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Abstract

Every second year, the community experiment “Critical Assessment of Techniques for Structure 

Prediction” (CASP) is conducting an independent blind assessment of structure prediction 

methods, providing a framework for comparing the performance of different approaches and 

discussing the latest developments in the field. Yet, developers of automated computational 

modeling methods clearly benefit from more frequent evaluations based on larger sets of data. The 

“Continuous Automated Model EvaluatiOn (CAMEO)” platform complements the CASP 

experiment by conducting fully automated blind prediction assessments based on the weekly pre-

release of sequences of those structures, which are going to be published in the next release of the 

PDB Protein Data Bank. CAMEO publishes weekly benchmarking results based on models 

collected during a four-day prediction window, on average assessing ca. 100 targets during a time 

frame of five weeks. CAMEO benchmarking data is generated consistently for all participating 

methods at the same point in time, enabling developers to benchmark and cross-validate their 

method’s performance, and directly refer to the benchmarking results in publications. In order to 

facilitate server development and promote shorter release cycles, CAMEO sends weekly email 

with submission statistics and low performance warnings. Many participants of CASP have 

successfully employed CAMEO when preparing their methods for upcoming community 

experiments. CAMEO offers a variety of scores to allow benchmarking diverse aspects of structure 
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prediction methods. By introducing new scoring schemes, CAMEO facilitates new development in 

areas of active research, e.g. modeling quaternary structure, complexes or ligand binding sites.
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2. Introduction

Research projects in the biomedical sciences often leverage insights from protein structure 

predictions when direct experimental structure information is not available. Recent examples 

range from data driven protein design[1] to combining genetic diversity studies with 

comparative structural analyses[2] to elucidating the structure and function of the 

nucleopore complex protein Nup82 in a hybrid modeling approach[3] and contributions to 

the structure elucidation in the Zika-dengue virus antibody cross-neutralization[4]. Routine 

application of models in research projects requires fully automated, robust, reliable, and 

accurate modeling pipelines[5], and for “real-world modeling” cases, the usability of a 

structure prediction method depends on many factors. However, the prediction performance 

of modeling tools reported in the literature is often based on different background 

information, diverse target data sets, and distinct evaluation metrics, making quantitative 

comparisons between methods impossible. This well-known problem is successfully 

addressed by regular independent blind assessments in the form of the community 

experiment “Critical Assessment of Techniques in Structure Prediction” (CASP)[6–8]. 

CASP is organized every two years, assessing methods based on approximately 100 

prediction targets, and culminates in a meeting, where researchers compare the performance 

of the various approaches and discuss latest developments. Yet, developers of automated 

server methods clearly benefit from more frequent benchmarking on larger data sets in 

between CASP seasons, as offered by the “Continuous Automated Model EvaluatiOn 

(CAMEO)” platform[9].

CAMEO was inspired by previous attempts to establish automated evaluations[10, 11] with 

the conceptual difference, that CAMEO conducts fully automated prediction assessments 

based on the pre-release of sequences[12] of those structures which are going to be 

published by the PDB Protein Data Bank[13] the following Wednesday, i.e. the evaluation is 

based on blind predictions of unpublished 3D structures. By selecting about 20 prediction 

targets per week, a significant volume of ~100 benchmarking targets is reached within five 

weeks. The short evaluation cycles have been relied on by many algorithm and score 

developers when preparing for the CASP experiment. CAMEO benchmarking is performed 

across all participating servers at the same point in time, i.e. all methods have access to the 

same background information such as template information in PDB or protein sequences in 

UniProt[14]. Benchmarking results (models, reference structures, scores) are publicly 

available to document a method’s historic performance (e.g. in publications) and can be used 

as training data for further methods development.
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CAMEO significantly facilitates the development of modern protein structure prediction 

approaches: methods are transparently assessed by a variety of scores established by the 

community, each representing different aspects of structure prediction. Overall model 

accuracy is measured e.g. by lDDT[15], CADscore[16], TM-score[17], GDT-HA[18, 19], 

