
I. Introduction 

Spinal fusion is one of the most common procedures per-
formed by spine surgeons. Between 1998 and 2008, the an-
nual number of spinal fusion discharges increased 2.4-fold, 
and the national bill for spinal fusion increased 7.9-fold in 
the United States, while laminectomy, hip replacement, and 
knee arthroplasty showed relative increases of only 11.3%, 
49.1%, and 126.8%, respectively [1]. Most recently, the an-
nual number of lumbar spinal fusions has continued to in-
crease, especially at high- and medium-volume hospitals in 
New York [2].
	 In many countries, to control the rising costs of healthcare, 
Diagnosis-Related Groups (DRGs) have been created. In 
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the late 1960s, the Yale Center for Health Studies developed 
DRGs to classify inpatient resource use. The goals were to 
motivate physicians to use hospital resources and other re-
sources more economically, to document the relationship 
between medical and administrative decisions, and to define 
hospital products and services by diagnosis [3]. The DRG 
system was designed to control hospital reimbursements by 
replacing retrospective payments with prospective payments 
for hospital charges. Patients are assigned to a DRG based 
on their diagnosis, procedures, age, gender, discharge status, 
and the presence of complications or comorbidities [4]. For 
example, the Centers for Medicare and Medicaid Services 
(CMS) classify spinal fusions DRGs by anterior or posterior 
spinal fusions and with or without complications or comor-
bidities, with a total of 8 DRGs. However, according to pre-
vious research, there are significant cost variations between 
different types of spinal surgical procedures, based on the 
complexity and extent of the surgical procedures, as well as 
variations within a given DRG [5,6].
	 DRGs are linked to fixed payment amounts based on the 
average treatment cost of patients in the group, not based on 
costs actually incurred. Hospitals make financial gains by 
treating patients for whom the hospital costs are lower than 
the fixed DRG reimbursement rate. Conversely, hospitals 
suffer financial losses when treating patients whose costs ex-
ceed the fixed DRG reimbursement rate.
	 Taiwan launched a single-payer National Health Insurance 
program on March 1, 1995. As of 2014, 99.9% of Taiwan’s 
population were enrolled [7]. To control rising medical costs, 
Taiwan has been implementing DRGs (Tw-DRGs) since Jan-
uary 2010. The Tw-DRG 3.4 version of spinal fusion, which 
classifies patients into anterior or posterior spinal fusions, 
is divided into five DRGs: Tw-DRG496 (combined ante-
rior/posterior spinal fusion), Tw-DRG49701 (posterior and 
other spinal fusion with complications or comorbidities), 
Tw-DRG49702 (posterior and other spinal fusion without 
complications or comorbidities), Tw-DRG49801 (anterior 
spinal fusion with complications or comorbidities), and Tw-
DRG49802 (anterior spinal fusion without complications or 
comorbidities) [8].
	 It is very important to monitor spinal fusion DRGs by 
constructing prediction models of medical costs for spinal 
fusion and identifying the potential relationship between pa-
tient attributes and medical costs. For patients with potential 
for high medical resource consumption, hospitals can adopt 
effective treatment plans to improve patient care and man-
age hospital resources in advance. 
	 Machine learning techniques have recently been used in 

various healthcare applications [9]; machine learning mod-
els are non-parametric in nature and do not need the as-
sumptions that are made in traditional statistical techniques 
[10]. Various machine learning strategies were previously 
compared using field-specific datasets, of which several had 
significantly better predictive power than the more conven-
tional alternatives [11].
	 The application of machine learning techniques can solve 
classification problems, develop prediction models, and 
identify high-risk patients, but to the best of our knowledge, 
no study has employed machine learning to predict medical 
costs in DRGs. A wide set of machine learning techniques 
has been employed to develop prediction models, such as 
naïve-Bayesian, support vector machines (SVM), logistic 
regression, C4.5 decision tree, and random forest methods. 
All five models are typical examples of supervised machine 
learning.
	 Therefore, the purposes of this study were to compare the 
performance of naïve-Bayesian, SVM, logistic regression, 
C4.5 decision tree, and random forest methods in predict-
ing the medical costs of spinal fusion in terms of profit or 
loss effects according to patient characteristics in Tw-DRGs, 
and to apply these methods to explore the important factors 
associated with the medical costs of spinal fusion, enabling 
better management of these patients. 

