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Abstract

The current Ebola virus disease outbreak in West Africa has revealed serious shortcomings in 

national and international capacity to detect, monitor, and respond to infectious disease outbreaks 

as they occur. Recent advances in diagnostics, risk mapping, mathematical modelling, pathogen 

genome sequencing, phylogenetics, and phylogeography have the potential to improve 

substantially the quantity and quality of information available to guide the public health response 

to outbreaks of all kinds.

Introduction

The Ebola virus disease (EVD) epidemic in West Africa exemplifies how gaps in capacity 

for early detection and effective management of an infectious disease outbreak can 

contribute to a public health crisis. Overcoming these gaps is a global public good with 

benefits that accrue beyond the boundaries of the country first affected (1). Surveillance—

defined in the 2005 International Health regulations (2) as “the systematic, ongoing 

collection, collation and analysis of data for public health purposes and the timely 

dissemination of public health information for assessment and public health response as 

necessary”—is a critical component of outbreak management. Technological advances in 

diagnostic tools, genome sequencing, computing power and communications devices can 

augment traditional surveillance methods to accrue and disseminate information in real time, 

offering the possibility of better outbreak management and thereby saving lives. Lessons 

from Ebola as well as other infectious diseases, such as influenza and Middle East 

respiratory syndrome (MERS), may guide the integration of these technologies for 

successful disease surveillance.
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Detection and Monitoring

Most infectious disease outbreaks are first detected through clinical investigation by vigilant 

frontline healthcare workers. However, clinical surveillance can be an unreliable tool for 

outbreak detection and monitoring for a number of reasons. Inadequate surveillance and/or 

reporting systems, a major issue for EVD in West Africa (3), may lead to delayed detection 

and substantial under-reporting. Misdiagnosis, such as the misdiagnosis of sleeping sickness 

as malaria, may have fatal consequences for the patients concerned (4). Also, mild or 

subclinical may not be detected and/or reported to the health services. Such cases accounted 

for the great majority of infections with pandemic H1N1 influenza in 2009. Indeed, an 

entirely clinically-orientated view can massively underestimate the burden of infection, 

leading to inaccurate empirical estimates of the scale and trajectory of an outbreak and 

compromising outbreak management.

One solution to these problems is the development and deployment of rapid, point-of-care 

(POC) diagnostic tests, linked to modern information technology (5). For acute infections, 

improving detection times by as little as 24 hrs, or even less, can make a critical difference 

to our ability to contain an outbreak (6). The focus of POC testing is to generate rapid results 

that meet WHO “ASSURED” criteria (Affordable, Sensitive, Specific, User-friendly, Rapid 

& Robust, Equipment-free, and Delivered – to which we would add ‘Connected’). Suitable 

platforms are already available for application to a range of viral, bacterial and protozoal 

infections. These include nucleic acid amplification techniques (NAATs) that encompass 

thermal, PCR-based tests, isothermal methods (perhaps more suitable for field 

epidemiology), enzyme immunoassays and immuno-chromatographic tests (5). Although 

rapid POC testing has yet to play a substantial role during any major infectious disease 

epidemic, it is currently being evaluated for dengue and influenza virus and is likely to be 

increasingly important in the future.

There are also technologies that are of limited use for clinical care but of great value for 

epidemiological surveillance, providing estimates of cumulative exposure at the population 

level. One such approach is sero-surveillance, the use of serological tests for screening an at-

risk population. Sero-surveillance has been used to estimate levels of exposure to H5N1 

influenza A (7) and MERS-CoV (8). Sero-surveillance during the H1N1 influenza pandemic 

gave estimates of 30-40% population exposure in many countries (9), far higher than clinical 

surveillance indicated. Protocols for the rapid development and deployment of serological 

tests have been proposed for influenza (10) and could, in principle, be designed for other 

infections.