MaxSub score[20]. Notably, measures which require superposition of a model onto the 

target structure are prone to fail for multi-domain proteins or cases of large domain 

rearrangements. In CASP this problem is addressed by splitting the target structures into 

actual assessment units (AUs) [21] by human intervention with the support of computational 

approaches[22, 23]. However, such manual effort is not feasible for unsupervised assessment 

on a weekly basis within CAMEO. Superposition-free measures, which are robust with 

respect to domain movements, are therefore the methods of choice for fully automated mode 

of operation[15, 16, 24]. Besides overall structure similarity, other aspects evaluated are 

accuracy of predicted ligand binding sites based on lDDT, oligomeric state accuracy based 

on quaternary state scores (QS-score)[25], or reliability of local model confidence estimates 

(“model B-factor”).

CAMEO offers web-based views to assess both overall server performance using aggregated 

scores and as well as results on individual targets for in-depth inspection. While results for 

servers registered as “public servers” are visible for anyone, new methods can be registered 

as “development servers”. Results for development servers are only visible to other 

developers in anonymized form, allowing to informally benchmark a new algorithm with 

other state-of-the-art methods. The status of a method can be changed from “development 

server” to “public” when the testing phase is successfully concluded, thereby making the 

benchmarking results publicly visible.

CAMEO sends out weekly summary email to server developers, listing the predicted as well 

as the missed targets. A “performance alert” warns developers about individual predictions 

scoring significantly lower than those of other methods, often facilitating the identification 

of specific problems and limitations of new methods.

CAMEO is an open platform inviting the community to participate by suggesting alternative 

scoring approaches, evaluation schemes and new categories. CAMEO currently supports the 

categories “3D Structure Prediction” (3D) and “Model Quality Estimation” (QE). A new 

category for evaluating residue -residue contact predictions is currently being established, 

and the 3D Structure Prediction category is being extended to allow for assessment of 

heteromeric complexes and ligand conformations.

3. Materials and Methods

Selection of Prediction Targets

The weekly target set for CAMEO is compiled from each PDB pre-release by clustering all 

sequences of entries in the PDB with a 99% sequence identity threshold employing cd-

hit[26]. Protein sequences with less than 30 amino acid residues are excluded. For each 

sequence we run BLAST[16] against a database of PDB entries and exclude those sequences 

exhibiting more than 85% sequence identity and at least 70% coverage to any known 

experimental structure. The remaining entries define the total available number of targets 
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respecting the original PDB pre-release order apart from those entries now missing. The first 

20 targets are then selected to comprise the weekly target set effectively limiting the 

computational load imposed by CAMEO.

Baseline Predictions

In order to being able to monitor algorithmic improvements of modeling methods over time, 

CAMEO uses baseline servers as null models, where the computational pipelines are kept 

constant while the underlying databases are updated weekly. The “NaiveBlast” (CAMEO 

3D) baseline uses BLAST for searching the sequences of released PDB entries for 

templates. For each target, it selects the first BLAST hit (if any) as template to build a model 

using MODELLER (v9.2) applying default parameters[27]. The model is then trimmed to 

match the residues covered by the template. The baseline server “naivePSIBLAST” 

(CAMEO QE) assumes that conserved regions of a protein model are of higher quality than 

divergent regions. It searches the most recent version of the NCBI NR database with PSI-

BLAST[28] using three iterations with the target sequence as query applying an e-value 

threshold of 1e-10. The sequence conservation estimate Ci for a given residue i is derived 

from the position specific information content in the PSSM (Position Specific Scoring 

Matrix) according to formula (1).

(1)

with Ii representing the individual information content for a given residue i. The individual 

estimates Ci are then set as model confidence estimates for all atoms in the respective 

residues.

The “BaselinePotential” server (CAMEO QE) implements a classical distance based 

statistical potential as described by Sippl and coworkers[29]. Statistics have been extracted 

for pairwise distances between all chemically distinguishable heavy atoms in the 20 

naturally occurring amino acids. Histograms have been built with a bin size of 0.5Å and 

maximal distance of 10Å, neglecting all interactions from residues being closer than four in 

sequence. The underlying data is composed of a non-redundant set of experimentally 

determined protein structures (2995 culled chains from the PISCES webserver[30] with max 

pairwise sequence identity of 20% and X-Ray resolution better than 1.6Å). The resulting 

potential functions are applied on all pairwise interactions and per residue scores are 

estimated by averaging all outcomes of interactions a residue is involved in. A subsequent 

sequential smoothing applies a Gaussian filter with a standard deviation of four residues to 

reduce noise. To avoid amino acid specific biases, a linear model is trained for all 20 

naturally occurring amino acids to predict per-residue lDDT scores.

