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Summary

Central to the organization of behavior is the ability to predict the values of outcomes to guide 

choices. The accuracy of such predictions is honed by a teaching signal that indicates how 

incorrect a prediction was (‘reward prediction error’, RPE). In several reinforcement learning 

contexts such as Pavlovian conditioning and decisions guided by reward history, this RPE signal is 

provided by midbrain dopamine neurons. In many situations, however, the stimuli predictive of 

outcomes are perceptually ambiguous. Perceptual uncertainty is known to influences choices, but 

it has been unclear whether or how dopamine neurons factor it into their teaching signal. To cope 

with uncertainty, we extended a reinforcement learning model with a belief state about the 

perceptually ambiguous stimulus; this model generates an estimate of the probability of choice 

correctness, termed decision confidence. We show that dopamine responses in monkeys 

performing a perceptually ambiguous decision task comply with the model’s predictions. 

Consequently, dopamine responses did not simply reflect a stimulus’ average expected reward 

value, but were predictive of the trial-to-trial fluctuations in perceptual accuracy. These 

confidence-dependent dopamine responses emerged prior to monkeys’ choice initiation raising the 

possibility that dopamine impacts impeding decisions, in addition to encoding a post-decision 
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teaching signal. Finally, by manipulating reward size, we found that dopamine neurons reflect both 

the upcoming reward size and the confidence in achieving it. Together, our results show that 

dopamine responses convey teaching signals that are also appropriate for perceptual decisions.

eTOC Blurb

Lak et al show that dopamine neuron responses during a visual decision task comply with 

predictions of a reinforcement learning model with a belief state signaling confidence. The results 

reveal that dopamine neurons encode teaching signals appropriate for learning perceptual 

decisions and respond early enough to impact impeding decisions.

Introduction

In the struggle of life animals survive by following a simple dictum: win big and win often 

[1]. Finding bigger wins (e.g. more food reward) and more likely wins is particularly 

challenging when these are not available in their nearby environment. In these situations a 

process of trial and error is required to selectively reinforce the most successful actions. 

Inspired by the study of animal behavior, a machine learning approach called reinforcement 

learning provides a rigorous framework to understand how to select winning behaviors. The 

key to reinforcement learning is adjusting the expected reward values associated with each 

behavior based on the outcomes of one’s actions. These adjustments to reward values are 

based on the discrepancy between the received and predicted value, referred to as the reward 

prediction error [2]. There is a great deal understood about the neural mechanisms 

underlying reinforcement learning and it is well established that midbrain dopamine neurons 

broadcast reward prediction error signals [3–6]. Here we address whether dopamine neurons 

provide appropriate prediction error signals when there is ambiguity in the cues that predict 

rewards.

Computing reward prediction error, by definition, requires predicting the value of impending 

outcomes. Such value prediction relies on different sources of information and 

correspondingly distinct processes as dictated by the behavioral context. In one context, 

distinct, unambiguous cues that predict different reward outcomes are used to guide 

decisions. Because there is no uncertainty in identifying the cues, the accuracy of outcome 

predictions is limited instead by potentially complex, probabilistic reward payoff 

contingencies. Thus the expected value of each decision can be estimated based on the 

experienced outcomes associated with the cues. These estimates can be produced by classic 

reinforcement learning algorithms [2]. In the context of ambiguous stimuli requiring 

perceptual decisions, animals face an additional challenge, because reward history alone can 

only provide an inaccurate estimate of upcoming outcome value. Rather, estimating the 

value of the choice requires an evaluation of the immediate percept and the decision process 

to compute the probability that the choice will be correct [7–9]. Thus, reward history-guided 

and perceptual decisions, despite having fundamental similarities, differ in the computations 

required for reward prediction and hence prediction error estimation.

The phasic activity of dopamine neurons has been the subject of many studies, a few 

employing choice behaviors and many using simple Pavlovian conditioning tasks [10, 11]. 
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The results of these studies can be chiefly summarized as showing that dopamine responses 

encode prediction error, consistent with the temporal difference reinforcement learning 

(TDRL) algorithm [3–6, 12–23]. In contrast to this large body of literature characterizing 

how reward history determines dopamine responses, dopamine neurons have been rarely 

studied in perceptual decision tasks [24, 25]. Observations from these studies revealed that 

dopamine neurons exhibit temporally-extended responses during the perceptual choice and 

that they can reflect subjective sensory experiences, rather than physical stimulus intensity 

[24, 25].

To understand dopamine neuron responses in perceptual decision making, we constructed a 

reinforcement learning model that incorporated a belief state to infer the trial-by-trial 

probability of choice correctness, reflecting the confidence in the decision. We compared 

dopamine neuronal responses recorded during a visual decision task to predictions of our 

model. These analyses enable us to show that dopamine prediction errors can reflect 

decision confidence in addition to reward magnitude and these signals emerge even before 

the behavioral manifestation of choice.

Results

Previously, Nomoto and colleagues studied midbrain dopamine neurons in a perceptual 

decision task [24]. Here we reexamined these neuronal responses in an attempt to identify 

signatures of prediction errors based on the value of a perceptual decision that requires an 

on-line estimate of the probability of choice correctness. The behavioral task and monkeys’ 

performance have been described previously [24] and explained in the Supplemental 

Experimental Procedures. Briefly, two Japanese macaques performed a two-alternative 

forced-choice reaction time task (Figure 1A, see Figure S1A). In each trial, monkeys were 

presented with a random dot motion visual stimulus and were trained to move their gaze to 

one of two targets based on the direction of motion and receive juice reward for their correct 

choices. Choice difficulty was adjusted by varying the coherence of dots pseudo-randomly 

from trial to trial. Across blocks of varying lengths, one motion direction was associated 

with a large reward magnitude while the other one was associated with a small reward. 

Animals could categorize easy (high coherence) stimuli almost perfectly but were 

challenged with more difficult (low coherence) stimuli (Figure S1B). Moreover, due to the 

asymmetric reward schedule, when presented with low coherence stimuli, animals showed 

bias toward the direction associated with the larger reward (Figure S1B, C).

