Event times were generated from
an exponential distribution using each individual’s haz-
ard rate. All aspects of the simulation study including data
generation, estimating regression coefficients and sum-
marizing the results were performed with the statistical
software R [20].
The following aspects were varied in the simulation

study.

Censoring distribution Administrative censoring after
5 years was assumed for all scenarios. Additionally, cen-
soring times were generated independently of the event
times from an exponential distribution. The hazard rate of
the censoring distribution was chosen to produce scenar-
ios with

1. a low proportion of censored observations (between
30% and 40% censored observations corresponding
to 300 to 350 observed events)

2. a high proportion of censoring (between 60% and
70% censored observations corresponding to 150 to
200 observed events).

Strength of interaction The strength of the interaction
effect between the covariate of interest B and treatment T
was varied to consider scenarios with no, quantitative or
qualitative biomarker–treatment interaction [21] (see also
Fig. 1):

1. Simulation of data under the null hypothesis of no
biomarker–treatment interaction: βT×B = 0.

2. Quantitative biomarker–treatment interaction with a
difference in the magnitude of the treatment effect
between individuals with a low value of B and
individuals with a large value of B :
βT×B = ln(1.1) = 0.095, leading to a hazard ratio
between the treatment groups (T = 1 vs. T = 0) of
about 0.6 for a given value of B = −2 and a hazard
ratio of about 0.9 for B = 2.
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Fig. 1 Illustration of the different strengths of interaction used in the simulation study. A hazard ratio larger than 1 indicates a higher risk for death
under treatment T = 1, and a hazard ratio below 1 a higher risk under treatment T = 0. For the scenario with no biomarker–treatment interaction,
the hazard ratio between the treatment groups is independent of the biomarker value. For the scenario with a quantitative biomarker–treatment
interaction, the risk for an event is smaller under T = 1 compared to T = 0 for all (probable) values of B, but the difference between groups
decreases with increasing values of B. For the scenario with a qualitative biomarker–treatment interaction, the risk for an event is lower for T = 1
compared to T = 0 for small values of B and vice versa for large values of B

3. Qualitative biomarker–treatment interaction
indicating an expected lower risk for an event from
treatment T = 1 for patients with a small value of B
and a lower risk under treatment T = 0 for patients
with a large value of B : βT×B = ln(1.33) = 0.285,
providing a hazard ratio between the treatment
groups smaller than 1 for B < 1 and a hazard ratio
larger than 1 for B > 1 (dotted line in Fig. 1).

Number of potential prognostic variables to be
included in the model Three settings for the number K
of potential candidate predictors that can be included in
the regression model were considered:

1. K = 12: Here 12 additional prognostic covariates are
considered, so the rule of ten is fulfilled under both
censoring distributions for most simulation runs, as
150 to 200 events are expected in the settings with a
high amount of censoring and up to 15 regression
coefficients are to be estimated (12 prognostic
variables plus the main effects of treatment T and the
covariate of interest B and their interaction T × B).

2. K = 24: Here 24 additional prognostic covariates are
considered, so the rule of ten will be violated for
most scenarios with high censoring.

3. K = 36: Here 36 additional prognostic covariates are
considered. Again, the rule of ten will be violated
under high censoring.

Correlation structure between prognostic variables
and covariate of interest Three different correlation

structures between the covariate of interest B and the
potential prognostic variables X1, . . . ,XK were consid-
ered:

1. Firstly, a scenario with a biomarker of interest B that
is independent of the potential prognostic variables,
and independence between all the prognostic
variables was investigated, with

�1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠
.

2. As a second setting, the correlation coefficients
between B and all other covariates X1, . . . ,XK , as
well as between each pair of covariates Xi,Xj with
i �= j was set to r = 0.5, indicating a moderate
correlation between all variables:

�2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0.5 · · · · · · 0.5
0.5 1 0.5 · · · 0.5
...

. . .
...

0.5 · · · 0.5 1 0.5
0.5 · · · · · · 0.5 1

⎞
⎟⎟⎟⎟⎟⎠
.

3. A block correlation structure between the covariates
was considered, with a high correlation of r = 0.7
between the biomarker B and a set of variables as
well as between those variables, a moderate
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correlation of r = 0.4 for another set and a
correlation of r = 0.1 or r = 0 for the other variables:

�3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.7 0.7 0.7 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0 0
0.7 1 0.7 0.7 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0 0
0.7 0.7 1 0.7 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0 0
0.7 0.7 0.7 1 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0 0
0.4 0.4 0.4 0.4 1 0.4 0.4 0.4 0.1 0.1 0.1 0 0
0.4 0.4 0.4 0.4 0.4 1 0.4 0.4 0.1 0.1 0.1 0 0
0.4 0.4 0.4 0.4 0.4 0.4 1 0.4 0.1 0.1 0.1 0 0
0.4 0.4 0.4 0.4 0.4 0.4 0.4 1 0.1 0.1 0.1 0 0
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0 0
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0 0
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the scenarios with K = 24 or K = 36 potential
predictors, the correlationmatriceswere adapted accordingly.