Monitoring indirect markers of disease activity, such as internet use and activity on social 

media may also contribute to epidemiological surveillance. However, an early warning 

system to detect influenza outbreaks (Google Flu Trends) did not detect the arrival of 

pandemic H1N1 in the USA in 2009, and the challenge for internet-based and social media-

based surveillance systems is to develop methods good enough to be used as surrogates for 

clinical data (11). However, other new technologies, such as real-time sequencing and 

mathematical modelling, may be ready for integrating into surveillance systems.
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Real-Time Sequence Data

Probably the most important addition to the arsenal of tools for outbreak investigation and 

guiding public health interventions is the production and use of time-resolved and geo-

located pathogen genome data. Over the last decade not only has a deep understanding and a 

detailed evolutionary framework been developed for, in particular, virus genetics (12), but 

powerful computational tools and high throughput methods for producing virus genomes are 

now available.

Large-scale sequencing has been used extensively as a research tool, especially in the fields 

of HIV and influenza. HIV sequences for parts of the virus genome conferring drug 

resistance have been routinely determined as part of clinical patient management for nearly 

two decades, with peripheral blood samples being taken for virus genome load also being 

used for determining HIV protease and reverse transcriptase sequences for prediction of 

likely drug sensitivity or resistance (13). When organised nationally, such sequences can be 

linked under appropriate data governance and ethics to other clinical and demographic data. 

From this, the sequences can inform transmission network analysis (14) and HIV infection 

dynamics (15). For influenza viruses, large-scale sequencing of virus isolates, linked to geo-

location, provides a rich and detailed insight into global influenza virus transmission both in 

humans and in animal species (16).

HIV and influenza virus both illustrate that access to and analysis of large numbers of 

samples (typically hundreds or thousands) is essential. These samples need to be collected 

without additional sampling of the patient or specialist processing of samples where they are 

obtained. Fortunately, clinical samples are processed into virus nucleic acid either manually 

or on robot systems with as little as 20% of the virus nucleic acid used in the diagnostic 

PCR. It is at this point, when all the costs and logistics associated with diagnosis have been 

met, that virus genomes can be retrieved from the sample. In short, residual clinical 

diagnostic nucleic acid should never be discarded before the option of converting to a 

pathogen genome has been considered.

In practice, full-length virus genomes are not always required. Partial virus genomes that are 

not ‘finished’ may provide all the information required for molecular epidemiology. A range 

of genome criteria should be considered in producing high value or Actionable Virus 

Genomes (AVGs) (17). The important addition here is a set of criteria for assessing the 

quality of the assembled genomes and the desire to limit these criteria to the majority/

consensus pathogen genome, rather than the requiring accurate reporting of minority 

sequence variants in the sample. This strategy has been shown to work in practice for both 

MERS-CoV and ebolavirus (Box 1).

Analysis of Sequence Data

In recent years there has been a profusion of methods that link virus gene sequences with 

other information to reveal the evolutionary and epidemiological dynamics of the virus. The 

critical data are dates of sampling of the virus, which transform a phylogeny from a 

classification procedure into an epidemiological tool (Figure 1). With a time axis the 
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branching events represent transmissions between hosts and thus the times between these 

events can be used, in a mathematical model, to learn about the key parameters for the 

outbreak.

For many infectious disease outbreaks, estimates of the sampling proportion (the proportion 

of the epidemic the sample viruses represent), may be the most crucial inferences to be 

made, revealing the extent of the hidden epidemic due to sub-clinical cases or otherwise 

unreported cases. Another key motivation for the collection of virus sequence data is to 

understand the relationship between human cases and an animal reservoir. An important 

example is MERS Co-V (18), where phlyogenetic analysis of virus sequences obtained from 

camels, particularly camels with no link to a human case, suggests the directionality of 

transmission from camel to human (19). Virus sequence analysis can also model how the 

virus spreads through space and time, using either individual locations of sampled 

individuals, at the level of map coordinates and assuming that movement of the virus is 

through a process of diffusion (20) or by treating geography as a limited set of discrete 

locations (e.g. cities) and interpreting movements as jumps between them that occur at 

particular rates (21). These approaches can be equally used to investigate the evolution of 

phenotypic traits of viruses, such as host switching (19) or virulence, resistance, or the 

antigenic evolution of influenza (22).