II. Methods

1. Data Collection and Preparation
In this study, a data set was obtained from a regional hospital 
containing data from January 2010 to December 2013, from 
which data of patients who underwent spinal fusion surgery 
were collected. The hospital is a public regional teaching 
hospital located in Taoyuan City in northern Taiwan, which 
currently has 1,545 employees, including 194 staff physicians 
and 972 beds.
	 The data was original claim data of inpatient admissions 
used for reimbursement. The database included basic char-
acteristics of patients, admission dates, discharge dates, pri-
mary diagnoses, complications or comorbidity ICD-9-CM 
codes, medical orders, and costs. In the regional hospital, 
Tw-DRG49702 (posterior and other spinal fusion surgeries 
without complications or comorbidities) contained the larg-
est number of cases among the five spinal fusion Tw-DRGs; 
therefore, we chose to use Tw-DRG49702 as the basis for 
analysis in this study.
	 According to a previous study, the factors affecting the 
costs of performing a spinal fusion surgery include patient 
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age, complications, gender, obesity, diabetic status, and de-
pression [12]. The predictive variables obtained from the 
database included demographic factors, such as gender, age, 
primary disease, complications or comorbidities, number 
of complications or comorbidities, number of intervertebral 
cages, and length of stay. The class label was defined as ‘loss’ 
for those patients whose medical costs exceeded the Tw-
DRG49702 fixed payment, meaning that the hospital took 
a loss, and ‘non-loss’ for patients whose medical costs fell 
below the Tw-DRG49702 fixed payment, in which cases the 
hospital did not take a loss. 
	 There were 532 cases in total, of which the medical costs 
for 124 (23.3%) patients exceeded the Tw-DRG49702 pay-
ment (‘loss’), and the costs for 408 (76.7%) patients fell below 
the Tw-DRG49702 fixed payment (‘non-loss’). To redress 
the imbalance in the data distribution between loss and non-
loss, we used the synthetic minority over-sampling tech-
nique (SMOTE), which is an important approach in which 
the positive class or the minority class is oversampled. The 
SMOTE approach can improve the accuracy of classifiers for 
a minority class [13].

2. Machine Learning Algorithm for Prediction 
In this study, we assessed five classification models, namely, 
naïve-Bayesian, SVM, logistic regression, C4.5 decision tree, 
and random forest models. 

1) Naïve-Bayesian algorithm
Naïve-Bayesian classifiers or simple-Bayesian classifiers 
based on Bayes’ theorem assume that the effect of an attri-
bute value on a given class is independent of the values of the 
other attributes. This assumption is called class conditional 
independence [14]. Naïve-Bayesian classifiers are among the 
simplest models in machine learning. Miranda et al. [15] 
detected cardiovascular disease risk factors using a naïve-
Bayesian classifier.

2) Support vector machines algorithm
The SVM algorithm was proposed by Cortes and Vapnik [16] 
in 1995, and it has become the most influential classifica-
tion algorithm in recent years. The SVM technique builds a 
maximum-margin hyper-plane that is positioned in trans-
formed input space and divides the pattern classes, while the 
distance to the closest plainly divided patterns is maximum. 
SVM can be used to effectively perform non-linear classifi-
cation. Kuo et al. [17] used SVM to predict the mortality of 
hospitalized motorcycle riders.

3) Logistic regression algorithm
Logistic regression is a regression model in which the de-
pendent variable is categorical. Logistic regression is used 
to model the probability of some event occurring as a linear 
function of a set of predictor variables, and it is widely used 
in the medical field to predict the diseases or survivability of 
a patient [9].

