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Abstract

Protein structure refinement remains a challenging yet important problem as it has the potential to 

bring already accurate template-based models to near-native resolution. Refinement based on 

molecular dynamics simulations has been a highly promising approach and the performance of 

MD-based refinement in the Feig group during CASP12 is described here. During CASP12, 

sampling was extended well into the microsecond scale, an improved force field was applied, and 

new protocol variations were tested. Progress over previous rounds of CASP was found to be 

limited which is analyzed in terms of the quality of the initial models and dependency on the 

amount of sampling and refinement protocol variations. As current MD-based refinement 

protocols appear to be reaching a plateau, detailed analysis is presented to provide new insight into 

the major challenges towards more extensive structure refinement, focusing in particular on 

sampling with and without restraints.
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INTRODUCTION

Computational protein structure prediction has become a valuable tool in structural biology1. 

Template-based modeling is now applicable to ever more folds as the number of structures in 

the Protein Data Bank (PDB) continues to grow rapidly, especially because of advances with 

cryo-electron microscopy (Cryo-EM)2 and structure determination via X-ray free electron 

lasers (XFEL)3. As a result, the chance of finding the structure of a close homolog for a 

given sequence is increasing so that accurate protein structure prediction is routinely 

possible4. Moreover, modeling based on co-evolutionary information allows high-resolution 

modeling even in the absence of a homologous structure5,6. This has been enabled by next-

generation genome sequencing (NGS), which rapidly increased the number of known 

sequences for homologous proteins in different organisms as the basis for predicting residue-

residue contacts with high accuracy7.
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Complementary to the advances outlined above, protein structure refinement methods have 

been increasingly successful in further improving initial knowledge-based predictions via ab 
initio techniques8. Evidence of significant protein structure refinement has first emerged 

around 2010, at CASP99. In CASP10, refinement based on molecular dynamics (MD) led to 

a significant step forward after introducing the idea of ensemble averaging rather than 

attempting to select a single snapshot from a generated structural ensemble10–12. The 

progress with MD-based methods has also been catalyzed by continuous improvements in 

force fields and ability to sample extensively11. MD-based refinement so far is able to 

provide moderate and consistent structure improvements13, and recent protocols have been 

optimized to limit the computational costs by taking advantage of GPU computing14. MD-

based refinement has also contributed to significant improvements in local structure quality 

such as correct stereochemistry and avoidance of clashes, which is almost always possible 

even if the global structure cannot be improved15. A number of alternate refinement 

protocols have also been proposed: In CASP11, Della Corte et al. devised a method where 

homologous structure information was utilized to smooth the potential energy landscape and 

lower the energy barriers thereby enhancing sampling during MD simulations16. Lee et al. 
and Park et al. proposed methods that reconstruct unreliable regions such as loops and 

termini, followed by global relaxation17,18. However, all of the refinement methods available 

to date, are still limited to relatively localized structural changes and perform best when the 

initial model is already relatively close to the native state. It remains very challenging to 

consistently improve models with significant errors19.

In this article, further tests of MD-based protein structure refinement methods during 

CASP12 are described. Commonly, weak restraints have to be applied for MD-based 

refinement to succeed12,20, which limits the extent of possible refinement. Since the protein 

force field has been improved further21 and GPGPU computing has become more widely 

available, MD simulations were carried out over longer time scales with weaker restraints 

during CASP12. The hope was to be able to sample more broadly, and, ultimately, refine 

structures more extensively. Other ideas that were explored during CASP12 involved 

iterative refinement along the initial direction of refinement. However, while consistent 

moderate refinement was again possible, we could not significantly expand the extent of 

refinement indicating that MD-based refinement methods using current protocols may have 

reached a plateau where simply running longer simulations is not offering further 

advantages. So, a main focus of this article is to look back and summarize the lessons we 

have learned until now and discuss where the key barriers are that need to be overcome to 

move forward.