The 2009 H1N1 influenza A pandemic was remarkable for being the first serious outbreak to 

be tracked in real-time by virus genetic data, using data provided by the US Centers for 

Disease Control and Prevention (CDC) within days of samples being taken from suspected 

cases. These data were shared as part of the Global Initiative on Sharing All Influenza Data 

(GISAID) which had been set up a few years before to encourage the exchange of influenza 

data. However, no similar initiatives exist for other viruses with epidemic potential.

Virus genome sequencing of the earliest EVD cases from Guinea attributed the outbreak in 

West Africa to the species ebolavirus within weeks of the first cases being diagnosed (23). 

The genetic similarity to viruses that had previously caused human outbreaks in Central 

Africa provided an expectation of the epidemiological and pathological properties of the 

virus: the Zaire species of ebolavirus had caused 14 documented outbreaks of no more than 

a few hundred cases but with a case fatality rate of up to 90%. However, even though this 

was a known virus, the outbreak occurred in an unexpected geographical area and in a 

population that had a very different demography from previous outbreaks (24).

In June 2014, the Broad Institute in collaboration with partners at the Kenema Government 

Hospital in Sierra Leone shared 78 virus genome sequences from patients that had presented 

with EVD in the preceding weeks. These provided information on the rate of evolution and 

revealed no evidence of virus adaptation to humans (25), a major concern at the time. 

Another important finding was that the epidemic was not being driven by multiple zoonotic 

transfers from an animal reservoir. These sequences provided crucial insights into the virus 

just at a time when the outbreak was growing rapidly. The publication of these sequences 

(25) inspired a series of analytical papers extracting additional inferences about the outbreak 

including estimates of epidemiological parameters such as the case reproduction rate, 

infectious period and sampling fraction (26), and the identification of lineages of potential 
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epidemiological significance (27). Estimates of the case reproduction rate (similar to R0 

during the early phase of an outbreak) were broadly in line with epidemiological estimates, 

providing helpful confirmatory evidence given concerns over the reliability of case reporting 

data. However, given that the epidemic had grown to the point where hundreds of cases per 

week were being reported from the three affected countries by the time these studies were 

published (in October and November 2014), the results had limited practical value.

Mathematical Modelling

Mathematical modelling is an established tool in infectious disease epidemiology (28). Real-

time projections of case numbers using mathematical models have been provided during 

many epidemics in the past three decades, including EVD (29,30). At a minimum, 

actionable projections require: i) an appropriate model framework that captures 

heterogeneities in risks of infection and rates of transmission; ii) appropriate methods for 

model parameterisation; iii) rapid access to infection and disease data. Recent applications 

of mathematical and statistical models to project the course of the 2014 EVD epidemic 

provide instructive examples. Two studies (29,30) were based on the standard compartment 

model framework (28), extended to allow for heterogeneous transmission related to clinical 

disease, hospitalization and funerals, and calibrated against early case data. Another study 

(31) fitted both regression and branching process models to clinical case data. A variant of 

the latter approach incorporated separate probability distributions for different transmission 

routes, resulting in a multi-type branching process model (32) (Figure 2). Together, these 

make for a set of very different modelling approaches, but all are essentially extrapolations, 

implicitly assuming near-exponential growth of the epidemic.

Accurate projections depend to a large degree on accurate parameter estimation, not least 

because exponential processes are highly sensitive to exact parameter values. Two key 

parameters are R0 (the average number of secondary cases generated by a single primary 

case introduced into a previously unexposed population) and the generation time (the 

average time between initial infection of a case and of cases it gives rise to) (28). Together, 

R0 and the generation time determine the doubling time of an outbreak during the early, 

exponential phase. However, exponential growth during the early stages of an outbreak is not 

expected in all circumstances (33), such as when R0≈1, a realistic scenario for which large 

outbreaks (hundreds of cases or more) is entirely possible (34) or when there are multiple 

introductions separated in time and space, some of which die out due simply to demographic 

stochasticity. This was the case with pandemic H1N1 influenza A in Scotland in 2009, as 

indicated by the analysis of virus sequence data (35). The history of ebolavirus in Liberia in 

2014 may also have involved multiple introductions (32) but, again, this can only be 

confirmed from virus genome sequence data.