A reinforcement learning model incorporating perceptual uncertainty

To examine whether the activity of dopamine neurons reflect the value of a perceptual 

decision, we constructed a computational model (Figure 1A). A reinforcement model for our 

behavioral task needs to deal with the perceptual ambiguity inherent in the random dot 

stimulus as well as keep track of the history of rewards delivered after left and right choices. 

The phasic responses of dopamine neurons in tasks in which reward values are based on 

prior experience are well captured by a standard temporal difference reinforcement learning 

(TDRL) model [3, 26]. For tasks involving noisy sensory information, variants of the TDRL 

based on partially observable Markov decision process (POMDP) have been proposed [27–
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30]. POMDPs capture the intuitive notion that under perceptual uncertainty a decision maker 

faces an additional obstacle beyond stimulus-reward association, the need to make an 

estimate of the true state of the environment based on the current perceptual experience. This 

estimate is referred to as the ‘belief state’ [29, 30], and can be used to infer the probability 

that the choice will turn out to be correct, i.e. decision confidence. POMDP-based TDRL 

incorporates this belief into the computation of state values from which a choice can be 

made and a prediction error can be generated.

Having received a motion stimulus, sm, the model represents a noisy estimate of it, sampled 

from a normal distribution with constant variance and mean given by the true stimulus, 

. In a Bayesian framework, a subject’s belief about the stimulus is not 

limited to a single estimated value but comprises a belief distribution over all possible values 

of sm, given by . Assuming that the subject’s prior is Assuming that the subject’s 

prior is that stimuli are uniformly delivered, the belief state distribution will also be 

Gaussian with the same variance as the sensory noise distribution, and mean given by , 

 (Figure 1A). The model also stores the values of taking a left 

(L) or right (R) action, given each possible state sm : Q(sm, L) and Q(sm, R), respectively. On 

each trial, the value of left and right choices are computed as the expected values of these Q-

values, given the belief state . That is  and 

, where 〈.〉p denotes the expectation operator. Thus Q-values 

integrate both past rewards as well as the currently computed belief. The choice is computed 

by comparing  and . When the rewards for correct choices are equal across 

sides, then the only factor contributing to the choice is the current sensory signal. However, 

when rewards are unequal then choices are biased toward the larger value side in proportion 

to their relative size. The reward expectation associated with the choice (i.e. decision value) 

is given by . Upon receiving the outcome (small, large or no reward) the model 

computes the prediction error, δm, the difference between the received reward size and the 

decision value, which incorporates both past rewards and the subjective belief about the 

accuracy of the current choice. This prediction error is then used to update Q(sm, L) and 

Q(sm, R), which are used to make decisions in subsequent trials. Therefore, by employing a 

belief state, the POMPD-based TDRL model can represent the trial-by-trial probability that 

the choice will turn out to be correct. Therefore, our main model introduces a case in which 

reward predictions (and hence prediction errors) are computed based on the same state 

inference process used by the decision making system.

The alternative model reflects a scenario in which dopamine neurons do not have access to 

perceptual uncertainty contributing to the current choice. Instead, dopamine neurons’ value 

predictions and prediction error computations are informed by an independent sensory 

stream (see Figure S2A and Experimental Procedures). By comparing these two models, we 

identified several distinct features of prediction error signals computed solely based on 

reward history from those that additionally have access to the perceptual uncertainty 

underlying the choice process.
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We refer to the prediction errors of the first model as decision value prediction errors (DPE), 

because these incorporate information about the current decision process. This is in contrast 

to prediction errors produced by the alternative model, which we refer to as the Markov 

Decision Process MDP prediction error (MDP-PE) that does not have direct access to the 

sensory evidence underling choice computation.

To test the novel features of prediction errors in our belief state-dependent TDRL model, we 

wanted to isolate the contribution of the belief computation by first considering only large-

reward trials (i.e. trials in which the model chose the side with the large reward). Following 

training, the model with the belief state produces three task-related prediction error 

responses (Figure 1B, top panel). First, there is a prediction error evoked by the fixation cue, 

the earliest predictor of a potential reward. This signal is uniform across all trial types and is 

proportional to the average value of a trial. Second, the model generates another prediction 

error when the stimulus is presented. This signal encodes the difference between the value of 

the current decision and the average value of a trial (indicated by the fixation cue) and can 

thus take on positive or negatives values. Finally, the model generates a prediction error at 

the moment of feedback signaling the deviation between the actual and the predicted 

outcome, i.e. the decision value at the stimulus time. The alternative TDRL model also 

generates three task-related prediction errors (Figure 1B, bottom panel). Similar to the 

TDRL model with the belief state, prediction errors evoked by the fixation cue are uniform 

across trials. However, the prediction errors to stimuli and feedback are different from those 

generated by the alternative model in several ways (Figure 1B, cf. Figure 1C–E with Figure 

1F–H).

First, prediction errors generated by TDRL model with the belief state are distinct for correct 

and error outcomes (Figure 1C, D). At the time of the stimulus and outcome, prediction 

errors of the model with belief state reflect both stimulus difficulty as well as the upcoming 

outcome, thus qualitatively differing from those generated by the alternative model, which 

only reflect stimulus difficulty (Figure 1F, G). Second, the magnitude of prediction error at 

the time of the stimulus is predictive of decision accuracy (Figure 1E and H, see Figure 

S2C); decisions in trials with high prediction errors have greater accuracy for the same 

stimulus difficulty (Figure 1E), in sharp contrast with the alternative model (Figure 1H).