METHODS

The general approach to protein structure refinement during CASP12 followed our previous 

protocol that involved long, weakly restrained MD simulations to generate structural 

ensembles. From the ensembles, a subset of structures was subsequently selected and 

averaged before finishing with detailed refinement of the local stereochemistry using 

locPREFMD15. Variants of our previous protocol were tested during CASP12. In the 

CASP12 protocol, shown as a flow chart in Figure 1, initial models were first subjected to 

locPREFMD15 to improve the stereochemical quality and obtain better starting structures for 
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the MD simulations. The resulting initial models were submitted as ‘Model 5’ during 

CASP12 as the most conservative attempt at structure refinement. Afterwards, up to two 

rounds of MD-based refinement were carried out. Generally, the same scoring and filtering 

scheme followed by structure averaging was used as described previously and applied in 

CASP1113 on different ensembles of structures generated from MD trajectories under 

different conditions (see below). Before submitting final models, locPREFMD was applied 

twice after ensemble averaging and. depending on which MD ensemble was used, the 

resulting structures were submitted as Models “1”, “2”, “3”, or “4”, respectively.

The primary set of MD simulations in the first round consisted of four runs at 500 ns, two 

runs at 400 ns, and 14 runs at 200 ns using weak harmonic restraints applied to Cα atoms 

with respect to the initial structure (force constant: 0.025 kcal/mol/Å2) for a total of 5.6 μs of 

sampling. This was about five times the amount of sampling applied during CASP1113. The 

combination of runs at different lengths was predicated by the availability of GPU resources 

and the time limit for submitting predictions during CASP. While this ambitious amount of 

sampling could be reached for many targets within the CASP time frame of a few weeks, 

some targets were too large and simulation lengths had to be reduced in those cases. Each 

simulation was carried out in explicit solvent starting with randomly assigned initial 

momenta. The latest CHARMM force field, CHARMM36m21, was used to take advantage 

of further improvements in sampling backbone torsions, especially in less-structure 

segments such as loops. Each protein was solvated in a periodic cubic box with at least a 9 Å 

solvent buffer to the box edge. The TIP3 water model22 as implemented in CHARMM was 

used and all systems were neutralized by adding either sodium (Na+) or chloride (Cl−) 

counter ions, as appropriate. A 10 Å cutoff with switching between 8 Å and 10 Å was 

applied to the Lennard-Jones potential and the direct part of the electrostatic potential. 

Particle-mesh Ewald summation was used to evaluate the full electrostatic potential23. 

Bonds involving hydrogen atoms were kept rigid using holonomic constraints. Each system 

was prepared by minimization and subsequent heating to 298 K. Langevin dynamics was 

performed under NVT condition at 298 K with a 2 fs time step and a friction coefficient of 

0.01/ps. The ensemble resulting from this set of simulations was filtered and averaged to 

result in the structure submitted as “Model 3”.

To further enhance the initial conformational ensembles, 200,000 conformations were 

extracted from the first four 500 ns MD simulations and subsequently clustered into five 

clusters using the k-center algorithm implemented in MSMBuilder24 using the differences in 

the pair-wise Cα distance matrix as the distance measure. For each cluster, an averaged 

structure was generated from which an additional 100 ns of MD simulations were performed 

in the same manner as explained above except that restraints were applied with respect to the 

cluster-averaged structure using a reduced force constant of 0.005 kcal/mol/Å2. The 

ensemble from the five cluster-initiated simulations was filtered and averaged to result in the 

structure submitted as “Model 4”. The combined set of structures resulting from the initial 

simulations plus the additional simulations after clustering was used to generate the structure 

submitted as “Model 1”. In some cases, there was not enough time to run the additional set 

of simulations after clustering. In this case, “Model 3” was submitted also as “Model 1”.
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A second round of refinement began with “Model 1” and involved an additional MD 

simulation over 200 ns without restraints. From the resulting ensemble, structures were 

selected that advanced further along the direction of the initial refinement with the idea that 

those changes would bring the structure closer to the native state. The direction of the initial 

refinement was determined by comparing “Model 1” with the initial model and the 

conformations extracted from the second round of MD were accordingly scored using both 

RWplus25 and the vectorial direction similarity measure Sk calculated for a structure k based 

on Eqs 1 and 2.