Strength of association between prognostic variables
and outcome For the strength of association between
the potential prognostic variables X1, . . . ,XK and the out-
come, two different settings were chosen:

1. For all covariates X1, . . . ,XK , the same regression
coefficient was chosen:

βk = βeq = (ln(1.1), . . . , ln(1.1))T = (0.095, . . . , 0.095)T .

2. Varying strengths of association between the
potential predictors and the risk for an event were
considered. The vector of regression coefficients was
chosen to be

βk = βv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln(1.2)
ln(1.1)
ln(1)
ln(1.2)
ln(1.1)
ln(1)
...

ln(1.2)
ln(1.1)
ln(1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.182
0.095
0

0.182
0.095
0
...

0.182
0.095
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As all combinations of the different settings described
above were considered in the simulation study, a total
of 2 censoring distributions × 3 strengths of interac-
tion between biomarker B and treatment T × 3 numbers
of potential prognostic variables × 3 different correla-
tion structures × 2 settings for association between the
potential prognostics variables and the outcome = 108
settings were considered in the simulation. For each of
these settings, 1000 simulation runs were performed.

Analysis and presentation of results
In each simulation run, all of the methods or strategies
described in “Strategies for covariate inclusion” section
were fitted or applied, respectively. Estimation of the
regression coefficients from the Cox regression models
was performed with the function coxph in the survival
library [22] of the statistical software R [20]. For the vari-
able selection based on the AIC criterion, the function
stepAIC in the libraryMASS [23] was applied.
For each model in each simulation run, the estimated

regression coefficient for the biomarker–treatment inter-
action term β̂T×B and its estimated variance as well as the
p value of theWald test for the null hypothesisv H0: βT×B = 0
was saved. Additionally, a 95% confidence interval for
βT×B was estimated as

95% ci =
[
β̂T×B − φ0.975

√
v̂ar(β̂T×B);

β̂T×B + φ0.975

√
v̂ar(β̂T×B)

]
,

(3)

where φ0.975 denotes the 97.5% quantile of the standard
normal distribution and v̂ar(β̂T×B) is the estimated vari-
ance of the interaction coefficient obtained in the cor-
responding simulation run for the respective modelling
approach. If the algorithm for numerical maximization
of the partial log-likelihood did not converge, this infor-
mation was saved. All results presented in ‘Results’ rely
on only estimations for which the numerical optimization
algorithm converged. The number of runs for which no
result was returned is presented.
For each model and strategy, the confidence interval

coverage, i.e. the fraction of simulation runs in which
the estimated confidence interval for the biomarker–
treatment interaction covered the true value, was derived.
The proportion of simulation runs in which the null
hypothesis was rejected and a statistically significant
biomarker–treatment interaction was detected for the
conventional significance level of 5%, i.e. the power of the
statistical test if H0 were false or the probability of a type I
error if H0 were true (βT×B = 0), was determined [24].

Results
The observed proportions of rejected null hypotheses are
summarized in Table 1. Results are presented stratified
for different values of K, strength of interaction and pro-
portion of censored observations, but were aggregated
over different values of βk and �. In Tables 2, 3 and 4,
the observed proportions of simulation runs with rejected
null hypotheses are shown separately for the scenarios
with K = 12 (Table 2), K = 24 (Table 3) and K = 36
(Table 4), for scenarios with no true biomarker–treatment
interaction (top), true quantitative biomarker–treatment
interaction (middle) and true qualitative biomarker–
treatment interaction (bottom). An observed type I error
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Table 1 Proportions of rejected null hypotheses and numbers of included covariates stratified for number of potential prognostic
variables (K), strength of interaction and proportion of censored observations