Local installation of model quality assessment tools

In general, predictions are submitted to CAMEO by servers maintained by the respective 

methods developers. The following computational tools were available for download and 
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have been installed and used locally on the CAMEO server: Dfire (Version 1.1)[31], Prosa 

2003[29], ProQ2[32] and Verify3d[33].

Numerical Scores for Structure Assessment

CAMEO applies a variety of numerical scores for assessing different aspects of modeling. 

The local distance difference test (lDDT) is an all-atom superposition-independent score 

based on comparing interaction distances observed in the prediction to the corresponding 

ones in the reference based on a 15 Å cutoff. If the difference is within a set threshold the 

interaction is counted as preserved. The final value is the average fraction of preserved 

interactions at four interaction thresholds at 0.5Å, 1Å, 2Å and 4Å. lDDT assigns low scores 

to residues with large stereochemical deviations and physically impossible close contacts. 

The lDDT-BS score (Local Distance Difference Test - Binding Site, Fig. 1) is the average of 

the individual lDDT local scores (applying an inclusion radius of 10Å) of those residues 

which form a binding site on the respective target. This analysis is limited on experimental 

structure including a biologically relevant ligand. Here, a binding site is defined as the set of 

amino acid residues in the reference protein structure which have at least one atom within a 

4.0 Å radius of any atom of the ligand, for ions a radius of 3.0 Å is applied. When 

calculating the lDDT-BS score, all chains in the model are considered and the best scoring 

combination is retained. In case a target protein entry consists of several oligomeric 

assemblies, the best score across all assemblies and their individual chain combinations is 

reported. When a binding site is located at the interface of an oligomeric structure and the 

prediction does not match the oligomeric state of the target, the lDDT-BS is not calculated 

and the prediction is treated as non-existent. Fig. 1 was created with OpenStructure[34].

The QS-score[25] is assessing the correctness of the predicted quaternary structure by 

considering the assembly interface as a whole. The QS-score expresses the fraction of shared 

interface contacts (residues on different chains with a Cβ-Cβ distance < 12 Å) between two 

assemblies, i.e. model and reference structure. To unambiguously identify the residues of all 

protein chains in complexes, QS-score initially determines a mapping between equivalent 

polypeptide chains of the compared structures by exploiting internal symmetries where 

possible. A QS-score close to 1 translates to very similar interfaces, matching stoichiometry 

and a majority of identical interfacial contacts. A QS-score close to 0 indicates a radically 

diverse quaternary structure, probably different stoichiometry and potentially representing 

alternative binding conformations. QS-score is suitable for comparing homo- or hetero-

oligomers with identical or different stoichiometry, alternative relative orientations of chains, 

and distinct amino acid sequences (i.e. homologous complexes).

Evaluation of Model Confidence

Following CASP standards, models are expected to indicate atomic error estimates in Å in 

the B-factor column. Reliability of error estimates is evaluated with a Receiver-Operator 

Characteristics (ROC) Area Under the Curve (AUC) analysis on a per residue level, where 

residues with a local lDDT value of higher or equal 0.6 are classified as predicted correctly. 

Note that the ROC AUC is undefined for extreme models with all residues classified as 

“correct” or “incorrect”. Some servers invert the quality scale and thus their data has to be 
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inverted when evaluating the model confidence (see Fig. S2 for more details). Fig. 2 was 

created with the ROCR package[35].

Quality Estimation of Protein Structure Predictions

The Cα distances have been extracted from the data provided by the CASP12 assessors and 

originate from the LGA output without domain splits as performed in the CASP12 “Estimate 

of Model Accuracy” category.