(1)

(2)

where the dot products of unit vectors of Cα deviation directions between the refined model 

and a given structure k were averaged over all NCα atoms. The Cα deviation direction was 

defined as the averaged vector between a given Cα and its two adjacent Cα atoms in a 

structure k from the initial model after overall least-squares structural superposition 

according to Eq. 2. vi
refined was calculated in the same manner.

Only structures generated during round two with Sk > 0.4 and , where r denotes the 

RWplus score, were selected for structure averaging, to be submitted as “Model 2”. If no 

such structures were found, i.e. the additional second round sampling did not advance 

further along the initial direction of refinement, “Model 1” was submitted also as “Model 2”.

The MD production runs were conducted on GPUs using CHARMM26 with OpenMM27 via 

API integration, except for the second-round single 200 ns simulation that was run using 

NAMD28. Other MD simulations for equilibration, structure averaging, and locPREFMD 

were carried out using CHARMM. Structure preparation, selection, and analysis tasks relied 

on the MMTSB Tool Set29.

RESULTS AND DISCUSSION

Overall performance in CASP12

The overall results during CASP12 with the refinement protocol shown in Figure 1 are given 

in Table 1. For one target (TR879), the refinement protocol was applied incorrectly and the 

initial structure disintegrated as a result. Because the results for this target do not reflect the 

described protocol, the results were excluded from further analysis. Based on all other 

targets, GDT-HA scores were improved by 1.6 units, and four out of 36 targets could be 

refined by more than 5 GDT-HA units. Refinement was highly consistent as structures were 
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refined for 30 out of 36 targets (83%). The performance was overall similar to previous 

years, but the extent of refinement was actually a bit less than in CASP1113 and CASP1011 

despite the additional sampling and force field improvements.

The new protocols tested in CASP12 did not provide significant advantages. Although 

“Model 1” submissions (that included the snapshots from the enhanced sampling following 

clustering, see above) seemed to be slightly better than just following the CASP11 protocol, 

statistical analysis indicates that none of the MD-refinement methods were significantly 

different from each other (based on p-values > 0.05 from the paired t-test analysis on the 

common targets). An interesting observation is that the refined models using just the 

snapshots from the enhanced sampling following clustering (“Model 4”) showed a greater 

variation with some models much better and others much worse than the “Model 1” 

structures. Pearson’s correlation coefficients for GDT-HA improvements between “Model 1” 

and “Model 3” and “Model 4” are 0.96 and 0.68, respectively. This reflects broader 

sampling as a result of the weaker restraints and the application of restraints with respect to 

structures generated in the first round of sampling. However, overall, the extent of 

refinement did not improve as structures moved away from the native as much as they came 

closer.

The second round of the refinement protocol produced models only for about half of the 

targets, either because there was not enough time to run additional sampling after the first 

round was complete or because no structures were generated along the direction of the initial 

refinement (see Methods). In general, where available, models after the second round were 

refined to a similar extent as after the first round. Although restraints were not used in the 

second round sampling, the resulting models did not drift away from the native structure 

except for two targets (TR891 and TR922-D1, where more than 2 GDT-HA units were lost 

during the second round). This confirms an earlier conclusion11 that after initial refinement, 

models are in a deep energy minimum from which escape and additional refinement are very 

challenging.

Finally, models submitted as “Model 5” for which only the local stereochemistry was refined 

with locPREFMD did not change much in terms of GDT-HA and RMSD scores. However, 

although locPREFMD does not target global structure refinement, there were still small 

improvements in GDT-HA scores suggesting that just the improvement of local structure 

may also slightly improve the global structure.