K Interaction Censoring Main True AICA AICB Significance Full

12 No Low 0.058 0.060 0.062 0.056 0.059 0.060

12 No High 0.054 0.051 0.056 0.048 0.053 0.054

12 Quantitative Low 0.118 0.133 0.139 0.131 0.130 0.134

12 Quantitative High 0.095 0.100 0.108 0.099 0.096 0.099

12 Qualitative Low 0.579 0.663 0.663 0.654 0.653 0.661

12 Qualitative High 0.393 0.437 0.441 0.424 0.432 0.436

24 No Low 0.065 0.058 0.067 0.056 0.057 0.058

24 No High 0.057 0.062 0.073 0.054 0.059 0.063

24 Quantitative Low 0.115 0.135 0.150 0.131 0.131 0.136

24 Quantitative High 0.094 0.100 0.114 0.092 0.100 0.103

24 Qualitative Low 0.465 0.634 0.645 0.616 0.610 0.633

24 Qualitative High 0.349 0.411 0.426 0.383 0.399 0.415

36 No Low 0.065 0.059 0.078 0.056 0.061 0.063

36 No High 0.067 0.068 0.085 0.057 0.066 0.071

36 Quantitative Low 0.114 0.132 0.153 0.118 0.130 0.134

36 Quantitative High 0.093 0.102 0.127 0.093 0.101 0.108

36 Qualitative Low 0.412 0.618 0.629 0.578 0.576 0.610

36 Qualitative High 0.302 0.406 0.431 0.367 0.382 0.402

Results are aggregated over different values of βk and �. For the scenarios with no true biomarker–treatment interaction, results for methods/strategies with an observed
type I error probability above 7% are in italics. For scenarios with a true biomarker–treatment interaction, the observed power is in bold if the type I error probability did not
exceed 7%

probability of 7% was considered to be acceptable. For sce-
narios with no interaction (βT×B = 0), observed type I
error proportions larger than 7% are in italics. For scenar-
ios with data generated underH1 (quantitative interaction
and qualitative interaction), the proportions of rejected
null hypotheses are in bold if the type I error probabil-
ity for the approach at the given scenario was not larger
than 7%.
Themean numbers of included additional covariates are

given for each method or strategy for sets of scenarios
stratified for βk and amount of censoring in the bottom
rows of Tables 2, 3 and 4 and for each of the 108 simulated
scenarios in Additional file 7: Table S1 (for K = 12), Addi-
tional file 8: Table S2 (for K = 24) and Additional file 9:
Table S3 (for K = 36).
The distributions of the obtained estimates are illus-

trated in Fig. 2 for one exemplary set of scenarios.
The observed distributions of the regression coeffi-
cient estimates for the biomarker–treatment interaction
β̂T×B are displayed as box plots for the scenarios with
� = �3, βk = βv and low (a) or high number of cen-
sored observations (b). In the top rows, scenarios with
no true biomarker–treatment interaction are shown, and
in the bottom rows, results for data simulated with true
qualitative biomarker–treatment interactions are pre-
sented. Scenarios with different numbers of (potential)

prognostic variables (K = 12, K = 24 and K = 36)
are shown in separate columns. Distributions of estimated
regression coefficients are illustrated for all scenarios with
no true interaction (under H0) or with true qualitative
interaction in Additional file 1: Figure S1, Additional file 2:
Figure S2, Additional file 3: Figure S3, Additional file 4:
Figure S4, Additional file 5: Figure S5 and Additional
file 6: Figure S6. In each figure, the true value of the inter-
action regression coefficient is illustrated by the horizon-
tal red line. Additionally, the confidence interval coverage
for each modelling strategy (triangles and blue lines) and
the probability of rejection of the null hypothesis of no
biomarker–treatment interaction, i.e. the estimated prob-
ability for a type I error in the first row and the observed
power in the second row, are illustrated (circles and green
lines).
The type I error probabilities for the biomarker–

treatment interaction term, which are presented in the
lines indicated with no interaction (Table 1) and in the
upper parts of Tables 2, 3 and 4 for the scenarios with
no interaction, were acceptable for almost all methods
and strategies, when K = 12 further (potential) prognos-
tic variables were considered. Only for strategy AICA an
unacceptably high probability of type I errors (defined as
larger than 7%) was observed for one setting (Table 2). For
scenarios with K = 24 (potential) prognostic variables,
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Table 2 Proportions of rejected null hypotheses and numbers of included covariates for scenarios with K = 12

K � βk Censoring Main True AICA AICB Significance Full

No interaction
12 �1 βeq Low 0.066 0.069 0.072 0.066 0.067 0.069
12 �1 βv Low 0.051 0.059 0.059 0.055 0.052 0.058
12 �2 βeq Low 0.050 0.051 0.054 0.048 0.051 0.051
12 �2 βv Low 0.060 0.047 0.052 0.047 0.052 0.052
12 �3 βeq Low 0.060 0.065 0.066 0.061 0.063 0.065
12 �3 βv Low 0.063 0.066 0.067 0.060 0.067 0.065
12 �1 βeq High 0.057 0.056 0.060 0.054 0.055 0.056
12 �1 βv High 0.038 0.040 0.037 0.034 0.040 0.044
12 �2 βeq High 0.057 0.046 0.054 0.044 0.046 0.046
12 �2 βv High 0.060 0.047 0.058 0.049 0.055 0.055
12 �3 βeq High 0.053 0.059 0.060 0.050 0.062 0.059
12 �3 βv High 0.057 0.056 0.064 0.055 0.061 0.065