4) C4.5 decision tree algorithm
A decision tree is a flow-chart-like tree structure in which 
each node denotes a test on an attribute value, each branch 
represents an outcome of the test, and the tree leaves rep-
resent classes or class distributions [14]. There are several 
different decision tree algorithms, such as Iterative Dichot-
omiser 3 (ID3), C4.5 decision tree, and Classification and 
Regression Trees (CART). C4.5 is an algorithm used to gen-
erate a decision tree developed by Quinlan [18], and is an 
extension of Quinlan's earlier ID3 algorithm. C4.5 is often 
referred to as a statistical classifier [19], and it is a widely 
used classifier to face real world problems [20].
	 Habibi et al. [21] used decision tree to find the features re-
lated to type 2 diabetes risk factors to help in the screening 
of diabetes patients.

5) Random forest algorithm
A random forest classifier, proposed by Breiman [22], is an 
ensemble classifier that produces multiple decision trees 
using randomly selected features. In classification, trees are 
voted by the majority. The final classification is obtained by 
combining the classification results from the individual deci-
sion trees. Raju et al. [23] used the random forest model to 
explore factors associated with pressure ulcers.
	 The performance of the models considered in this study 
was assessed by computing the accuracy, sensitivity, specific-
ity, and the total area under the receiver operating charac-
teristic (ROC) curve (AUC). Accuracy is the ability to differ-
entiate between loss and non-loss cases correctly. Sensitivity 
is the ability to identify loss cases correctly. Specificity is the 
ability to identify non-loss cases correctly.
	 These measurements are expressed in terms of true posi-
tive (TP), false negative (FN), true negative (TN), and false 
positive (FP) values:

Accuracy = TP+TN  × 100,TP + TN + FP + FN

Sensitivity = TP  × 100,TP + FN
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Specificity = TN  × 100.TN + FP

	 The ROC curve is a plot between the true positive rate (TP/
TP+FN) and the false positive rate (FP/FP+TN). The clas-
sification performance is represented by the total AUC. The 
closer the area is to 0.5, the less accurate the corresponding 
model is. A model with perfect accuracy will have an area of 
1.0 [14]. The Waikato Environment for Knowledge Analy-
sis (WEKA) 3.8.1 was used for prediction in this study. To 
avoid overfitting due to use of the same data for training and 
testing of different classification methods, a 10-fold cross-
validation method was used to minimize the bias associated 
with the random sampling of the training data. In the 10-
fold cross-validation, the data set was divided into 10 parts. 
Then 9 parts were used for training, and the remaining part 
was used for testing. The process was repeated until all parts 
had been tested [10]. The goal of this process was to de-
termine which data mining algorithm performs best so we 
could use it to generate our target predictive model [24].
	 The process of data extraction and analysis in this study is 
shown in Figure 1.

III. Results

1. Spinal Fusion Patient Characteristics
Table 1 shows the demographic and clinical characteristics 
of patients in the Tw-DRG49702 group during the study 
period. There were 532 cases in total. The mean (standard 
deviation) total medical cost was US $4,549.7 (SD = 1,581.7), 
and the mean age of the patients was 62.4 (SD = 12.5) years. 

The average number of complications or comorbidities was 
2.0 (SD = 1.22). The mean length of stay was 9.3 (SD = 3.9) 
days. Among the subjects, 41.4% of the subjects were male, 
and 58.6% were female. Major primary diseases included 
lumbar stenosis, spondylolisthesis, lumbar disc displace-
ment, acquired spondylolisthesis lumbar atresia fracture, 
and scoliosis; complications or comorbidities included high 
blood pressure, sciatica, diabetes, and osteoporosis. There 
were significant differences in the actual medical cost, length 
of stay, number of intervertebral cages, lumbar disc displace-
ment, lumbar atresia fracture and scoliosis between the loss 
and non-loss groups. However, no significant differences 
were noted in terms of gender, age, number of complications 
or comorbidities, lumbar stenosis, high blood pressure, sci-
atica, spondylolisthesis, diabetes, acquired spondylolisthesis, 
and osteoporosis between the loss and non-loss groups.