Sampling vs. refinement

Under the assumption that the force field is good enough to distinguish the native state as the 

global free energy minimum, sampling is the limiting factor for being able to traverse the 

energy landscape until the native state is found. While it remains unclear how much 

sampling is exactly needed to reach the native state from a nearby initial model on a given 

landscape, the general expectation is that more sampling (more trajectories as well as longer 

trajectories) would improve the chances for refinement. In CASP12, we extended the 

simulation time to more than 5.6 μs per target. At the same time, the restraint force constant 

was reduced by half and we expected to sample more diverse structures on non-canonical 

regions (i.e., loops) by introducing the CHARMM36m force field.
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As already mentioned above, the more extended sampling did not result in better refinement 

compared to previous rounds of CASP, but we performed post-analysis based on simulation 

subsets to determine how the simulation length affected the results just within CASP12. 

Figure 2 illustrates how GDT-HA improvements depend on the amount of sampling. This 

analysis is based on averages over 24 targets for which we have generated at least 20 

trajectories over 200 ns. Generally, increased sampling resulted in higher GDT scores, 

consistent with expectations, and using the full 4 μs resulted in the maximum improvements. 

However, the GDT-HA scores for the top 5% percentile of the distribution was almost 

converged after 1–2 μs of sampling, and additional sampling did not make much of a 

difference.

The next question we investigated was to what degree RMSD and GDT-HA metrics as well 

as the RWplus score improved with increasing simulation time. As shown in Figure 3, 

average RMSD values did not change much but the distribution of GDT-HA scores shifted to 

larger values and RWplus scores moved to lower values up until 50–100 ns, after which 

there was little change. The significant shift in the RWplus score towards lower energies 

implies that the interaction within proteins and internal packing were getting better as the 

simulations progressed. Therefore, it appears that extending simulations beyond 200 ns 

would not provide much benefits, at least in the presence of positional restraints.

The optimal balance between the number and length of simulation with the same amount of 

sampling is another issue. Many short simulations may explore different regions of 

conformational space based on different initial momenta and are better suited to typical 

parallel computing resources than a few long simulations. However, it is more difficult to 

cross significant kinetic barriers with short simulations so that an optimal balance may be a 

compromise of a moderate number of moderate-length simulations. Figure 2 confirms this as 

5 × 200 ns (1 μs in total) or 10 × 200 ns (2 μs in total) provide slightly better results than 20 

× 50 ns or 20 × 100 ns. As there is little improvement in GDT-HA and RWplus scores during 

100–200 ns (see Figure 3), the optimal sampling strategy seems to be to run as many as 

possible 200 ns simulations within the CASP12 refinement protocol.

Scoring, filtering, and structure averaging

The general approach towards scoring, filtering, and structure averaging was established first 

during CASP10. In CASP11, DFIRE30 was replaced with RWplus25 and the filtering criteria 

were slightly adjusted13. In CASP12 the same protocol was applied as in CASP11. Briefly, 

the filtering step involves the selection of a subset of structures that have both low RWplus 

scores and are closer to the initial model. In this section, we reassessed whether this scoring, 

filtering, and averaging protocol is still optimal for the CASP12 test set. We compared 

refined models with and without filtering and extracted models at the center of a given 

ensemble based on the lowest Cα RMSD sum to all other structures instead of averaging. 

The resulting GDT-HA improvements are summarized in Figure 4. It can be seen, that 

averaging still provides a significant benefit, either with or without filtering, but, 

surprisingly, the filtering step did not offer a clear advantage anymore. With averaging, the 

results were similar whether the ensemble was filtered or not. Moreover, when averaging 

was not applied, the use of the filter actually resulted in worse performance. This suggests 
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that it may be necessary to reassess when and how to filter MD-generated ensembles as 

sampling has increased, force fields have improved, and the generation of the initial models 

may have changed (see below) from when we first optimized our refinement protocol.