4. Results & Discussion

a. Target Set and Target Difficulty

CAMEO is based on the pre-release of amino acid sequences by the PDB, which currently 

consist of ca. 180-240 new entries weekly, out of which on average 20 per week are selected 

as CAMEO prediction targets. Since the start of the project, 5116 targets were evaluated in 

the 3D structure category during a timeframe of 290 weeks. Unlike in CASP, targets for the 

automated weekly CAMEO assessment are not split into “assessment units” to avoid manual 

intervention for defining the domain boundaries, which would be required especially for 

difficult cases[21]. Instead, preferentially superposition independent scores which are robust 

to domain movements are used. Based on the prediction results, targets are classified as 

“Hard” if the averaged lDDT over all model-1 predictions of all servers is smaller than 50, 

“Easy” targets are those with an averaged lDDT higher than 75, and “Medium” targets in 

between (see Fig. S1).

For comparing results from CAMEO with CASP12 in this manuscript, an analysis date 

range was chosen to match the CASP12 prediction season (2016-05-01 - 2016-07-31) 

amounting to 250 targets, randomly selected during 13 weeks from 2334 protein sequences 

of 1072 experimental structures determined by NMR or X-RAY diffraction released by the 

PDB. The CAMEO target set used in this study contained 75 “Hard” targets, 129 “Medium” 

and 46 “Easy” targets. For comparison, 77 prediction targets (96 assessment units after 

splitting) formed the basis for the assessment in CASP12, which were assigned to three 

categories based on difficulty and average server performance. This resulted in 38 template 

based modeling targets (TBM), 39 free modeling domains (FM) and 19 domains in the 

mixed FM/TBM category[23].

b. Comparing CAMEO and CASP12 Structure Prediction Assessment

The CAMEO philosophy consists of offering a variety of scores, allowing users to rank 

methods by different aspects depending on their specific scientific interests. For target 

evaluations in the 3D category, scores that are invariant to domain movements and 

applicable to multidomain proteins such as lDDT based scores, CADscore and QS-score are 

most useful and shown in webpages displaying averaged values. For completeness, also 

superposition-dependent measures (such as GDT-HA, TM-score, RMSD or MaxSub) are 

provided for individual targets. It is important to note that many groups run anonymous 

servers in CAMEO for method development in preparation for CASP, resulting in the 

respective public server version performing seemingly worse in CAMEO than in CASP12. 

In this paper, we can only compare the results of the publicly accessible servers that are 
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present in both CASP12 and CAMEO, albeit these may represent slightly different versions. 

Nevertheless, when comparing methods performance in CASP12 and CAMEO, matching 

rankings of the top methods are obtained.

Comparing Servers Based on lDDT—The top 3 servers participating both in CAMEO 

and CASP12 ranked by average lDDT are in identical order Robetta (Baker)[36] in the lead 

closely followed by RaptorX (Xu)[37–39] and IntFOLD4-TS (McGuffin)[40]. In both 

rankings (Table 1 and Table 2) SPARKS-X(Zhou)[41] is outperforming the Floudas 

Server(“Princeton_template”, Floudas)[42] albeit in CAMEO by only 0.7 lDDT units. 

HHPredB (Soeding)[43] shows a significantly worse performance in CAMEO, as there were 

no predictions submitted during 3 weeks due to technical issues, RBO Aleph(Brock)[44] 

suffered from an error introduced at the beginning of CASP, which the team discovered 

when analyzing CAMEO data, but was only corrected after the busy CASP12 season was 

concluded. Although the average lDDT values are considerably lower in CASP12 as in 

CAMEO (table 2), this does not translate to worse models for CASP12 targets modelled by 

the same servers. The CAMEO and CASP12 ranking are largely comparable – the difference 

in absolute scores rather reflects the overall difference in target difficulty distribution in the 

two data sets as discussed above. The standard deviations observed originate in the variation 

found for hard targets, as opposed to the easy targets, where the standard deviations are 

significantly smaller (see Table S1).