2. Performance of Models
Table 2 summarizes the performance of all five models ana-
lyzed in this study, with accuracies ranging from 76.68% for 
the naïve-Bayesian model to 84.30% for the random forest 
model. The random forest model achieved better predictive 
performance than the other methods, with the highest ac-
curacy, sensitivity, specificity, and AUC. The model achieved 
an accuracy of 84.30%, with a sensitivity of 71.40%, a speci-
ficity of 92.20%, and an AUC of 0.904. The next best model 
was logistic regression, with an 82.16% accuracy, a 69.80% 
sensitivity, an 89.70% specificity, and an AUC of 0.860. The 
worst model in terms of predictive value was the naïve-
Bayesian model, with an accuracy of 76.68%, a sensitivity of 
56.90%, a specificity of 88.70%, and an AUC of 0.815 (see 
details in Appendix 1).

Pre-processing and
feature selection

Creation of prediction models

C4.5 decision
tree

Random
forest

Naive
Bayesian

SVM
classifier

2010-2013 Tw-DRG49702 data
(n = 532)

Logistic
regression

Performance evaluation
accuracy, sensitivity, specificity, AUC

Figure 1. ‌�Procedure for data extrac
tion and analysis. Tw-DRG: 
Taiwan Diagnosis-Related 
Group, SVM: support vector 
machine, AUC: area under 
the receiver operating char
acteristic curve.
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Table 1. Spinal fusion Tw-DRG49702 patient characteristics

Variable Total (n = 532) Loss (n = 124) Non-loss (n = 408) p-value

Total medical cost (USD) 4,549.7 ± 1,581.7 6,483.4 ± 1,514.6 3,997.9 ± 1,115.5 0.000***
Gender
   Male 220 (41.4) 46 (37.1) 174 (42.6) 0.272
   Female 312 (58.6) 78 (62.9) 234 (57.4)
Age (yr) 62.4 ± 12.5 65.7 ± 12.9 61.3 ± 12.2 0.842
Number of CCs 2 ± 1.22 2.3 ± 1.2 1.8 ± 1.2 0.864
Length of stay (day) 9.3 ± 3.9 12.1 ± 5.2 8.4 ± 3.1 0.001**
Number of intervertebral cages 0.4 ± 0.7 0.8 ± 0.9 0.3 ± 0.5 0.001**
Lumbar stenosis
   Yes 390 (73.4) 90 (40.2) 300 (73.5) 0.834
   No 242 (45.6) 134 (59.8) 108 (26.5)
High blood pressure
   Yes 213 (40.0) 56 (45.2) 157 (38.5) 0.184
   No 319 (60.0) 68 (54.8) 251 (61.5)
Sciatica
   Yes 205 (38.5) 43 (34.7) 162 (39.7) 0.314
   No 327 (61.5) 81 (65.3) 246 (60.3)
Spondylolisthesis
   Yes 127 (23.9) 27 (21.8) 100 (24.5) 0.531
   No 405 (76.1) 97 (78.2) 308 (75.5)
Diabetes
   Yes 97 (18.2) 30 (24.2) 67 (16.4) 0.05
   No 435 (81.8) 94 (75.8) 341 (83.6)
Acquired spondylolisthesis
   Yes 68 (12.8) 13 (10.5) 55 (13.5) 0.381
   No 464 (87.2) 111 (89.5) 353 (86.5)
Lumbar disc displacement
   Yes 68 (12.8) 5 (4.0) 63 (15.4) 0.001**
   No 464 (87.2) 119 (96.0) 345 (84.6)
Osteoporosis
   Yes 40 (7.5) 14 (11.3) 26 (6.4) 0.069
   No 492 (92.5) 110 (88.7) 382 (93.6)
Lumbar atresia fracture
   Yes 24 (4.5) 14 (11.3) 10 (2.5) 0.000***
   No 508 (95.5) 110 (88.7) 398 (97.5)
Scoliosis
   Yes 15 (2.8) 9 (7.3) 6 (1.5) 0.001**
   No 517 (97.2) 115 (92.7) 402 (98.5)

Values are presented as mean ± standard deviation or number (%).
CCs: complications or comorbidities.
**p<0.01, ***p<0.001.
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IV. Discussion