Refinement as a function of the initial model

Our finding that refinement was less successful in CASP12 than in previous rounds of CASP 

despite increased sampling prompted us to examine again13 how the degree of refinement 

depended on the initial model quality. As shown in Figure 5, we found little correlation of 

GDT-HA improvements with initial GDT-HA scores, although the highest average 

improvement was seen for models with initial GDT-HA scores above 70. Improvements in 

Cα RMSD were more strongly dependent on the initial Cα RMSD. There was a clear trend 

of structures with lower RMSD values, below 4 Å in Cα RMSD, being improved in terms of 

RMSD, while structures with larger initial RMSD values became worse in terms of RMSD 

after refinement. Finally, MolProbity scores were consistently reduced to less than 1.0 in 

most cases except when the initial MolProbity score was worse than 3.0, although even in 

those cases, the MolProbity scores were reduced significantly (to about 1.5). This analysis 

suggests that the reduced amount of refinement seen in CASP12 vs. previous rounds of 

CASP was probably not because initial models had higher or lower GDT or RMSD values.

The next question we posed was whether the origin of the initial model played a role. In 

CASP12, the initial models came from various protein structure prediction servers, but 

models built by the Lee and Baker groups each contributed 12 initial structures for the 42 

refinement targets. Table 2 summarizes the refinement performance as a function of where 

the initial models came from. Most notably, models originating from the LEE server could 

only be improved by modest amounts in terms of GDT-HA while more substantial GDT-HA 

improvements were possible for most other methods. Furthermore, the accuracy of 

sidechains, measured with the GDC-SC score, actually deteriorated for the LEE models 

while other models were again improved to different degrees.

We performed more detailed analysis of the change in per-residue Cα RMSD from the 

native as well as the per-residue Cα RMSD with respect to the initial model. As shown in 

Figure 6, most of the improvements were made when the initial Cα RMSD was in the range 

of 1–5 Å. This suggests that residues with moderate errors are more likely to move toward 

the native structure, while refinement of substantially deviated residues is more challenging. 

Residues that were already close to the native (less than 1 Å) did not improve much as there 

is little room for refinement but these residues also moved less with respect to the initial 

structure. This means that residues that were essentially correct in the initial model tended to 

remain at that position during refinement. This would be expected for residues already in the 

deep global native minimum but residues close to the experimental structure are also more 

likely part of the highly packed protein core where there is less room for displacement even 

if the force field energy was not optimal.

Comparing this analysis for models from the LEE and BAKER servers, there are noticeable 

differences especially in the amount of displacement from the initial model. With LEE 

models, there was much less displacement from the initial model even for residues with high 

initial RMSD values. This suggests that the LEE models were already in a deep energetic 
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minimum, presumably as a result of refinement using a similar protocol and energy function 

as what we have applied here. Therefore, our refinement of the LEE models was apparently 

more akin to a second round refinement. This would explain the much more moderate 

improvements for the LEE models compared to the refinement of other models and the 

overall lower success with refinement during CASP12 since the LEE models made up a 

significant fraction of refinement targets.

Limitations towards further progress

Moderate structure refinement via MD-based sampling is now consistently possible and has 

apparently even become integrated in standard automated modeling platforms as evidenced 

by the LEE server models during CASP12. However, we seem to have reached a plateau 

where further progress is difficult to achieve. An obvious issue is the use of restraints that 

limits how far structures can deviate from a given initial model and, thereby, how much 

initial models can be refined towards the native state. The application of restraints stems 

from early lessons during the application of MD to the structure refinement problem that 

have taught us that entirely unrestrained simulations from homology models are more likely 

to move away from the native state than towards it12,20,31 although it is not entirely clear 

why exactly. The use of restraints during refinement simulations has been the key to 

achieving consistency in structure refinement, but it is clear that with simulations restraint to 

the initial model it will not be possible to reach the native state for any but those initial 

models that are already very close to the native state. Thus, understanding why exactly 

unrestrained sampling from initial homology models generally fails to reach the native state 

is the key issue in our opinion for advancing structure refinement to the next level.

In order to gain further insights, we examined one of the CASP12 targets (TR872) in detail. 