Though short-term projections are feasible for many outbreaks, extrapolation methods are 

much less useful in the longer term. This is partly because the confidence intervals on the 

projections quickly become very wide (Figure 2) but, more fundamentally, because the 

exponential growth assumption breaks down as the epidemic progresses (often with the 

introduction of control measures). This underlines the need for clear communication of how 

model outputs – particularly “worst case” scenarios – should be interpreted (3).
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Several initiatives (e.g. 36) aim to increase the availability of open access tools kits for 

epidemiological modelling—both for model parameterisation and development. Indeed, 

formal, robust and rapid model fitting procedures, generally based on maximum likelihood 

or Markov chain Monte Carlo (McMC) methods (37), are being developed to replace the ad 

hoc approaches – “calibration” or “tuning” – which are still often utilised in practice (33).

One potentially useful approach is pattern oriented modelling (POM) (38). POM is a 

technique used originally in ecological modelling both to distinguish between possible 

model structures and to reduce parameter uncertainty. POM identifies models that reproduce 

a set of pre-selected patterns observed in the data – whether qualitative or quantitative. The 

ability to consider multiple patterns and different kinds of data simultaneously greatly 

increases both discriminatory power and flexibility. It also addresses a legitimate reluctance 

to apply very precise model fitting procedures to poor quality disease data. POM has only 

rarely been applied to infectious diseases (38) but a very similar approach has been used to 

parameterise a model of EVD cases, generating encouragingly precise estimates of a set of 

seven different parameters (32).

Risk Mapping

Risk mapping has been applied to a range of diseases, including EVD in Africa. The EVD 

risk map (24) incorporated a set of predictors including elevation, an index of vegetation 

cover, other environmental variables, and estimated composite distribution data for three bat 

species suspected to be reservoirs of Ebola virus. The output (Figure 3) suggests that several 

countries, notably Nigeria and Cameroon, are at risk of EVD but lie outside its currently 

reported range.

Spatial risk analyses are restricted to predictors for which spatial data are available. In 

resource-poor settings this often equates to data available via remote sensing. Analyses are 

also limited by the quantity and quality of the disease data used to calibrate the models, in 

particular the issue of ascertainment bias, i.e. “pseudo-absence” at locations where health 

reporting is unreliable. The utility of the models is determined to a large extent by how well 

they deal with this issue. However, even with these limitations, risk maps provide 

information that helps direct national and international surveillance efforts and contributes to 

planning and preparedness between outbreaks.

Applications of Modelling

Outbreak size distribution analysis has been used successfully to monitor the epidemiology 

of measles in the UK following a fall-off in childhood vaccination rates in the late 1990s, 

charting the approaching loss of herd immunity through shifts in the size and frequency of 

small outbreaks (39). It has also been applied to monkeypox (40), anticipating a possible 

increase in monkeypox transmissibility as the fraction of the population immunised against 

smallpox dwindles. It has recently been applied, using McMC techniques, to EVD (34), 

confirming that prior to 2013 R0 for ebolavirus in humans was close to, or possibly above, 1, 

indicative of a high risk of major epidemics.
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Modelling can aid in predicting the impact of so-called ‘reactive’ control measures (6) on 

the course of an infectious disease outbreak. For example, the expected impact of case 

isolation and/or quarantine of at-risk individuals on the course of an outbreak is determined, 

inter alia, by the relative timings of a case becoming infectious (and thus potentially 

transmitting infection to others) and being detected, typically following the appearance of 

clinical signs (6). Surprisingly, such basic information on the time course of an infection is 

often lacking, even for well-studied infections such as influenza, and there is a need for 

greater investment in experimental studies to fill this gap. This example illustrates a wider 

concern: many public health interventions are designed to reduce pathogen transmission 

rates and neither their intended nor actual impact can be quantified without reference to 

changes in transmission rates; however, research on pathogen transmission consumes a 

miniscule fraction of research effort expended on infectious diseases, the bulk of which is 

aimed at understanding and preventing infection and pathology.