Quantitative interaction
12 �1 βeq Low 0.122 0.137 0.143 0.121 0.123 0.137
12 �1 βv Low 0.119 0.134 0.139 0.132 0.134 0.136
12 �2 βeq Low 0.105 0.131 0.136 0.129 0.131 0.131
12 �2 βv Low 0.113 0.131 0.141 0.135 0.132 0.132
12 �3 βeq Low 0.129 0.146 0.148 0.146 0.141 0.146
12 �3 βv Low 0.121 0.121 0.127 0.120 0.116 0.120
12 �1 βeq High 0.098 0.109 0.120 0.109 0.100 0.109
12 �1 βv High 0.108 0.112 0.118 0.111 0.108 0.111
12 �2 βeq High 0.077 0.088 0.099 0.086 0.088 0.088
12 �2 βv High 0.104 0.095 0.106 0.096 0.093 0.093
12 �3 βeq High 0.086 0.093 0.095 0.091 0.088 0.093
12 �3 βv High 0.095 0.101 0.107 0.098 0.100 0.101

Qualitative interaction
12 �1 βeq Low 0.625 0.685 0.673 0.662 0.644 0.685
12 �1 βv Low 0.605 0.664 0.664 0.661 0.649 0.661
12 �2 βeq Low 0.517 0.641 0.641 0.634 0.641 0.641
12 �2 βv Low 0.521 0.646 0.648 0.643 0.644 0.644
12 �3 βeq Low 0.621 0.678 0.686 0.673 0.680 0.678
12 �3 βv Low 0.583 0.661 0.664 0.652 0.661 0.658
12 �1 βeq High 0.427 0.462 0.464 0.446 0.433 0.462
12 �1 βv High 0.424 0.438 0.447 0.432 0.440 0.443
12 �2 βeq High 0.338 0.403 0.410 0.389 0.403 0.403
12 �2 βv High 0.359 0.431 0.429 0.413 0.433 0.433
12 �3 βeq High 0.394 0.424 0.425 0.407 0.420 0.424
12 �3 βv High 0.418 0.466 0.471 0.456 0.465 0.449

Mean number of prognostic covariates included
βeq Low 0 12 6.8 7.3 8.7 12
βv Low 0 8 6.4 6.9 8.7 12
βeq High 0 12 5.1 5.7 8.0 12
βv High 0 8 5.3 5.8 8.2 12

For the scenarios with no true biomarker–treatment interaction, results for methods/strategies with an observed type I error probability above 7% are in italics. For scenarios
with a true biomarker–treatment interaction, the observed power is in bold if the type I error probability did not exceed 7%

increased type I error probabilities were observed for each
method for at least one scenario, except for AICB. For
AICA, type I error probabilities above 7% were observed
for six of the 12 settings (Table 3) and for scenarios with
a high proportion of censored observations (60% to 70%)
when scenarios with different βk and � were aggregated

(Table 1). When K =36 potential predictors were consid-
ered, an increased type I error probability was observed
for AICA for all scenarios. For main, significance and full,
elevated false positive rates were obtained for three to
five scenarios with a high proportion of censored observa-
tions. For the true model, only two scenarios with a high
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Table 3 Proportions of rejected null hypotheses and numbers of included covariates for scenarios with K = 24

K � βk Censoring Main True AICA AICB Significance Full

No interaction

24 �1 βeq Low 0.044 0.049 0.065 0.053 0.048 0.049
24 �1 βv Low 0.055 0.069 0.074 0.065 0.060 0.069
24 �2 βeq Low 0.087 0.052 0.063 0.046 0.052 0.052
24 �2 βv Low 0.068 0.071 0.081 0.066 0.071 0.071
24 �3 βeq Low 0.068 0.049 0.061 0.052 0.055 0.049
24 �3 βv Low 0.066 0.056 0.061 0.053 0.054 0.056
24 �1 βeq High 0.035 0.056 0.069 0.054 0.046 0.056
24 �1 βv High 0.051 0.071 0.076 0.059 0.068 0.076
24 �2 βeq High 0.073 0.066 0.074 0.056 0.066 0.066
24 �2 βv High 0.060 0.054 0.066 0.048 0.056 0.056
24 �3 βeq High 0.062 0.058 0.073 0.047 0.059 0.058
24 �3 βv High 0.059 0.068 0.079 0.060 0.057 0.066

Quantitative interaction
24 �1 βeq Low 0.114 0.142 0.158 0.137 0.122 0.142
24 �1 βv Low 0.106 0.138 0.150 0.132 0.125 0.143
24 �2 βeq Low 0.119 0.135 0.148 0.130 0.135 0.135
24 �2 βv Low 0.111 0.124 0.145 0.117 0.126 0.126
24 �3 βeq Low 0.121 0.136 0.145 0.128 0.141 0.136
24 �3 βv Low 0.121 0.136 0.157 0.141 0.134 0.136
24 �1 βeq High 0.088 0.100 0.117 0.091 0.093 0.100
24 �1 βv High 0.085 0.104 0.110 0.096 0.094 0.111
24 �2 βeq High 0.094 0.109 0.122 0.094 0.109 0.109
24 �2 βv High 0.113 0.096 0.116 0.088 0.100 0.100
24 �3 βeq High 0.082 0.098 0.109 0.097 0.103 0.098
24 �3 βv High 0.100 0.091 0.109 0.086 0.098 0.098