Next we sought to clarify the critical features of the belief-state model that lead to these 

distinct predictions. For optimal decision making, keeping track of the full belief 

distribution, , is necessary in general [31]. However, in a two alternative choice 

task with binary feedback (reward or no reward), after a decision is made, the relevant 

features of belief state distribution can be summarized as a confidence statistic. Decision 

confidence, in a statistical sense, is defined as the probability that the chosen action turns out 

to be the correct action, given the sensory evidence. This can be formalized as p(correct|
choice, percept), where percept, the internal representation of the stimulus, is specified by 

the belief state. In our model, this quantity can be determined by computing the probability 

that the correct action corresponding to different stimulus states is the same as the chosen 

action (see Experimental Procedure). When computed for different stimulus difficulties and 

plotted separately for correct and incorrect trials, the pattern of computed p(correct|choice, 
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percept) closely resembled the prediction error pattern of our belief-based TDRL model 

(Figure 2A, cf. Figure 1C–D). This indicates that the prediction errors generated by the 

model with a belief state are mathematically equivalent to decision confidence. Note that 

keeping track of the entire belief distribution, while important for optimal behavior in non-

stationary environments, is not necessary for our behavioral task. Because of the stationarity 

typical of laboratory decision tasks, a reduced version of our model that uses the mean of the 

belief state to assign a single state to the motion stimulus, without keeping track of the full 

distribution could also account for our data (see Figure S2B and Experimental Procedure). In 

summary, when the model incorporates information about the current decision process, after 

learning, it contains the knowledge about the relationship between quality of internal 

evidence and the expected outcome of the decision, in other words, decision confidence.

The signature predictions of the TDRL model with the belief state (Figure 1C) can be 

intuitively understood using a signal detection theory inspired approach to decision 

confidence. Here, confidence reflects the distance between the internal representation of the 

stimulus (percept), and decision boundary, b, or more precisely confidence is a calibrated 

function of this distance, c = fc|perfect − b|, as shown previously [32]. Figure 2B illustrates 

how the stimulus and boundary configurations that could lead to a given choice offer an 

intuition behind model predictions. For correct choices, distance between stimulus 

distribution and the boundary increases as the stimulus becomes easier. For error choices, 

which happen when a stimulus is perceived to be on the wrong side of the boundary, the 

distance between stimulus sample and boundary tends to be smaller for easy stimuli because 

the overlapping region of the stimulus distribution is smaller. Thus, although errors are less 

frequent for easy stimuli, when they occur, the distance from the stimulus sample to the 

boundary is small, and hence confidence is low.

Responses of dopamine neurons reflect decision confidence

Next we analyzed the activity of 75 dopamine neurons recorded while monkeys performed 

the perceptual decision task (Supplemental Experimental Procedures) [24]. We first limited 

our analysis to trials in which animals chose the large-reward side, which enabled us to 

isolate the contribution of the perceptual decision process independent of reward size. The 

responses of these neurons closely matched the prediction errors produced by our model 

with a belief state. Figure 3A and B show responses of an example dopamine neuron and 

neuronal population aligned to the stimulus and feedback tone (see Figure S3A–C for 

responses to the fixation cue), and separated based on the trial outcome. After stimulus 

onset, the early responses (until ~200 ms) were uniform, and only later components (~200–

500ms) reflected stimulus coherence [24]. These later responses increased with stimulus 

coherence for correct choices (Linear regression on single neurons, 67/75 positive and 5/75 

negative slope, P < 0.01, 3/75 not significant) and decreased for error choices (Linear 

regression on single neurons: 33/75 with negative and 5/75 positive slope, P < 0.01, 37/75 

not significant), consistent with the DPEs of the model with belief state (cf. Figure 1C with 

Figure 3C and D). Note that analyzing dopamine responses using a longer temporal window 

(60–600 ms after the stimulus onset) displayed very similar response patterns (Figure S3D). 

Responses to the feedback tone also showed graded sensitivity to both the stimulus 

coherence and the animal’s choice similar to the DPE signals (cf. Figure 1D with Figure 3C 
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and D; Linear regression on single neurons for correct trials: 53/75 with positive, 8/75 with 

negative slope, P < 0.01, 14/75 not significant; Linear regression on single neurons for error 

trials: 27/75 with negative, 14/75 with positive slope, P < 0.01, 34/75 not significant). To 

further quantify when this choice outcome-selectivity (difference between correct and error 

trials) arose in individual neurons, we used receiver operating characteristic (ROC) analysis 

and computed area under ROC curve (AUC) in sliding time windows (Experimental 

Procedures). Figure 3B shows that the majority of neurons showed outcome-selective 

responses to the stimulus and feedback (61/75 and 66/75 neurons, for responses to the 

stimulus and feedback tone, respectively, permutation test on sliding ROCs, P < 0.001). 

These results suggest that during perceptual decisions, dopamine responses do not simply 

reflect the average value of the perceptually ambiguous stimulus but are also predictive of 

the trial-to-trial fluctuations in decision outcome.

Confidence-dependent dopamine responses arise prior to observed choice

We next considered the time course of choice outcome-selectivity in relation to saccade 

initiation, which is the earliest observable measure of choice commitment (Figure 4A and 

B). We found that the difference in dopamine responses between correct and error choices 

emerged considerably before action initiation (Figure 4A, Mann-Whitney U test on 

responses during 300 ms before saccade onset: 33/75 neurons with larger pre-saccadic 

activity for correct compared to error trials, P < 0.05; sliding ROC analysis with permutation 

test: 45/75 neurons extending up to 300 ms before the saccade onset, P < 0.001). Thus, 

outcome-selective dopamine responses begin even before the behavioral manifestation of 

choice commitment.