Another consideration, all-too-often ignored until an outbreak occurs, is the logistic capacity 

of the affected health system to respond. For the West African EVD epidemic a key issue 

was the capacity to roll out isolation units fast enough to ‘catch up’ the epidemic curve (3). 

However, similar arguments apply more generally to the capacity to administer drugs, 

vaccines or any other reactive measures that contribute to reducing the net rate of 

transmission. In this context, models can help quantify an “effective” response. For EVD, 

models indicated that hospital capacity and individual behaviour (particularly social 

distancing) were particularly important (32).

Parameterising the variables that capture both the intended and the actual impact of 

interventions can be extremely difficult (33). There is a need firstly to monitor the 

implementation of interventions (noting that targets set by policy makers do not always 

correspond to events on the ground) and secondly to analyse these data in real time in order 

to evaluate their impact. These activities require resources and are often neglected. 

Moreover, many of the measures that may be taken have effects, particularly on the rate of 

transmission, that are difficult to quantify. Examples include the wearing of face masks and 

social distancing (i.e. reducing the risk of infection by changing patterns of contact with the 

rest of the population, whether in response to public health warnings or through individual 

initiative).

An important general principle that emerges from the infectious disease modelling literature 

is that there are substantial benefits arising from the implementation of reactive control 

measures as early as possible (6). This is a straightforward consequence of the expectation 

that absolute numbers of cases will increase exponentially during the early stages of an 

outbreak. Indeed, during this phase the costs of delay also increase over time; for an acute 

infection such as ebolavirus, each week’s delay permits a greater number of extra cases than 

the previous week (3).

Practical Steps

The call for better surveillance systems has been made repeatedly during the past decade 

(41), but there has been too little effective change on the ground (42). One of the most 
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important barriers to the modernisation of infectious disease surveillance systems is that 

non-traditional approaches are all-too-often seen as an unnecessary distraction from 

immediate health needs, particularly during an emergency when resources are likely to be 

severely stretched. This can be exacerbated by real or perceived gaps in technical capacity 

and expertise (a health emergency is not the best time to be learning new techniques), and by 

those involved in collecting samples and data (sometimes in extremely challenging 

circumstances) being disconnected from the subsequent work that depends on their efforts. 

The best way to remove such barriers to adoption may be to promote a wider appreciation of 

what is possible, how it can be achieved and the immediate benefit to public health.

It has been argued that improving global surveillance for emerging infectious diseases is 

feasible and cost-effective (2) but substantial investment in infrastructure, technology, 

training and organization is required. Ultimately, improved global surveillance will emerge 

from strengthening and connecting national surveillance systems. Similar kinds of 

investment are needed to strengthen national and international capacity to respond 

effectively to infectious disease events, and there is an ongoing discussion in the light of the 

current EVD epidemic as to whether that should include an international rapid response 

force (1). In addition, there is a need for a greater investment in health policy and systems 

research, an underfunded and unappreciated field that has a central role to play in meeting 

the challenge of achieving effective infectious disease surveillance and outbreak 

management on a global scale.

Any response to an infectious disease outbreak, and especially a coordinated international 

effort, is contingent not just on the presence of functional national surveillance systems but 

on the rapid sharing of information between countries and with international agencies. The 

revolution in information and communications technology that has occurred over the past 

20-30 years has removed virtually all technological barriers to this process, even in remote, 

resource-poor settings. Moreover, as several of the above examples illustrate, it is now 

routine to integrate and analyse data from multiple sources, such as public health, 

demographic, location (e.g. global positioning system), movement, geographic, animal 

distribution, remote sensing and genome sequence data.

Arguably the biggest remaining barrier to real-time data sharing is cultural, reflecting a 

reluctance to report disease events. This can be for a number of reasons, not least fear of the 

imposition of restrictions on freedom of movement or trade, or of adverse effects on tourism 

and investment (2). The 2005 International Health Regulations provide a framework for 

disease reporting, but do not directly address the question of disincentives, and their 

implementation has been very patchy to date (42). An obvious solution is to balance the 

negative consequences of reporting with the promise of effective assistance.