Qualitative interaction
24 �1 βeq Low 0.630 0.697 0.686 0.658 0.632 0.697
24 �1 βv Low 0.547 0.678 0.688 0.656 0.615 0.685
24 �2 βeq Low 0.349 0.610 0.619 0.595 0.610 0.610
24 �2 βv Low 0.358 0.590 0.608 0.584 0.578 0.578
24 �3 βeq Low 0.443 0.596 0.620 0.582 0.587 0.596
24 �3 βv Low 0.465 0.632 0.651 0.621 0.636 0.631
24 �1 βeq High 0.448 0.457 0.463 0.424 0.412 0.457
24 �1 βv High 0.384 0.453 0.466 0.425 0.420 0.464
24 �2 βeq High 0.276 0.364 0.387 0.340 0.364 0.364
24 �2 βv High 0.292 0.397 0.423 0.378 0.411 0.411
24 �3 βeq High 0.355 0.387 0.405 0.356 0.382 0.387
24 �3 βv High 0.338 0.408 0.409 0.377 0.404 0.408

Mean number of prognostic covariates included
βeq Low 0 24 13.2 13.7 17.5 24
βv Low 0 16 12.7 13.1 17.8 24
βeq High 0 24 10.2 10.7 16.5 24
βv High 0 16 10.6 11.0 16.8 24

For the scenarios with no true biomarker–treatment interaction, results for methods/strategies with an observed type I error probability above 7% are in italics. For scenarios
with a true biomarker–treatment interaction, the observed power is in bold if the type I error probability did not exceed 7%

proportion of censored observations led to rejection of the
null hypothesis in more than 7% of the observed simula-
tion runs (�2, βeq and �1, βeq). For all other scenarios,
the observed type I error probabilities were between 5%
and 7%. For the strategy AICB, all observed type I error
probabilities were between 5% and 7%.

For the main model, regression coefficients for the
biomarker–treatment effect were underestimated when
a true biomarker–treatment interaction was present
(Fig. 2), with the largest bias observed for scenarios with
� = �2 (see second rows of Additional file 1: Figure
S1A and Figure S1B, Additional file 2: Figure S2A and
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Table 4 Proportions of rejected null hypotheses and numbers of included covariates for scenarios with K = 36

K � βk Censoring Main True AICA AICB Significance Full

No interaction

36 �1 βeq Low 0.047 0.065 0.080 0.054 0.056 0.065
36 �1 βv Low 0.059 0.067 0.084 0.066 0.069 0.073
36 �2 βeq Low 0.077 0.053 0.073 0.051 0.053 0.053
36 �2 βv Low 0.075 0.054 0.074 0.052 0.056 0.056
36 �3 βeq Low 0.067 0.060 0.083 0.057 0.064 0.060
36 �3 βv Low 0.063 0.055 0.074 0.053 0.069 0.069
36 �1 βeq High 0.052 0.071 0.086 0.059 0.055 0.071
36 �1 βv High 0.047 0.063 0.080 0.058 0.050 0.066
36 �2 βeq High 0.085 0.080 0.082 0.057 0.080 0.080
36 �2 βv High 0.085 0.064 0.086 0.054 0.070 0.070
36 �3 βeq High 0.057 0.069 0.094 0.056 0.063 0.069
36 �3 βv High 0.075 0.063 0.081 0.057 0.076 0.071

Quantitative interaction
36 �1 βeq Low 0.103 0.150 0.165 0.130 0.138 0.150
36 �1 βv Low 0.095 0.131 0.150 0.120 0.125 0.136
36 �2 βeq Low 0.121 0.120 0.141 0.109 0.120 0.120
36 �2 βv Low 0.128 0.128 0.147 0.121 0.134 0.134
36 �3 βeq Low 0.115 0.121 0.142 0.103 0.122 0.121
36 �3 βv Low 0.119 0.143 0.172 0.125 0.140 0.143
36 �1 βeq High 0.081 0.108 0.133 0.098 0.094 0.108
36 �1 βv High 0.095 0.112 0.132 0.101 0.102 0.118
36 �2 βeq High 0.100 0.085 0.103 0.072 0.085 0.085
36 �2 βv High 0.092 0.109 0.127 0.093 0.118 0.118
36 �3 βeq High 0.091 0.104 0.134 0.099 0.105 0.104
36 �3 βv High 0.097 0.093 0.132 0.093 0.102 0.115