To the best of our knowledge, this study was the first to 
use machine learning to analyze DRG medical costs. The 
medical costs of performing spinal fusion in Tw-DRG49702 
(posterior and other spinal fusion without complications 
or comorbidities) in a regional hospital in Taoyuan city in 
Taiwan were predicted, and the factors associated with profit 
and loss in terms of medical costs in Tw-DRG49702 were 
analyzed, using various machine learning techniques. The 
results of the study showed that the length of stay, number 
of intervertebral cages, lumbar disc displacement, lumbar 
atresia fracture, and scoliosis were important factors associ-
ated with the medical costs of Tw-DRG49702. In addition, 
we found that the random forest model had the best predic-
tive performance in comparison with the logical regression, 
SVM, C4.5 decision tree, and naïve-Bayes models. We were 
able to successfully predict 84.30% of the patients' medical 
costs of Tw-DRG49702 using the random forest method.
	 The length of stay was an important variable in terms of 
determining medical costs for patients undergoing spinal 
fusion, the loss group having a significantly longer length of 
stay. Future management leading to expected reductions in 
hospital stay will be based on continuous co-operative ef-
forts to improve clinical guidelines or apply lean methods to 
produce standardized clinical pathways [25].
	 In our study, in comparison with the C4.5 decision tree 
classifier, the random forest model had better classification 
accuracy, their accuracies being 78.51% and 84.30%, respec-
tively. The random forest algorithm, which is one of the most 
powerful ensemble algorithms, is an effective tool for predic-
tion. Because of the law of large numbers it does not overfit 
[22]. Previous research has shown that an ensemble is often 
more accurate than any of the single classifiers in the ensem-
ble [26]. Hu et al. [27] experimentally compared the perfor-
mance of SVM, C4.5, bagging C4.5, AdaBoosting C4.5, and 

random forest methods for the analysis of seven microarray 
cancer data sets. The experimental results showed that all 
ensemble methods outperformed C4.5. Masetic and Subasi 
[28] confirmed the superiority of the random forest method 
over the C4.5 and SVM methods for the detection of conges-
tive heart failure.
	 This study also found the random forest model to be supe-
rior to traditional logistic regression, a result similar to those 
of previous studies. The random forest model was more 
accurate than logistic regression in predicting clinical dete-
rioration. A study of the accuracy of mortality prediction for 
patients with sepsis at the emergency department found that 
the random forest model was more accurate (AUC = 0.86) 
than the logistic regression model (AUC = 0.76, p ≤ 0.003), 
and the random forest model was more accurate in predict-
ing mortality after elective cardiac surgery than the logistic 
regression model [29]. Raju et al. [23] also found that the 
random forest model had the highest accuracy when used to 
explore factors associated with pressure ulcers in compari-
son with decision tree and logistic regression models. These 
results implied that the random forest model is suitable for 
classification of the medical costs of Tw-DRG49702.
	 The strength of this study was that it explored spinal fusion 
medical cost predictive models and identified important fac-
tors; however, there were some limitations of our study. First, 
the accuracy of this model was 84.30%, meaning that there 
still are other potential factors that could affect the medical 
costs of spinal fusion. Second, the study was only performed 
at a single hospital and with small sample size. It is recom-
mended that data from larger hospitals are analyzed in fu-
ture study.
	 Our study demonstrated that the random forest model can 
be used to predict the medical costs of Tw-DRG49702 (pos-
terior and other spinal fusion without complications or co-
morbidities), and based on the important factors identified, 
this study can inform hospital strategy in terms of increasing 
the efficiency of management of this type of operation in 
financial terms. Furthermore, methods of this type can also 
be used to address related problems, such as predicting the 
costs of other DRGs.
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Table 2. Comparison of performance of various prediction models

Classifier
Accuracy 

(%)

Sensitivity 

(%)

Specificity 

(%)
AUC

Naïve Bayesian 76.68 56.90 88.70 0.815 
SVM 82.16 66.10 91.90 0.790 
Logistic regression 82.16 69.80 89.70 0.860 
C4.5 decision tree 78.51 68.50 84.60 0.770 
Random forest 84.30 71.40 92.20 0.904 

AUC: area under the receiver operating characteristic curve, 
SVM: support vector machine.