Since the initial model for this target was relatively far from the native state, there was 

significant room for improvement (initial Cα RMSD and GDT-HA scores were 5.59 Å and 

56.8, respectively). During CASP12, we could not improve this model using our MD-based 

protocol (ΔCα RMSD and ΔGDT-HA score are +0.04 Å and −1.4, respectively) and we 

therefore chose this target to understand the limitations in our protocol better. This target had 

errors at both termini and at a β-turn. There was also relatively poor packing of sidechains 

between β-sheets. We complemented the simulations generated during CASP12 with 

extensive unrestrained simulations that were started either from the native structure or the 

initial model given during CASP12. The additional MD simulations involved initially a set 

of 40 runs over 100 ns each. These simulations were carried out in the same manner as the 

MD simulations during CASP12 (except for the lack of restraints). The generated 

conformations were then clustered similarly as during CASP12 (see Methods). From each 

cluster another round of ten additional simulations over 100 ns were started. This resulted in 

a total of 22 μs of additional sampling (8 μs started from the native, 14 μs started from the 

initial model). The resulting conformations, as well as the structures generated during 

CASP12 with restrained sampling, were then combined and projected onto the two principal 

components from time-structure independent component analysis32 with a lag time 1 ns and 

using pair-wise Cα distances as the distance metric.

Heo and Feig Page 8

Proteins. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7 illustrates the conformational sampling for TR872 during our refinement 

simulations in CASP12 compared with the additional unrestrained simulations started from 

the native structure and initial model. When started from the native structure, the simulations 

explore only a relatively narrow conformational space, despite the extensive sampling and a 

protocol that encourages broad exploration of conformational space. The only significant 

dynamics is found in the flexible C-terminus and a loop connecting an internal hairpin (see 

also Fig. 8A). The average structure obtained from the MD simulations remains close to the 

native state with a GDT-HA score of 79.0 and a Cα RMSD value of 2.24 Å for the average 

structure. This indicates that the native state coincides with a deep free energy minimum in 

the MD simulations as expected from the protein folding funnel hypothesis33. While we 

cannot say for sure based on the still limited sampling whether the native state is indeed at 

the global free energy minimum, the native state is at least a prominent local minimum with 

the force field used here from which escape is unlikely if it can be reached during 

refinement.

Our refinement simulations from CASP12 that were started from the CASP-provided initial 

model but involved weak positional restraints also did not significantly explore 

conformational space (see Fig. 6C). It is readily apparent from Fig. 6 that the differences 

between the initial model and the native state are much too large to be overcome in the 

presence of the restraints. In contrast, the unbiased simulations started from the initial model 

generated broad sampling where a number of distinct states were visited (see Fig. 7B and 

Fig. 8C–G). The state S0, closest to the initial model, was most favorable and is already 

significantly refined with respect to the native state. S0 has a GDT-HA score of 65.3 that is 

about 8.5 units better than the initial model. The state S0 is easily reachable from the initial 

model without restraints since the initial model and S0 are close in terms of the tICA 

principal components. However, as S0 is more than 5 Å Cα RMSD away from our model 1 

submitted during CASP12, the restraints in our CASP12 protocol clearly prevented this state 

from being reached as it lies outside the sampling radius in the restrained simulations (see 

Figs. 7B and C). Other states in the unrestrained simulations, S1–S4, were only slightly less 

favorable than S0 and separated by kinetic barriers. One of the states, S3, is even closer to 

the native state than S0 (see Fig. 8F) with a GDT-HA score of 71.0 and a Cα RMSD value of 

2.59 Å. This state closely resembles the native state except for a persistent incorrect N-

terminal helix that would need to dissolve for the structure to completely match the native 

state (see Fig. 8F). On the other hand, the simulations also visit a state (S4) that is located 

significantly further away from the native state than the initial model. In S4, the N-terminal 

is opened up significantly (see Fig. 8G). S4 is also about 5 Å Cα RMSD away from our 

model 1 and, therefore, relaxing the restraints enough to be able to reach S0 would also 

allow S4 to be visited.