Our model further predicts that dopamine signals should be predictive of choice accuracy 

(Figure 1E and H, see Figure S2C). We found that the graded levels of pre-choice dopamine 

responses (during the 300 ms before saccade onset) predicted the accuracy of monkeys 

(Figure 4C, Linear regression on single neurons: 58/75 with positive and 1/75 with negative 

slope, P < 0.01, 16/75 not significant). Moreover, this predictive property of responses 

should go beyond what can be inferred from stimulus difficulty alone, such that trials with 

larger prediction errors should have increased accuracy for the same stimulus difficulty 

(Figure 1E). To test this, we separated trials based on the rate of the pre-choice dopamine 

activity (below versus above 75 percentile) and found that monkeys’ psychometric slopes 

were significantly greater when dopamine activity was high (Figure 4D, Mann-Whitney U 

test on session-by-session slopes of the psychometric functions: Monkey L: p = 1.99 × 10−6, 

Monkey K: p = 0.002; Mann-Whitney U test on individual data points, p < 0.05 in both 

monkeys). We next considered the possibility that this difference in performance is due to 

different durations of sensory evidence integration. There was no difference in reaction times 

for a given stimulus difficulty for high and low pre-choice dopamine activity (Figure S4A, p 
> 0.1; Mann-Whitney U test) and the difference in psychometric slopes (Figure 4D) held 

even when we only considered high or low reaction times (median split, p < 0.01 in both 

monkeys). These analyses exclude the possibility that dopamine firing simply indexes 

reaction times and thus the accuracy differences observed are a direct consequence of 

differential sensory evidence integration. In contrast to this choice-predictive phasic 

dopamine activity, separating trials based on the pre-stimulus tonic activity or phasic activity 
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to the fixation cue did not reveal correlations with perceptual accuracy (P > 0.1 in both 

monkeys, Mann-Whitney U test, Figure S4B–C). Theoretical accounts as well as 

pharmacological studies in humans suggested that the tonic levels of dopamine correlate 

with factors such as average reward rate that reflect response vigor ([33, 34], but see [35] for 

pre-trial dopamine action potentials). In our data the tonic firing of dopamine neurons before 

trial initiation does not correlate with decision accuracy.

Dopamine responses integrate decision confidence and reward size

Until now, we focused on the large-reward side trials to isolate the contribution of the 

perceptual decision process to prediction error signals. Next, we investigated how the 

neuronal representation of decision confidence interacts with reward size. Therefore, we 

evaluated our model predictions after including both small- and large-reward trials 

(Experimental Procedures), and similarly, examined neuronal responses in all trials 

irrespective of the reward size. DPEs computed by the TDRL model with the belief state 

jointly reflected confidence estimates and expected reward size (Figure 5A). When rewards 

associated with left and right choices differ,  and , are updated to reflect 

these rewards whereas the belief state, , continues to reflect the trial-by-trial 

probability that sensory categorization will turn out to be correct. Because decision value 

represents the product of these variables, it jointly reflects reward size as well as the 

confidence in obtaining it. Therefore, DPEs should reflect both reward and confidence 

predictions. To test this directly we asked whether the population of dopamine neurons that 

showed confidence-dependent responses (61/75 neurons quantified with the sliding ROC 

analysis, Figure 3B), do so mainly irrespective of the expected reward size. We separated 

dopamine responses to the stimulus and feedback tone based on the saccade direction (i.e. 

towards the side associated with small or large reward) and trial outcome (error or correct). 

The population neuronal responses were modulated by both decision confidence and reward 

size, resembling the DPE predictions (cf. Figure 5A and B) and showed marked differences 

from the prediction of a conventional TDRL model (Figure S5).

Next we sought to isolate the effect of decision confidence on dopamine responses 

irrespective of reward size. Therefore, we quantified the differences in responses between 

correct and errors trials by computing the area under the ROC curve (AUC). Confidence 

encoding predicts that the difference between cue-driven correct and error response 

increases with increasing stimulus coherence (Figure 5A), and hence the AUC measure 

should capture this trend [32]. Indeed, at the time of stimulus, AUC measures for both small 

and large reward conditions showed a significant positive relation with stimulus coherence 

(Figure 5C; linear regression of population AUC onto stimulus coherence: P < 0.001 for 

both small and large reward conditions). Similarly, at the time of feedback, AUCs for both 

reward conditions showed a significant inverse relation with stimulus coherence (Linear 

regression of population AUC onto stimulus coherence: P < 0.001 for both small and large 

reward conditions). Thus, for both small and large reward conditions, dopamine responses 

showed stronger outcome sensitivity (larger AUC) as stimulus coherence increased.

Finally, we examined the extent to which stimulus-driven responses reflected both decision 

confidence and reward size for each neuron. To quantify confidence and reward encoding 
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independently, we compared the difference between responses for correct vs. error trials and 

for large vs. small reward trials using ROC analysis (Figure 5D, left panels). The majority of 

neurons encoded both decision confidence as well as upcoming reward size with similar 

strength (Figure 5D, right panel, ROC analysis with permutation test in 39/75 neurons, P < 

0.01), while a fraction of neurons reflected only one variable reliably (9/75 outcome 

selective only, 22/75 reward size selective only, ROC analysis with permutation test, P < 

0.01; for the sake of comparison a fixed time window, 220–500 ms, was used after the 

stimulus although the time course of encoding across neurons is variable, Figure 3B, 4B). 

Interestingly, neurons which only showed outcome selectively (9/75 neurons) did so while 

monkeys showed clear behavioral sensitivity to reward size manipulation in these sessions (P 
< 0.01, Mann-Whitney U test on estimated psychometric bias). Together, these analyses 

indicate that dopamine neurons compute prediction errors by taking into account both the 

expected reward size as well as the subjective belief about the correctness of a perceptual 

choice.