Qualitative interaction
36 �1 βeq Low 0.551 0.652 0.657 0.603 0.558 0.652
36 �1 βv Low 0.517 0.700 0.688 0.658 0.599 0.669
36 �2 βeq Low 0.280 0.570 0.582 0.518 0.570 0.570
36 �2 βv Low 0.266 0.555 0.575 0.517 0.542 0.542
36 �3 βeq Low 0.408 0.609 0.637 0.582 0.581 0.609
36 �3 βv Low 0.451 0.623 0.637 0.592 0.605 0.620
36 �1 βeq High 0.389 0.447 0.456 0.403 0.385 0.447
36 �1 βv High 0.390 0.472 0.486 0.437 0.418 0.453
36 �2 βeq High 0.219 0.368 0.411 0.334 0.368 0.368
36 �2 βv High 0.228 0.385 0.419 0.353 0.389 0.389
36 �3 βeq High 0.282 0.364 0.396 0.328 0.352 0.364
36 �3 βv High 0.303 0.402 0.416 0.350 0.382 0.391

Mean number of prognostic covariates included
βeq Low 0 36 19.6 19.9 24.5 36
βv Low 0 24 19.0 19.4 25.2 36
βeq High 0 36 15.2 15.7 23.1 36
βv High 0 24 16.0 16.4 23.9 36

For the scenarios with no true biomarker–treatment interaction, results for methods/strategies with an observed type I error probability above 7% are in italics. For scenarios
with a true biomarker–treatment interaction, the observed power is in bold if the type I error probability did not exceed 7%

Figure S2B, Additional file 3: Figure S3A and Figure S3B,
Additional file 4: Figure S4A and Figure S4B, Additional
file 5: Figure S5A and Figure S5B, and Additional file 6:
Figure S6A and Figure S6B). This also led to a loss
of power, which was reduced as compared to the true
model for most of the scenarios (Tables 1, 2, 3 and 4,

green dots in Additional file 1: Figure S1, Additional
file 2: Figure S2, Additional file 3: Figure S3, Addi-
tional file 4: Figure S4, Additional file 5: Figure S5 and
Additional file 6: Figure S6). Generally, the highest power
was observed for the truemodel. The power for AICA can-
not be interpreted adequately for most of the scenarios
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a

b

Fig. 2 Distribution of β̂T×B for scenarios with � = �3, βk = βv , and low censoring (a) or high censoring (b) for no biomarker–treatment interaction
(βT×B = ln(1.0) = 0, top rows) or qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285, bottom rows). Scenarios for different
numbers of potential prognostic variables are shown in different columns. The dashed red lines indicate the true value of βT×B , the blue triangles
represent the observed confidence interval coverages and the green dots the observed probability for a type I error (a) or estimated power (b). AIC
Akaike’s information criterion, qual. qualitative, Sig significance

due to its increased type I error probabilities. The full
model is identical to the true model for βk = βeq,
as all covariates are truly associated with the outcome.
For βk = βv, the power of the full model was simi-
lar to the power of the true model for K = 12 and
K = 24 in our simulation runs, but was slightly lower
for simulations with K = 36. The strategy AICB, which
appears to have an adequate false positive rate, showed
(slightly) lower power than the true model for (almost)
all of the scenarios. A slightly decreased power was also

observed for the strategy including all covariates that were
significantly associated with the outcome (significance).
The type I error probability was acceptable for most sce-
narios with a small or moderate number of potential
predictors (K = 12 and K = 24), but an increased type
I error probability was observed for scenarios with many
potential predictors (K = 36).
Coverage was adequate for most of the models and

strategies. For main, the coverage was reduced for some
scenarios due to biased estimates. For AICA, the coverage
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was under 93% for 52 of the 108 scenarios (48.1%), indicat-
ing standard errors for the regression coefficient of inter-
est were underestimated following the variable selection
procedure.
In the last rows of Tables 2, 3 and 4, the mean num-

bers of additionally included covariates are summarized
for each method/strategy stratified for the amount of
censoring and βk (which determines the number of truly
prognostic variables). It was observed that for our set-
tings, the procedure including variables that were sig-
nificantly associated with the outcome in univariate Cox
models selected more variables than the AIC-based meth-
ods, and that slightly more variables were chosen with
AICB than with AICA. For scenarios with βk = βeq,
the true and full models were identical by definition.
More detailed information on the numbers of covari-
ates included are given in Additional file 7: Table S1,
Additional file 8: Table S2 and Additional file 9: Table S3.
The optimization algorithm for numerical maximiza-

tion of the partial log-likelihood of the Cox regression
model for estimating the regression coefficients did not
converge for some simulation runs. The problem espe-
cially occurred for AICA. Over all 108,000 simulation runs
(108 scenarios × 1,000 runs per scenario), the estima-
tion algorithm did not converge 11 times (0.010%) for
main, twice (0.002%) for true, 895 times (0.829%) for
AICA, 27 times (0.025%) for AICB, three times (0.003%)
for significance and no times (0%) for full.