c. Assessment Scores specific to CAMEO

i. Ligand binding site quality—Application of models in life science research projects 

such as protein engineering or functional characterization often focus on ligand binding 

sites. For overall good models, the accuracy of binding site details does not necessarily 

correlate with overall model quality[45], and the assessment of binding site quality in 

models is therefore a relevant measure. The reference site is defined based on biologically 

relevant ligands present in the target structure by all residues within 4.0 Å radius of any 

ligand atom, in the case of ions 3.0Å is applied. This reference set is compared to the 

corresponding residues in the predictions by determining the atomic lDDT score on this 

substructure (lDDT-BS). Ligand binding site accuracy evaluations are grouped based on the 

PDB ligand classification in four classes: ionic (I), organic (O), short nucleotides (N) and 

short peptides (P) from two to ten bases or residues, respectively. Note that this measure 

does not rely on ligands actually being present in the predictions, and currently only two 

structure prediction servers in CAMEO actually aim to model ligands in their predictions, 

notably SWISS-MODEL[46] and IntFOLD4-TS[40]. Table 3 shows the ranking based on 

the ligand binding site quality, where the top 5 methods produce acceptable binding sites on 

average.

Applications of models for biomedical research often require correct representation of the 

interactions between a protein and bound molecules such as cofactors, substrates or 

inhibitors, which serves as incentive for CAMEO development.

Target 2016-07-30_00000063_1 (Myroilysin, PDB ID 5CZW[47], Fig. 1) illustrates the 

details of the lDDT-BS analyses. Myroilysin is a new bacterial member of the M12A family 
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of metzincin metallopeptidases and activated by a cysteine-switch mechanism. The Cysteine 

and three Histidines are coordinating a Zinc ion. For the Histidines the structure predictions 

concur with the experimental structure, for the Cysteine they exhibited more variation.

Quaternary Structure Assessment—The majority of proteins across species are 

biologically active in form of higher-order quaternary structure assemblies rather than as 

monomers. CAMEO has recently added the first set of scores assessing quaternary states. 

“QS-score”[25] assesses the correctness of the complex stoichiometry and interface 

geometry and provides a mapping between the protein chains in the model and reference 

complex. Based on this chain mapping, MM-align scores are computed, measuring the 

overall structural similarity. Currently only Robetta and SWISS-MODEL are submitting 

homo-oligomers to CAMEO for evaluation. We observed that more groups submitted 

oligomer assemblies in CASP12, yet these oligomers were not all created by fully automated 

pipelines as would be required for joining CAMEO. As these CASP12 methods get 

automated and reproducible, we expect a significant increase in servers predicting oligomers 

in CAMEO in the future. While current modeling servers are focusing on homo-oligomers, a 

significant part of the potential CAMEO targets from the weekly PDB release are hetero-

complexes. Therefore, future versions of CAMEO will include hetero-complexes as 

evaluation targets.

ii. Response time: From a practical perspective, users of structure prediction servers are 

interested in the most accurate prediction in the shortest time frame possible. Depending on 

the number of proteins to be modelled and the type of application, the optimal balance 

between speed and accuracy may vary. CAMEO measured the response time servers in 

CAMEO require from submission to completing their predictions and send them back for 

evaluation by email. This time frame is limited by the five day prediction window based on 

the release cycle of the PDB and represents a demanding requirement for some structure 

prediction servers employing algorithms that involve extensive sampling. Please note that 

results are subject to undisclosed priority scheduling of CAMEO submissions are directly 

dependent on the performance of the compute cluster employed. The average user 

experience may differ, although we encourage CAMEO participants to treat CAMEO 

submissions equal to those from public server users.

The fastest servers take around 15 - 20 min to complete a model on average (Table 4). 

HHPredB was fastest outperforming SWISS-MODEL by 6 min, both well below 30min. 

Currently, RaptorX strikes the best balance between time spent on modeling and the 

observed model quality by lDDT (Table 2). HHpredB and SWISS-MODEL are returning 

models below 30min on average but their distance to RaptorX is ~ 6-7 lDDT units both in 

CASP and CAMEO (3-4 lDDT units for the latest CAMEO data). HHpredB is one of the 

fastest algorithms, albeit missing some data in both time frames analyzed here (Tables 4 and 

5). This translates to inconsistent CAMEO performance, rather than the method as such 

being slower in CAMEO.

Table 5 shows current CAMEO data relating the response time to modeling performance. 