35Vol. 24  •  No. 1  •  January 2018 www.e-hir.org

Comparison of Predictive Models for the Medical Cost of Spinal Fusion

Acknowledgments

This study was supported by the Taoyuan General Hospital, 
Ministry of Health and Welfare, Taiwan (No. PTH10307).

References

1.	 Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal 
fusion in the United States: analysis of trends from 1998 
to 2008. Spine (Phila Pa 1976) 2012;37(1):67-76.

2.	 Jancuska JM, Hutzler L, Protopsaltis TS, Bendo JA, 
Bosco J. Utilization of lumbar spinal fusion in New York 
State: trends and disparities. Spine (Phila Pa 1976) 2016; 
41(19):1508-14.

3.	 Rimler SB, Gale BD, Reede DL. Diagnosis-related 
groups and hospital inpatient federal reimbursement. 
Radiographics 2015;35(6):1825-34.

4.	 Hsiao WC, Sapolsky HM, Dunn DL, Weiner SL. Lessons 
of the New Jersey DRG payment system. Health Aff 
(Millwood) 1986;5(2):32-45.

5.	 Ugiliweneza B, Kong M, Nosova K, Huang KT, Babu R, 
Lad SP, et al. Spinal surgery: variations in health care 
costs and implications for episode-based bundled pay-
ments. Spine (Phila Pa 1976) 2014;39(15):1235-42.

6.	 Wright DJ, Mukamel DB, Greenfield S, Bederman SS. 
Cost variation within spinal fusion payment groups. 
Spine (Phila Pa 1976) 2016;41(22):1747-53.

7.	 National Health Research Institutes. Background of Na-
tional Health Insurance Research Database in Taiwan 
[Internet]. Miaoli County, Taiwan: National Health Re-
search Institutes; c2016 [cited at 2018 Jan 10]. Available 
from: http://nhird.nhri.org.tw/en/index.html.

8.	 Taiwan National Health Insurance Administration. 
DRG payment system 2017 [Internet]. Taipei, Taiwan: 
National Health Insurance Administration; c2017 [cited 
at 2018 Jan 10]. Available from: https://www.nhi.gov.tw/
Content_List.aspx?n=9261941716EB8070&topn=CA42
8784F9ED78C9.

9.	 Tomar D, Agarwal S. A survey on data mining ap-
proaches for healthcare. Int J Biosci Biotechnol 2013; 
5(5):241-66.

10.	 Moon M, Lee SK. Applying of decision tree analysis to 
risk factors associated with pressure ulcers in long-term 
care facilities. Healthc Inform Res 2017;23(1):43-52.

11.	 Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, 
Joseph DJ, et al. Statistical-learning strategies generate 
only modestly performing predictive models for urinary 
symptoms following external beam radiotherapy of the 

prostate: a comparison of conventional and machine-
learning methods. Med Phys 2016;43(5):2040-52.

12.	 Walid MS, Robinson JS Jr. Economic impact of comor-
bidities in spine surgery. J Neurosurg Spine 2011;14(3): 
318-21.

13.	 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 
SMOTE: synthetic minority over-sampling technique. J 
Artif Intell Res 2002;16:321-57.

14.	 Han J, Kamber M, Pei J. Data mining: concepts and 
techniques. 3rd ed. Amsterdam: Elsevier; 2011.

15.	 Miranda E, Irwansyah E, Amelga AY, Maribondang 
MM, Salim M. Detection of cardiovascular disease risk's 
level for adults using naive Bayes classifier. Healthc In-
form Res 2016;22(3):196-205.

16.	 à Cortes C, Vapnik V. Support-vector networks. Ma-
chine Learning 1995;20(3):273-97.

17.	 Kuo PJ, Wu SC, Chien PC, Rau CS, Chen YC, Hsieh HY, 
et al. Derivation and validation of different machine-
learning models in mortality prediction of trauma in 
motorcycle riders: a cross-sectional retrospective study 
in southern Taiwan. BMJ Open 2018;8(1):e018252.