For maximum benefit, data sharing should be as rapid and as open as possible. Again, there 

are few if any technological barriers to this: data and information sharing platforms such as 

GenBank, Dryad and ArXiv have been available for many years. However, although lines of 

reporting from front-line health official to international agencies are fairly well set out (2), 

there is no agreement on responsibility for data sharing and all too often this is left to 

individual or institutional preference. One approach is to penalise countries that do not 

Woolhouse et al. Page 8

Sci Transl Med. Author manuscript; available in PMC 2018 February 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



implement and report from an adequate surveillance system, as was required for 

participation in the international cattle trade during the BSE epidemic.

One possible consequence of data sharing is a proliferation of analyses of those data, as was 

seen during the 2009 H1N1 influenza A pandemic and during the current EVD epidemic. 

While we regard this as a positive development, it can have perceived disadvantages, notably 

a loss of control by national or international agencies, and as creating uncertainty over which 

analyses should be trusted. These issues are not insurmountable and should not be regarded 

as obstacles to data sharing. In other fields, notably climate change, an ensemble approach to 

data analysis, interpretation and projection has been the norm for many years (43). Although 

this is challenging for many infectious diseases, if only because of the much shorter 

timescales involved, suitable systems are already in place and there has been, for example, 

real-time evaluation of multiple models of pandemic influenza (44).

Many of the practical aspects of preparedness for an infectious disease outbreak can and 

should be addressed in advance of a crisis. These include: contingency planning and 

coordination; developing and stockpiling diagnostics, drugs, and vaccines; setting up 

sequencing pipelines; designing data-sharing protocols; constructing, verifying and 

validating mathematical models; agreeing reporting and communication pathways; and 

anticipating public engagement and ethical issues. One approach to this is to set up sentinel 

cohorts. This ensures that data collection and reporting (including self-reporting) systems 

are all in place and tested in advance of an outbreak. Importantly, it would also cover ethical 

requirements. Ethical considerations both delayed and limited surveillance in the UK during 

the 2009 H1N1 influenza A pandemic (45) and can be difficult to deal with rapidly even 

during a major emergency, as recent experience with trials for ebolavirus vaccines illustrates.

To facilitate the provision of virus genomes, we would propose an approach similar to the 

WHO’s Pandemic Influenza Preparedness Framework for the sharing of influenza viruses 
and access to vaccines and other benefits (or PIP Framework), an international arrangement 

that brings together key stakeholders to strengthen preparedness for the next influenza 

pandemic. This has now been extended to address sequencing data though a Technical 

Expert Working Group, with the overall PIP framework encouraging collaborative, 

transnational working under a framework of a more structured, efficient and equitable 

system.

We also need to recognize that managing infectious disease of all kinds is a multi-

disciplinary problem and, if it is to be done as effectively as possible, requires input from 

beyond traditional clinical medicine and public health. An integrated, global infectious 

disease surveillance system needs to take a One Health approach and embrace livestock and 

wildlife health, as well as geography and environmental sciences, sociology, economics and 

anthropology, informatics, communications science and health technology.

The surveillance systems that are set up also need to be flexible and responsive. The 

infectious disease threat is diverse and dynamic, and periodically presents “out-of-the-blue” 

challenges such as BSE/vCJD in the 1980s or SARS in the 2000s.
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Conclusions

We can readily identify the components of a surveillance system that would enable the 

collection of infectious disease surveillance data from multiple sources for use as inputs into 

state-of-the-art epidemiological analysis (Figure 4). Advances in diagnostics, sequencing 

platforms, communications technology, and computing and informatics over the past 5-10 

years mean that such analyses can now make an effective contribution to outbreak 

management in real time. This is a highly significant new capability that we should exploit 

fully in order to improve the public health response to future infectious disease outbreaks. A 

cultural shift is required among health care workers such that these activities come to be 

regarded as a valuable compliment to the clinical care of individual patients, and not as 

unwelcome competition for resources, time and effort.

Strengthening surveillance and response capacity around the world would require investment 

estimated at tens of billions of dollars per annum, but is likely to be cost-effective. 