Discussion

Taken together our analyses reveal a close correspondence between the phasic activity of 

dopamine neurons during a perceptual decision task and a reinforcement learning model 

extended with a belief state. In Bayesian decision theory belief states serve as estimates of 

the uncertain true states [29]. Specifically, in our model the role of the belief state is to 

represent the uncertainty arising from a perceptually ambiguous stimulus and enables a 

prediction about the probability that the stimulus categorization will be correct. In our 

decision task, this state inference process is equivalent to a computation of statistical 

decision confidence [9], as our analyses revealed (Figure 2a). In fact, the distinctive 

signatures of our belief-state-dependent TDRL model (Figure 1C–E, see Figure S2C), that 

are qualitatively different from a TDRL without belief-state (Figure 1F–H), are precisely 

those that have been used to identify decision confidence in the orbitofrontal and pulvinar 

neuronal responses as well as rodent and human confidence-reporting behavior [8, 32, 36, 

37]. These similarities support the hypothesis that dopamine prediction error signals 

incorporate estimates of decision confidence during perceptual decision making. We 

emphasize that in our task monkeys were not trained to report their decision confidence, thus 

our results do not imply a neuronal correlate of confidence reporting behavior but rather 

reveal the neuronal representation of a signal that is consistent with the computation of 

decision confidence. In other words, we use the term confidence in a statistical sense, i.e. the 

probability that a choice is correct given the evidence [9, 31], and show that an RL model 

that reflects this computation accounts for dopamine responses under perceptual uncertainty.

Dopaminergic integration of decision confidence and reward value signals

Our perceptual decision task with an asymmetric reward schedule allowed us to dissociate 

two information sources for computing expected rewards and prediction errors: trial-by-trial 

estimates of reward probability and the history-dependent estimates of reward size. Thus, 

while our findings are fully consistent with the notion that dopamine responses reflect 

reward expectation, they reveal how reward expectations are formed based on uncertain 

sensory evidence. From this standpoint, our results agree with previous findings that 
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dopamine responses integrate across all relevant reward dimensions to encode the subjective 

expected value of future rewards [21].

A previous study, using a vibrotactile detection task, showed that dopamine responses can 

vary with perceptual reports rather than stimulus physical parameters [25]. Dopamine 

responses for correct detection trials increased with stimulus intensity but not for missed 

stimuli, suggesting that perceptual uncertainty might influence dopamine response. 

However, that study did not test the relationship between choice accuracy and dopamine 

activity, thus the relationship of those data to prediction errors requiring belief state 

computation remain unclear. In addition, in that study choice reports were delayed, unlike in 

our reaction time task that enabled us to observe pre-choice responses that were predictive of 

performance. Thus, without taking a computational approach, it remained unclear what type 

of computations might underlie those observations and also how they could be related to 

dopamine prediction error responses observed in reward history-guided tasks. The 

asymmetric reward schedule in the task allowed us to examine dopamine responses in 

relation to the computations underlying confidence and demonstrate that dopamine neurons 

perform confidence estimation simultaneously with reward size-dependent prediction error 

signaling. We suggest that dopamine responses in the vibrotactile detection task [25] can 

also be explained by our computational framework incorporating belief states, given that 

correct detection responses increase with increasing confidence in the sensory percept [38].

In another related study, Matsumoto and Takada [39] explored dopamine neuronal responses 

in a delayed match-to-sample visual search task and suggested that they reflected the 

monkey’s subjective judgment of success. Examining these neuronal responses in light of a 

model that estimates confidence in visual search success might reveal signatures of 

confidence coding in that study as well.

A unified framework for understanding dopamine in perceptual and reward history-guided 
tasks

From a computational perspective, it is straightforward to see that computing decision 

confidence is necessary for estimating the trial-by-trial value of a perceptual decision, which 

can be combined with reinforcement-based expected reward value for computing prediction 

errors. Therefore, our results are a natural extension of the well-established framework 

according to which dopamine neurons carry reward prediction signals. Reward prediction 

errors have been mostly studied in reward history-guided tasks where past outcomes are 

sufficient to compute the value of upcoming reward [3–6, 12, 14–16, 18–22]. Our findings 

thus provide an instance of a computational framework in which both reward history-guided 

and perceptual choices can be studied. Consistent with predictions of this framework, 

dopamine prediction errors reflected both past rewards as well as immediate belief about the 

outcome of sensory categorization, supporting the view that these neurons access a wider 

range of computations than previously thought [15, 16, 39, 40]. From this perspective, these 

results can serve as a bridge between reward history-guided and perceptually-guided 

decision making, which while both integral components of decisions in natural settings, have 

been mostly studied in isolation (but see [41–44]).
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We note that explaining our neuronal responses does not require incorporating an explicit 

confidence variable into the RL framework. RL models without any explicit confidence 

computation, such as our POMDP model implementations, could account for the observed 

neuronal responses, as long as prediction errors are computed in relation to value predictions 

that are based on the sensory evidence used for the choice computation. While such models 

do not incorporate any explicit confidence variable, their prediction errors reflect the 

p(correct|choice, percept), i.e. decision confidence, as our simulation indicated (Figure 2A, 

see Experimental Procedure). Another related issue is that, while keeping track of the full 

belief state is necessary for efficient choice computation and updating in a non-stationary 

environment, keeping track of the first moment of the belief state is sufficient for explaining 

our neuronal data (Figure S2B). Nevertheless, we favor the POMDP model that includes a 

full belief state for several reasons. Optimal processing in the face of perceptual uncertainty 

requires that sensory stimuli should be probabilistically represented. By representing the 

stimulus as a distribution, POMDPs offer the normative framework to cope with such 

uncertainty. This comes at the cost of only one additional variable, the belief state, but no 

additional parameters. As a consequence, this framework can be broadly applied. For 

instance, beliefs might have a non-Gaussian distribution, when Bayesian inference is used 

and the belief state is influenced by not only the external stimulus, but also by the statistics 

of the environment as reflected the Bayesian prior.

A previous modeling study suggested a neuronal network implementation of POMDP 

framework, focusing primarily on the computational reasons behind the extended time 

course of dopamine, as well as prediction errors in perceptual decision tasks of the type 

described here [30]. The model we developed is based on fundamentally similar ideas from 

machine learning for introducing perceptual ambiguity into the RL framework. Our 

approach was to generate several diagnostic predictions of the model, those that contrast it 

with a TDRL without a belief state, and test them against the activity of dopamine neurons. 

This approach enabled us to demonstrate that the main computational requirement necessary 

to account for dopamine responses under perceptual uncertainty is decision confidence. 