According to Fig. 7B, a transition from S0 to S3, would appear as the most direct path to the 

native state, but a transition via S2 or S1 is kinetically more likely. Both of these states are 

slightly unfolded relative to S0 and, so, in this example, further refinement from the initially 

relaxed state S0 would require partial unfolding (via S1 or S2) and refolding (to S3). The 

final transition to melt the N-terminal helix (which we did not observe) probably also 

requires an additional partial unfolding and repacking process.
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The initial relaxation to S0 is essentially what we can reach with our current refinement 

protocol as long as the restraints are weak enough to allow large enough structural changes 

from the initial model. For the example chosen here, our restraints were too strong, but 

weaker restraints should make it possible to reach S0. However, further refinement would 

not simply proceed downhill on a folding funnel along a direct path. Instead, multiple cycles 

of partial unfolding and refolding may be required that are hindered severely by restraints as 

larger conformational changes are required but also involve the danger of unfolding towards 

states that are further away from the native state if restraints are not applied. Once states 

further away from the native state are sampled (such as S4), a recovery towards the native 

state becomes increasingly difficult due to the explosion of configurational space.

We believe that the example presented here typifies the general problem of structure 

refinement. We appear to be well-equipped to achieve modest refinement from an initial 

model towards locally relaxed structures by using restrained MD simulations aided by 

conformational averaging. However, further refinement likely requires cycles of partial 

unfolding and refolding that are essentially impossible in the presence of restraints. As such 

transitions require the crossing of kinetic barriers to states with similar relative energies, the 

key challenge going forward seems to be how to favor productive cycles that lead towards 

the native state while, at the same time, preventing transitions to states that lead away from 

the native state, but without a priori knowledge of where the native state is located. It does 

appear, though, that once the native state is reached it can be recognized based on the force 

field providing a deep free energy minimum. It remains to be seen in future studies how 

general these findings are and, ultimately, how to transform such insight into successful 

refinement protocols that can achieve more significant refinement than what is currently 

possible.

Further challenges

While the protein structure refinement exercise within CASP focuses on the very specific 

task of improving a given initial model with respect to the experimental structure, the larger 

goal is the generation of meaningful structural models of proteins in their biologically most 

relevant form. This includes the modeling of complete structures in their most prevalent 

oligomeric states, which involves additional challenges. Reliable templates used to generate 

initial models may not cover the entire sequence while information about the oligomeric 

state and especially oligomer interfaces are often lacking. Unfortunately, neither the ab initio 
modeling of missing fragments nor the application of protein-protein docking techniques to 

determine likely oligomer configurations are trivial. However, carrying out MD-based 

structure refinement would be expected to benefit from having complete structures in their 

oligomeric state as that would represent the most realistic physical environment for a given 

protein structure. It remains to be assessed in detail, though, what the effect of missing 

fragments and the neglect of oligomeric states have on refinement success with MD-based 

techniques.
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CONCLUSIONS

The refinement of protein structures via MD simulations remains a highly successful 

approach. Our protocol that combines extensive sampling via MD followed by filtering, 

scoring and structure averaging remains highly successful in providing moderate but 

consistent refinement. However, the extent of refinement during CASP12 with our MD-

based protocol has seen a decline based on CASP12 targets while we expected improved 

performance with increased sampling, further improved force fields, and new refinement 

protocols that were tested during CASP12. To some extent this appears to be a result of MD-

based refinement becoming a standard component of modeling pipelines, so that initial 

models available in the refinement category at CASP are more difficult to refine further. But 

more generally, we seem to have reached a plateau with the current refinement protocols. A 

major issue is the use of restraints during sampling which is necessary on one hand to 

achieve consistency but severely limits the degree to which structures can be refined. A 

detailed analysis of one of the CASP12 targets suggests that much weaker restraints may be 

needed to achieve further refinement, and, in particular, to allow partial unfolding and 

refolding to reach the native state. The key issue remains, however, that very weak, or no 

restraints, also allow states to be visited that lead away from the native state while it appears 

that the energy function does not provide strong guidance towards the native state until the 

native state is actually reached. While extensive sampling is now possible and force fields 

have become highly realistic, we see the remaining challenge in effectively guiding sampling 

during refinement to eventually reach the native state rather than drift away towards 

unfolded states.
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Figure 1. 
Refinement protocol applied by the FEIG group in CASP12. Each colored box with a 

dashed line depicts a structural ensemble for which a common protocol of scoring, filtering, 

averaging, and final local refinement was applied as depicted at the bottom.
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Figure 2. 
Average improvements in GDT-HA score as a function of simulation time. Improvements in 