18.	 Quinlan JR. Induction of decision trees. Mach Learn 
1986;1(1):81-106.

19.	 Archana S, Elangovan K. Survey of classification tech-
niques in data mining. Int J Comput Sci Mob Appl 2014; 
2(2):65-71.

20.	 Sanz J, Paternain D, Galar M, Fernandez J, Reyero D, 
Belzunegui T. A new survival status prediction system 
for severe trauma patients based on a multiple classifier 
system. Comput Methods Programs Biomed 2017;142:1-
8.

21.	 Habibi S, Ahmadi M, Alizadeh S. Type 2 diabetes melli-
tus screening and risk factors using decision tree: results 
of data mining. Glob J Health Sci 2015;7(5):304-10.

22.	 Breiman L. Random forests. Mach Learn 2001;45(1):5-
32.

23.	 Raju D, Su X, Patrician PA, Loan LA, McCarthy MS. 
Exploring factors associated with pressure ulcers: a data 
mining approach. Int J Nurs Stud 2015;52(1):102-11.

24.	 Bellazzi R, Zupan B. Predictive data mining in clinical 
medicine: current issues and guidelines. Int J Med In-
form 2008;77(2):81-97.

25.	 Bradywood A, Farrokhi F, Williams B, Kowalczyk M, 
Blackmore CC. Reduction of inpatient hospital length of 
stay in lumbar fusion patients with implementation of 
an evidence-based clinical care pathway. Spine (Phila Pa 
1976) 2017;42(3):169-76.

26.	 Kulkarni VY, Sinha PK. Random forest classifiers: a 



36 www.e-hir.org

Ching-Yen Kuo et al

https://doi.org/10.4258/hir.2018.24.1.29

survey and future research directions. Int J Adv Comput 
2013;36(1):1144-53.

27.	 Hu H, Li J, Plank A, Wang H, Daggard G. A compara-
tive study of classification methods for microarray data 
analysis. Proceedings of the 5th Australasian Confer-
ence on Data Mining and Analystics; 2006 Nov 29; Syd-
ney, Australia. p. 33-7.

28.	 Masetic Z, Subasi A. Congestive heart failure detection 

using random forest classifier. Comput Methods Pro-
grams Biomed 2016;130:54-64.

29.	 Allyn J, Allou N, Augustin P, Philip I, Martinet O, 
Belghiti M, et al. A comparison of a machine learning 
model with EuroSCORE II in predicting mortality after 
elective cardiac surgery: a decision curve analysis. PLoS 
One 2017;12(1):e0169772.



37Vol. 24  •  No. 1  •  January 2018 www.e-hir.org

Comparison of Predictive Models for the Medical Cost of Spinal Fusion

Appendix 1. Performance results of five different models

Classifier
Accuracy 

(%)

Sensitivity 

(%)

Specificity 

(%)
AUC

Confusion  

matrix

Weka model  

parameters

Naïve 
Bayesian

76.68 56.90 88.70 0.815  a b ← classified as weka.classifiers.bayes.NaiveBayes 
 362   46 | a = NO
 107 141 | b = YES

SVM 82.16 66.10 91.90 0.79  a b ← classified as weka.classifiers.functions.SMO -C 1.0 -L 
0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K  375   33 | a = NO

 84   164 | b = YES
Logistic 

regression
82.16 69.80 89.70 0.86  a b ← classified as weka.classifiers.functions.Logistic  

-R 1.0E-8 -M -1 -num-decimal-places 4 366   42 | a = NO
 75   173 | b = YES

C4.5 decision 
tree

78.51 68.50 84.60 0.77  a b ← classified as weka.classifiers.trees.J48 -C 0.25 -M 2
 345   63 | a = NO
 78   170 | b = YES

Random 
forest

84.30 71.40 92.20 0.904  a b ← classified as weka.classifiers.trees.RandomForest -I 100  
-K 0 -S 1 376   32 | a = NO

 71   177 | b = YES
AUC: area under the receiver operating characteristic curve, SVM: support vector machine.