Statistical confidence explains the relation between the dopamine prediction errors, stimulus 

coherence and animal’s choice (Figure 3). This analysis also provides evidence against the 

interpretation that the difference in dopamine activity in correct/error trials reflects an 

attentional process, rather than decision confidence, because trials with different dopamine 

responses lead to different slopes of the psychometric function but comparable lapse rates 

(Figure 4). Finally, our model identifies the contribution of both reward size and confidence 

in shaping dopamine responses (Figure 5). As mentioned, the diagnostic predictions of our 

model do not depend on the specific way confidence is computed: confidence estimates 

based on the belief state of a POMDP or explicit confidence signals generated using 

frameworks such as evidence accumulation [7] or attractor models [45], when incorporated 

into a RL model, would yield similar predictions (Figure 2). Confidence models based on 

evidence accumulation have proven useful for explaining how neuronal responses in parietal 

cortex evolve over time to represent decision confidence [7]. In our implementation, we 

assumed that confidence estimation occurs as a discrete processing step, which appears 

consistent with the transient nature of dopamine responses observed here. Nevertheless it 

will be interesting to evaluate models where confidence estimation unfolds across time [7].
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Implications for decision making

It is generally believed that dopamine neurons do not have a direct role in computing 

immediate decisions [14]. Rather, decisions are generated elsewhere in the brain and 

conveyed to the dopamine system, where a prediction error is computed in relation to an 

already prepared or completed choice, which helps guide future choices. The fact that 

dopamine responses reflect both reward size and subjective belief in receiving the reward 

suggest that they can act as a teaching signal for a both reward history-guided and perceptual 

decisions[46]. Moreover, dopamine responses begin to predict the decision outcome rapidly 

(~200 ms) after the stimulus onset, and well before (~200 ms) the earliest behavioral 

manifestation of choice commitment (i.e. saccade initiation). This time course is comparable 

to choice and confidence-dependent activity that appears around 200–300 ms after stimulus 

onset during random dots task in monkeys’ parietal cortex and dorsal pulvinar [7, 36], 

suggesting that the observed dopamine signals might be received from other brain regions 

involved in the perceptual choice process such as the caudate nucleus [47]. This time course 

suggests that prediction error signals reflect the evolving decision process. Given the dense 

dopaminergic projections to brain regions involved in decision making [48], the early 

dopamine prediction errors might even be able to influence the current choice computation, 

for instance by modulating the gain of evidence accumulation [49]. Alternatively, pre-

decision dopamine responses do not impact choices directly but other aspects of immediate 

behavior such as the willingness to complete the trial [50]. In conclusion, our results 

formally extend the prediction error coding framework of dopamine neurons into the 

perceptual decision making domain and suggest that dopamine broadcasts prior to choice 

commitment may influence the on-going decision process.

Experimental Procedures

Animal care and surgical procedures were in accordance with the U.S. National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and with Tamagawa University 

guidelines for the use and care of laboratory animals in research.

Temporal difference reinforcement learning models

We used two variants of the temporal difference reinforcement learning (TDRL) model to 

simulate dopamine neuronal activity: a TDRL model incorporating a belief state that deals 

with the uncertainty it faces when performing the perceptual decision making and a TDRL 

model that did not have access to this belief state (‘alternative TDRL’). The basic features of 

the model implementation that were common among the model variants are described in the 

Supplemental Experimental Procedure.

We simulated the sequence of behavioral events in each trial as states, s. For our task, these 

states are ‘initial, ‘fixation cue’, ‘motion stimulus’, ‘feedback and ‘end’, denoted as si, sfc, 

sm, sfb, se. In each state, the agent performs an action, a, observes an outcome and transits to 

the next state.
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TDRL model with the belief state

Here we use a partially observable Markov decision processes (POMDP) formalism to deal 

with the uncertainty inherent in the random dot stimulus. Apart from ‘motion stimulus’ state, 

all other states are defined as fully observable and thus the same as in the previous section.

For the case of ‘motion stimulus’ state, due to the noisy nature of the stimulus, the agent has 

an imperfect knowledge about the true underlying state and represents it in a probabilistic 

manner. Motion stimuli ranged from −50% to 50% (50% of dots moving to left and right, 

respectively). We used a discrete form of these stimuli (21 different levels of motion 

coherence), i.e. −50%, −45% …, 0, …, 45%, 50%, corresponding to motion stimulus states 

sm. We assume that due to the uncertainty inherent in the random dot stimulus, in each trial, 

subject does not directly observe sm but an internal noisy estimate of it which, in each trial, 

is sampled from a normal distribution with constant variance σ2 around the true stimulus; 

that is . A subject’s belief about the stimulus comprises a belief 

distribution over all possible values of sm; this distribution can be denoted by . In 

our implementation, we discretized this belief distribution  and 

truncated it to values between −50% and 50%.

The Q-values of actions left and right for each state sm are denoted as Q(sm, L) and Q(sm, 

R), respectively. For each motion coherence state ranging from −50% to 50%, the model 

learns and updates the Q-values of choosing left or right.

Under this setting, given a belief , the net value of actions L and R are 

computable as the expected values of Q(sm, L) and Q(sm, R) under the belief state, 

:

Eq. 1

For action selection, we assume that the animal just chooses the action that has the highest 

value. That is .

Upon observing the stimulus and selecting a choice, the prediction error is computed as:

Eq. 2

where Vfc is the expected value of reward during fixation cue presentation:
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Eq. 3

When the agent occupies the fixation cue state, the belief  is a uniform 

distribution.

After performing action a and receiving the reward feedback R, the prediction error is

Eq. 4

Based on this prediction error the Q-value of action a will be updated as:

Eq. 5

where α is the learning rate.

Following learning, the prediction errors at different states of the task exhibit the patterns 

plotted in Figure 1B–E.

Model prediction errors and decision confidence

We now show by simulation that, in the context of our task, the probability that the choice 

turns out to be correct given the sensory evidence, i.e. the decision confidence, is 

qualitatively equivalent to prediction error at the motion stimulus state, δm.