Discussion
The ultimate goal in individualized or tailored medicine
is to find the best treatment for each individual based on
the patient’s characteristics like age, sex, co-morbidities,
disease history and molecular and genetic information,
which are often referred to as biomarkers. The exis-
tence and detection of a biomarker–treatment interaction
can be considered as a requirement for such treatment
individualization [2], and consequently an interaction
between the biomarker of interest and treatment has to
be established in a first step, e.g. by finding statistically
significant and clinically relevant interactions based on
data from (multiple) randomized clinical trials. Decision
rules for treatment selection based on the characteristics
of a certain patient have to be investigated and estab-
lished afterwards, also considering the benefits and costs
of the application of a certain treatment strategy for a
given patient.
To detect relevant associations and interactions, it is

well known that splitting a quantitative variable into dif-
ferent categories, leading to a comparison of treatment
effects between different subgroups, will result in a loss
of information and will consequently decrease the prob-
ability of detecting a true biomarker–treatment interac-
tion [25]. So, using all the quantitative information is

recommended for analysis of biomarker–treatment inter-
actions [7]. To estimate a treatment effect in a randomized
clinical trial, the inclusion of relevant prognostic vari-
ables is recommended [10] to increase the precision of
the estimate and consequently the probability of detect-
ing real group differences. For this article, we performed
a simulation study to investigate whether the probabil-
ity of detecting a biomarker–treatment interaction in data
derived from a randomized clinical trial can be improved
by including further potentially prognostic variables in
a Cox regression model for time-to-event data. Differ-
ent settings for the strength of interaction between the
biomarker and the treatment, the correlation between
the biomarker of interest and other potential predictors,
the strength of association between the predictors and
outcome, the number of (potential) further predictors,
and the number of events and censored observations
were considered. When a biomarker–treatment interac-
tion is assessed using data from a randomized clinical
trial, obviously the best choice is to include in the final
model all covariates truly associated with the outcome,
which was covered by the true model in our simulation
study. As this true model often is not known in prac-
tice, especially in investigations including molecular or
genetic information, more flexible approaches might be
needed. So, we also investigated strategies using data-
driven variable selection procedures based on AIC [14]
or on the results of Cox regression models with single
covariates.
In our simulation study, we observed that including the

correct prognostic variables leads to an increased proba-
bility of detecting a true biomarker–treatment interaction
and reduced bias of the estimated interaction effect, with
the magnitude of improvement depending on the strength
of association between the prognostic variables and the
outcome and between the prognostic variables and the
biomarker of interest. In contrast, including too many
variables per event can lead to the opposite effect and
increased probabilities of false positives. This problem is
well known for multiple regression models [15, 26]. Our
results support the rule of ten, which was proposed for
predictive modelling [27], since the type I error probabil-
ity was increased for the biomarker of interest, even for
the true model, when a large number of covariates was
considered. The simulation study also revealed that ignor-
ing relevant prognostic factors leads to biased estimates
for the biomarker–treatment interaction effect, which has
been described for estimating the group effect from a ran-
domized clinical trial using a Cox regression model [11].
Generally, the data-driven selection of prognostic vari-
ables by an inclusion procedure based on the AIC after
including the main effects of the biomarker of interest,
the treatment and their interaction in the model increases
the type I error probabilities and reduces the confidence
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interval coverage. This was not observed in a strategy that
selected the relevant prognostic variables in a first step
and added the biomarker main effect and the biomarker–
treatment interaction afterwards (called AICB in our arti-
cle). In our simulated scenarios, the strategy including all
covariates that were found to be significantly associated
with the outcome performed similarly to that approach.
Automated variable selection procedures are criticized in
the literature for various reasons (see e.g. [28]). Based on
the results of our simulation study, we strongly discour-
age using an automated variable selection procedure to
choose additional prognostic variables after including the
biomarker–treatment interaction of interest, as this may
lead to unreliable results.
An obvious limitation of our study is that we observed

only a moderate number of different scenarios with
three correlation structures, three strengths of inter-
action between the biomarker and treatment, two
strengths/structures of association between the additional
prognostic variables and treatment, two censoring distri-
butions, three numbers of (potential) prognostic variables,
and a fixed number of 500 observations, due to limited
time and space. All these aspects influenced the results
and other settings may have led to different findings and
consequently recommendations. In particular, the num-
ber of observed events, which is more important than
the total sample size for a time-to-event outcome, was
varied only by choosing two different censoring propor-
tions, but it has a major impact on the power of the
interaction test. We also investigated only a small number
of strategies for inclusion or selection of further covari-
ates based on the AIC and significant associations with
the outcome. Other strategies (like backward selection),
other criteria (like the Bayesian information criterion [29])
or other procedures for variable selection (like the least
absolute shrinkage and selection operator [30]) were not
considered. Furthermore, we considered only normally
distributed biomarkers and linear associations and inter-
actions in our simulations and fitted Cox regression mod-
els assuming linear associations and time-constant effects
to our data. Recently introduced methods for estimat-
ing non-linear interactions, like local partial likelihood
estimation [31], multivariable fractional polynomials for
interaction [8] or the modified covariate approach [9],
were not investigated.
It has to be considered that in our scenario, only one