Moreover, capacity strengthening should not be the sole responsibility of individual 

countries; we emphasize that infectious disease surveillance is a global good and should be 

financed on that basis. We suggest that not all elements of a state-of-the-art surveillance 

system need to be replicated at a national level; it will often be much more efficient to 

integrate local activities into an international network. However, this would require 

considerably more proactive leadership of global surveillance efforts than exists at present. 

Ultimately, there will be little progress without strong and trusted international governance 

systems.
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Box 1

Success rates for obtaining ‘actionable’ virus genomes (AVGs) from clinical 
samples by next generation sequencing (NGS).

One crucial aspect of using NGS during an outbreak or during epidemic surveillance is 

the estimation of the number of samples that are required for sequencing. The number of 

genomes required per number of cases and per time unit in an epidemic trajectory is a 

topic of on-going research but the drive for larger datasets as a buffer against incomplete 

knowledge of what is required to inform an analysis is clear. The only case study for the 

use of NGS in an outbreak is provided for MERS-CoV (46). At the time of writing, the 

genome-to-case ratio is approximately 1:10, and this appears just adequate in that 

context. In order to achieve this number of genomes it is necessary to understand the 

success rate of achieving a high quality genome, here defined as a genome with greater 

that 50% total genome coverage. For MERS-CoV ~40 of 112 (~36%) clinical samples 

yielded useful genomes (47). Tracheal aspirates and bronchoalveolar lavage specimens 

yielded significantly higher MERS-CoV genome loads and genome sequenced fractions 

than sputum and nasopharyngeal swab samples. When stratified by the most productive 

sample type 22/33 samples yielded useful genomes. For comparison, for an outbreak the 

size of Ebola (~20 000 cases), to sample at the same 1:10 ratio level would require ~2000 

genomes, which at a 67% success rate this would require the processing and sequencing 

of over 3000 samples, a number that should be attainable. The issue, however, is speed: 

obtaining 2000 genomes over the first 10 months of the outbreak would require a steady 

200 genomes from 300 samples per month, a small amount of sequencing but a major 

logistical and political undertaking.

Woolhouse et al. Page 14

Sci Transl Med. Author manuscript; available in PMC 2018 February 20.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Summary

A maximally effective public health response to infectious disease outbreaks requires the 

collection, communication and analysis of multiple data types within the framework of an 

integrated surveillance system.
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Figure 1. 
Time-scaled phylogenetic tree based on ebolavirus sequences from ref. (25) from Kenema 

Government Hospital, Sierra Leone, May and June 2014 plus early samples from Guinea 

from ref. (23). Branch colours represent probable location of infection with the 

corresponding locations shown in the inset map. In the map, the radius of the circles denotes 

the number of sampled sequences and the lines represent the phylogenetic tree projected 

onto the map.
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Figure 2. 
Projected numbers of cases of EVD in Liberia in 2014 obtained using a branching process 

model with an ensemble of plausible parameter values. 95% prediction intervals from 

07/04/14 (yellow shading) are compared with observed cumulative case numbers 

(logarithmic scale) over the following two months (blue line). 95% prediction intervals for a 

model that incorporates estimated levels of under-reporting are also shown (blue shading). 

Reproduced with authors’ permission from ref. (32).
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Figure 3. 
Predicted probability distribution (blue=low, red=high) of zoonotic EVD cases in Africa 

based on a risk mapping analysis and highlighting at-risk countries with and without index 

cases reported up to 2014. Reproduced with authors’ permission from ref. (24).
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Figure 4. 
Key elements of data capture and information flows for real-time quantitative analysis to 

inform outbreak management. The at-risk population encompasses cases and, where 

available, a sentinel subpopulation (blue boxes). Three types of data capture activities are 

identified (red boxes): case finding (including associated epidemiological investigations such 

as contact tracing); diagnostic information on individual patients, including serological 

testing and pathogen sequencing; and so-called ‘denominator’ studies on the population at 

risk, including demography, behaviour, e.g. social media activity, and the impact of health 

measures. Information flows (yellow boxes) involve communication between data gatherers, 

data analysts and modellers, policy makers and public health authorities. We note, however, 

that decision making never relies solely on the outputs of real-time epidemiological 

analyses.
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