In order to compute decision confidence, p(correct|a, percept), we first compute, for each 

possible motion coherence, sm, whether the choice a that was made on the basis of 

 is the same as the choice that would have been made on the basis of sm. In other 

words, if the choice that would have been made on the basis of sm (i.e., by comparing Q(sm, 

R) and Q(sm, L) was the same as a, that choice is considered correct, and otherwise 

incorrect:

Eq. 6

Having defined choice correctness for each possible sm, we define confidence as the 

expected value of choice correctness, under the belief distribution :
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Eq. 7

where 〈.〉p is the expectation operator under the distribution p. In other words:

Eq. 8

Simulation of this equation indicates that, in our TDRL model with the belief state 

prediction errors reflect the probability that the choice will turn out to be correct, and thus 

implicitly reflect decision confidence (Figure 2A).

Note that tracking the full belief distribution, as normatively prescribed for efficient choice 

in more complex tasks requiring Bayesian updating, is not essential for our behavioral task. 

A reduced version of our POMDP model that uses the mean of the belief state to assign a 

single state, , to the motion stimulus and arrive at a choice by comparing  and 

 results in prediction error patterns similar to those of our 

full POMDP model (see Figure S2B).

To isolate the effect of decision confidence on model prediction errors, in Figure 1, we 

illustrate predictions of the model only in trials for which the agent choses the large reward 

side. To investigate the effect of decision confidence and reward size, in Figure 5, we 

illustrate the predictions of the model in all trials, independent of the reward size.

The alternative model

The alternative model introduces a case in which the dopamine system does not have direct 

access to the sensory evidence used for the decision process. In this model, the decision 

making system assign one state, , to the motion stimulus and makes the choice by 

comparing  and . Since the dopamine system 

does not have direct access to the sensory evidence used for choice, it assigns another state, 

, to the motion stimulus, which could be identical to different from the one used for 

choice, . The dopamine system uses the largest of  and  for 

prediction error computation at the motion stimulus and feedback states (Figure S2A). As 

such, in this model, the state inference and choice computation are identical to the reduced 

POMDP (Figure S2B) but the model reflects the situation that the dopamine system does not 

have access to the sensory evidence used for choice.

Figure 1, illustrates predictions of the alternative model only in large-reward trials and 

Figure S5 illustrates the predictions of the model in all trials, independent of the reward size.
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Analysis of the neuronal data

We analyzed only the trials in which the monkey made directional choices and thus we 

excluded trials in which the monkey broke fixation before the onset of the random dot 

motion stimuli. For analyses shown in Figure 3 and 4, we only included trials in which 

animals made a saccade towards large-reward side. This enabled us to isolate the neuronal 

representation of decision confidence independent of reward size. For analysis shown in 

Figure 5, we included all trials regardless of saccade direction, which allowed us to examine 

the effect of decision confidence and reward size on dopamine neuronal responses. Because 

testing predictions of our model requires both correct and error trials, in all our analysis, we 

included both types of trials.

All data analyses and modeling were performed using custom-made software coded with 

Matlab (MathWorks). Supplemental Experimental Procedure includes details of statistical 

analyses on neuronal responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Reinforcement learning model with belief state to cope with perceptual 

uncertainty

• Model provides unified account of dopamine in perceptual and reward-guided 

choices

• Dopamine can act as a teaching signal during perceptual decision making as 

well

• Dopamine signals decision confidence prior to behavioral manifestation of 

choice
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Figure 1. Predictions of a temporal difference learning model that incorporates a belief state
(A) Schematic of a TDRL model incorporating a belief state for performing the random dot 

motion discrimination task (see Experimental Procedures and Figure S1). Having observed a 

noisy readout of the motion stimulus , the model forms a belief, denoted by 

, representing the probability distribution over all motion stimulus states, sm 

(red bars, for simplicity only six states are shown in the panel). The model also stores the 

values of taking a left or right action, given each possible state Q(sm, L) and Q(sm, R), 
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respectively. On each trial, the value of left and right decisions are computed: 

 and . The choice is made by comparing 

 and . The reward expectation associated with the choice (i.e. decision 

value) is . Upon receiving the outcome (small, large or no reward) the model 

computes the prediction error, δm, the difference between the received reward size and the 

decision value. This prediction error, together with the belief state, is then used to update 

Q(sm, L) and Q(sm, R), which are used in the subsequent trials.

(B) Schematic of prediction error function of the TDRL model with belief state (top) and the 

alternative TDRL model (bottom), as a function of stimulus difficulty and decision outcomes 

(i.e. correct or error). DPE refers to decision value prediction errors for the model with a 

belief state, while MDP-PE stands for Markov Decision Process prediction error of the 

model without belief state. Unlike the model without the belief state, prediction errors at the 

time of stimulus in the model with the belief state reflect the decision outcome. Note that 

since some stimuli predict below average reward rates, the resulting prediction errors at the 

motion stimulus state can be negative.

(C–E) Properties of the TDRL model with belief state. The plots are from a model run with 

asymmetric reward sizes and in order to isolate the effect of belief on the model behavior, 

only trials with a choice toward the large-reward side are shown. Note that decision values 

depend on both belief and the reward size, hence for large-reward choices, DPEs take on 

slight positive values even for stimuli with close to zero coherence. See Figure S2 for 

additional predictions of this model.

(C) DPEs at the time of stimulus show dependency on both stimulus coherence and decision 

outcome. These prediction errors reflect subjective belief about the choice correctness.

(D) Model’s DPEs at the time of the outcome feedback. These prediction errors reflect the 

difference between the value of obtained reward and the values predicted at stimulus time, 

shown in (C).

(E) The model’s psychometric curves plotted separately for high and low DPEs at the time 

of stimulus (above and below 75th percentile, respectively). Trials with larger DPEs for the 

same stimulus coherence predict increased choice accuracy.