pre-specified biomarker of interest is assessed. It was
identified as being of interest e.g. in an observational
study or was found to be relevant for a similar kind
of disease. If more than one biomarker is investigated,
multiplicity issues arise that have to be adequately con-
sidered [32]. When an analysis is an additional analysis
to a standard group comparison for a randomized clini-
cal trial, it can only be exploratory in nature. Nevertheless,

themethod used for statistical analysis should be specified
a priori to generate reliable results and avoid problems of
data-dredging and selective reporting, and consequently
generating unreliable results and increased false-positive
rates [33]. Further algorithms or strategies should be
used in sensitivity analyses to assess the stability of the
observed results. If the investigation of a biomarker–
treatment interaction is of major importance for a clinical
trial, this should be considered in the design stage and
consequently in the sample size calculation.

Conclusions
Based on the results of our simulation study, we rec-
ommend considering prognostic covariates in regression
models when estimating biomarker–treatment interac-
tions, as the power for detecting true interactions can
be increased. However, including too many variables can
lead to unreliable results. The choice of variables included
should be based on prior information and subject knowl-
edge. Automatic variable selection procedures have to be
handled with care.

Additional files

Additional file 1: Figure S1. Distribution of β̂T×B for scenarios with
K = 12, βk = βeq , and low censoring (A) or high censoring (B) for no
biomarker–treatment interaction (βT×B = ln(1.0) = 0, top rows) or
qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285,
bottom rows). Results for different correlation structures are shown in
separate columns. The dashed red lines indicate the true value of βT×B , the
blue triangles represent the observed confidence interval coverages, the
green dots the observed probability for a type I error (A) or estimated
power (B). (PDF 20 kb)

Additional file 2: Figure S2. Distribution of β̂T×B for scenarios with
K = 12, βk = βv , and low censoring (A) or high censoring (B) for no
biomarker–treatment interaction (βT×B = ln(1.0) = 0, top rows) or
qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285,
bottom rows). Results for different correlation structures are shown in
separate columns. The dashed red lines indicate the true value of βT×B , the
blue triangles represent the observed confidence interval coverages, the
green dots the observed probability for a type I error (A) or estimated
power (B). (PDF 20 kb)

Additional file 3: Figure S3. Distribution of β̂T×B for scenarios with
K = 24, βk = βeq , and low censoring (A) or high censoring (B) for no
biomarker–treatment interaction (βT×B = ln(1.0) = 0, top rows) or
qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285,
bottom rows). Results for different correlation structures are shown in
separate columns. The dashed red lines indicate the true value of βT×B , the
blue triangles represent the observed confidence interval coverages, the
green dots the observed probability for a type I error (A) or estimated
power (B). (PDF 20 kb)

Additional file 4: Figure S4. Distribution of β̂T×B for scenarios with
K = 24, βk = βv , and low censoring (A) or high censoring (B) for no
biomarker–treatment interaction (βT×B = ln(1.0) = 0, top rows) or
qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285,
bottom rows). Results for different correlation structures are shown in
separate columns. The dashed red lines indicate the true value of βT×B , the
blue triangles represent the observed confidence interval coverages, the
green dots the observed probability for a type I error (A) or estimated
power (B). (PDF 20 kb)
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Additional file 5: Figure S5. Distribution of β̂T×B for scenarios with
K = 36, βk = βeq , and low censoring (A) or high censoring (B) for no
biomarker–treatment interaction (βT×B = ln(1.0) = 0, top rows) or
qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285,
bottom rows). Results for different correlation structures are shown in
separate columns. The dashed red lines indicate the true value of βT×B , the
blue triangles represent the observed confidence interval coverages, the
green dots the observed probability for a type I error (A) or estimated
power (B). (PDF 20 kb)

Additional file 6: Figure S6. Distribution of β̂T×B for scenarios with
K = 36, βk = βv , and low censoring (A) or high censoring (B) for no
biomarker–treatment interaction (βT×B = ln(1.0) = 0, top rows) or
qualitative biomarker–treatment interaction (βT×B = ln(1.33) = 0.285,
bottom rows). Results for different correlation structures are shown in
separate columns. The dashed red lines indicate the true value of βT×B , the
blue triangles represent the observed confidence interval coverages, the
green dots the observed probability for a type I error (A) or estimated
power (B). (PDF 20 kb)

Additional file 7: Table S1. Mean number of additionally included
prognostic variables for all scenarios with K = 12. (PDF 68 kb)

Additional file 8: Table S2. Mean number of additionally included
prognostic variables for all scenarios with K = 24. (PDF 68 kb)

Additional file 9: Table S3. Mean number of additionally included
prognostic variables for all scenarios with K = 36. (PDF 68 kb)
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