GDT-HA for the best (A) and top 5% percentile (B) of the sampled structure are shown as 

heat maps. Blue colors indicate the largest improvements in GDT-HA while red colors 

indicate the least improvement. Contours indicate the same total simulation times of 1 μs 

and 2 μs. Values in bold are given for: 5 × 200ns, 10 × 100ns, 20 × 50ns (on the 1 μs line), 

10 × 200ns, 20 × 100ns (on the 2 μs line), and 20 × 100ns (upper right corner).
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Figure 3. 
Z-score distributions for Cα RMSD (A), GDT-HA scores (B), and RWplus scores (C) 

averaged over 24 targets using 20 trajectories over 200 ns as a function of simulation time 

(red: 0–10 ns; orange: 10–20 ns; green: 20–50 ns; cyan: 50–100 ns; blue: 100–200 ns). 

Arrows indicate the direction of change towards longer simulation times.
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Figure 4. 
Average improvements in GDT-HA scores (see color scale) based on different protocols for 

generating refined models from MD ensembles as a function of the length and number of 

MD trajectories. Structures obtained by averaging (A, B) are compared with structures 

obtained as ensemble centers (C, D), and with (A, C) and without (B, D) ensemble filtering 

(see text).
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Figure 5. 
Refinement performance as a function of on initial model quality. GDT-HA improvements 

are compared to initial GDT-HA scores (A), RMSD improvements are compared to initial 

RMSD values (B), and MolProbity scores after refinement are shown as a function of initial 

MolProbity scores (C). Boxplots summarize the results with orange lines inside the boxes 

indicating median values, while the top and bottom of the boxes represent first and third 

quartiles. The minimum and maximum values within 1.5 interquartile from the first and 

third quartiles are indicated as whiskers. Individual data points are overlaid as red circles.
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Figure 6. 
Per-residue change in Cα RMSD from the native, ΔRMSDi,native, (A, B, C) and Cα RMSD 

from the initial model, RMSDi,initial, (D, E, F) vs. initial Cα RMSD from the native for a 

given residue i. The analysis is compared for all targets (A, D) and for targets from the LEE 

(B, E) and BAKER (C, F) groups. Boxplots are drawn in the same manner as in Figure 5. 

Individual data points are shown as gray dots. Dashed lines indicate perfect refinement 

which makes Cα deviation to zero.
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Figure 7. 
Conformational sampling of TR872 during refinement projected onto the two principal 

coordinates obtained from time-structure independent component analysis (tICA). Contour 

plots are drawn for sampling probabilities (as –log P based on probabilities P and shifted to 

zero at the minimum value). The coordinates for the native and the initial model are 

indicated by using a blue and red ‘X’, respectively. Sampling distributions for different sets 

of MD trajectories are shown in different panels: (A) started from the native structure 

without restraints; (B) started from the initial model without restraints; and (C) started from 

the initial model with restraints according to our CASP protocol. Representative states (S0–4) 

are indicated in panel B.
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Figure 8. 
Structures for target TR872 during refinement and with additional MD-based sampling. The 

native structure is shown in yellow in all panels and compared with the MD-simulated 

average structure of the native state (blue; A), the initial model given during CASP12 for 

refinement (pink; B), structures sampled via MD from the initial model and designated as 

states S0–S4 (cf. Figure 7, purple, C–G), and the model submitted during CASP12 (green, 

H). Structures are shown in two views and for each panel, GDT-HA and Cα RMSD 

measures relative to the native structure are given.
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