(F–H) as in (C–E) for a TDRL model without belief state. Note that both TDRL model with 

belief state and the alternative TDRL model have qualitatively similar predictions when only 

correct trials are taken into account. Thus, for comparing the two models, it is essential to 

include both correct and error trials. See Figure S2 for schematic of this model. See also 

Figures S1 and S2.
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Figure 2. Prediction errors of the TDRL model with belief state reflect decision confidence
(A) The pattern of estimated decision confidence. The simulation of p(correct|choice, 

percept) in this model shown as a function of stimulus coherence separately for correct and 

error choices (see Experimental Procedure). Note the similarity of these patterns with 

prediction errors in the belief-state TDRL model (cf. the panel with Figure 1C).

(B) Signal detection theory-inspired intuition illustrating the model’s predictions. For the 

same external stimulus, the distance between a percept s and the decision boundary b differs 

across trials (compare s1 and s2 for the difficult stimulus example and s3 and s4 for the easy 

stimulus example) leading to different confidence estimates (distance between the percept s, 

and the boundary b), as shown in the middle panel.
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Figure 3. Dopamine responses reflect both stimulus difficulty and choice
(A) Top panels: Raster plots of an example dopamine neuron aligned to stimulus onset and 

feedback tone onset, which indicated the trial outcome (correct or error). For error trials of 

low stimulus coherence and all correct trials, only a fraction of trials (randomly selected) is 

shown. Bottom panels: pre-stimulus time histograms (PSTHs) of the example neuron 

aligned to different task events. In the PSTHs, trials with different stimulus difficulties were 

collapsed. Horizontal gray bars indicate temporal windows used for analyses in (C). For 

illustration purposes, in all figures, we treat stimuli of equal coherence together, regardless 

of motion direction. To isolate the effect of decision confidence on neuronal responses, only 

trials in which the monkey made a saccade to the large-reward side were included in all 

panels of this figure. See Figure S3 for neuronal responses to the fixation cue. Unless 

otherwise stated, in all figures error bars are s.e.m. across trials or neurons (for single neuron 

examples and population, respectively).

(B) Top panels: PSTHs of dopamine population (averaged across 75 neurons recorded in two 

monkeys) aligned to different task events. Trials with different stimulus difficulties were 

collapsed. Horizontal gray bars indicate temporal windows used for analyses in (D). Bottom 
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panels: Running area under ROC curve (AUC) for each neuron aligned to different events 

(see Experimental Procedures). The AUCs significantly larger than 0.5 indicate larger 

dopamine responses in correct trial compared to the error trials. For illustration, AUCs in 

each panel are sorted based on the time of the first of three consecutive significant analysis 

time steps (P < 0.001).

(C) The average responses of the example dopamine neuron at the time of stimulus and 

feedback tone. These neuronal responses resembled the DPE of the TDRL model shown in 

Figure 1C and D.

(D) The population dopamine responses at the time of stimulus and feedback tone. These 

neuronal responses resembled the DPE of the TDRL model shown in Figure 1c and d and 

differed markedly from prediction errors of the alternative TDRL model shown in Figure 1F 

and G. See also Figure S3.
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Figure 4. Dopamine activity predicts choice accuracy prior to behavioral response
(A) PSTH of an example neuron and the entire neuronal population aligned to saccade onset 

(i.e. the time in which the animal gaze left the central fixation). In the PSTHs, trials with 

different stimulus difficulties were collapsed. Horizontal gray bars indicate temporal 

windows used for analyses in B–D. Only choices towards the large-reward size were 

included in all panels of this figure.

(B) Left: Area under ROC curve (AUC) for the example neuron measured from pre-saccade 

dopamine responses (during 250 ms prior to saccade initiation). At each stimulus coherence 

neuronal responses in correct and error trials were used to compute AUC. Right: running 

AUC for all neurons aligned to the saccade onset. For this analysis, trials from all tested 

coherence levels were collapsed and running AUC for each neuron was measured by 

comparing neuronal responses in each time bin of correct and error trials.

(C) Choice accuracy as a function of dopamine pre-saccade responses (measured for each 

neuron from responses during 300 ms before saccade initiation).

(D) Animals’ psychometric curves separated based on the pre-saccade dopamine responses 

(below and above 75th percentile, respectively). See also Figure S4.
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Figure 5. Dopamine responses reflect both decision confidence and reward size
(A) Prediction errors of a TDRL model with belief state trained on an asymmetric reward 

schedule. Unlike Figure 1C–D, here all trials irrespective of reward size were included. See 

Figure S5 for analogous plots from a TDRL model that does not include a belief-state.

(B) Population dopamine responses at the time of stimulus and feedback tone separated 

based on the reward size condition (small/large reward) as well as decision outcome (error/

correct). Unlike Figure 3 and 4, all trials (irrespective of reward size condition) were 

included in all panels of this figure.

(C) Average AUCs of dopamine responses to stimulus and feedback tone for different 

reward conditions. The AUC of each individual neuron at each stimulus coherence level was 

measured by comparing neuronal responses in correct and error trials and were then 

averaged across neurons. For both small and large reward conditions neuronal AUCs 

increased at the time of stimulus (left) and decreased at the feedback time (right), as a 

function of stimulus coherence. These results remained statistically significant even when 

responses of all recorded cells are taken into account (Linear regression of population AUCs 

onto stimulus coherence; stimulus time: P = 0.03 and P = 0.000006, reward time: P = 0.04 

and P = 0.007 for small and large reward conditions, respectively).

(D) Left: PSTHs of example dopamine neuron (same neuron shown in Figure 3) separated 

based on the upcoming reward size (i.e. reward size associated with the saccade direction, 

top panel) or based on the upcoming outcome (correct/error, bottom panel). These responses 

were used to measure area under ROC curve shown on the right. Right: scatter plot of AUCs 

measured for each neuron quantifying reward size coding and decision confidence coding 

for each individual neuron. For each neuron, the statistical significance was estimated using 

permutation test (see Experimental Procedures). Circled point indicates the example neuron 

shown on the left panels. See also Figure S5.
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