Currently among the fasted servers are SWISS-MODEL, Phyre2[48], PRIMO[49], 

SPARKS-X and Princeton_template all staying below 4 hours to return predictions of high 
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to medium quality. The longest modeling times on average are observed for IntFOLDx-TS 

and Robetta, yet these servers are consistently delivering high quality models. RaptorX and 

RBO Aleph are returning models well below 12h, with RaptorX currently in the top three 

ranked servers according to lDDT (all atoms).

iii. Model confidence estimates: Any prediction has its limitations. For scientists utilizing 

predictions for structure guided work in place of experimental structure information, it is 

paramount to realize in which aspects a model is not faithfully representing the “real” 

protein structure, which translates to estimating local residue- wise model confidence. In 

CAMEO 3D the model confidence estimates are assessed against lDDT by employing 

Receive-Operator Characteristics (ROC, Fig. 2). For this analysis, residues extracted from all 

model-1 predictions of a given server in a particular time frame are pooled together, 

assuming that estimates are scaled between targets and interpretable as absolute values. The 

results over the CAMEO time frame 2016-05-01 - 2016-07-30 reveal large discrepancies 

between individual servers (see also Fig. S2). IntFOLD4-TS[40] was most consistently 

assigning correct model confidence estimates, closely followed by HHPredB and SWISS-

MODEL. Scatter plots of the individual server data are given in the supplementary material. 

Princeton_template and SPARKS-X are not assigning any estimates and the baseline server 

NaiveBlast is using default MODELLER B-factors output.

For reference, we have included the ROC AUC values in Table 6, where we corroborate a 

clear lead tied by IntFOLD4_TS[40], SWISS-MODEL and HHPredB. The three servers are 

performing significantly better than any other server listed in providing realistic local model 

confidence estimates.

d. Model Quality Assessment Category - CAMEO QE

As mentioned in the previous chapter, not all modeling servers are providing reliable local 

confidence estimates for their predictions. Model quality assessment tools offer an 

alternative assessment independent of the modeling method and are employed routinely in 

molecular modeling projects.

CAMEO QE, thus, offers a weekly evaluation of commonly used model quality assessment 

tools in a separate category. The evaluation is based on the models harvested from CAMEO 

3D during the first 24h of a new evaluation cycle. These are submitted to the participating 

QE servers and results are required to be send back by email within three days. CAMEO QE 

focuses on all-atom local error estimates reflecting the use case of investigating the quality 

with a particular scientific question in mind by individual domains or residue segments of a 

given protein as each might differ substantially in quality.

Figure 3 displays the ROC AUC based assessment of the residue-wise error estimates across 

the 3-months data set (2016-05-01 - 2016-07-30), where the base line consisted of a 

PSIBLAST based method. Important to note that historically well-performing tools such as 

Verify3D[33], Prosa[29] and Dfire[31] today are clearly outperformed by newer methods 

such as ModFOLD4[32, 50], ModFOLD6[51], VoroMQA[52], QMEANDisCo and 

ProQ2[32].
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CAMEO employs the all-atom lDDT as the target value in the evaluation of model quality 

assessment tools, ensuring a robust automated assessment for multi-domain proteins. In 

contrast, superposition based Cα distances are employed in CASP[54], resulting in 

significantly different rankings. This prompted us to directly compare the Cα distance based 

approach with the residue-wise all-atom lDDT scores as they are used in the CAMEO QE.

Fig. 4 (panel A) illustrates the differences when basing QE assessment on lDDT or 

superposition based Cα distances. For example, in case of multi-domain targets such as 

T0920 with the specific example of model TS220_1 (Fig. 4, panel B), the result of domain 

movement are residues classified as correctly modelled in terms of lDDT (local lDDT > 

60.0) but wrong in terms of Cα distance (d > 3.8 Å). Also, Cα distance based scores neglect 

90% of the interatomic interactions of atoms in a protein structure (Fig. 4, panel C). These 

are crucial when assessing high quality models, where the main differences between models 

are the correctness of the stereochemistry or atomic interactions such as electrostatic 

interactions as well as hydrogen bonds. Also, the dependence on a single superposition 

renders the Cα distance based scores less reproducible especially for low quality models, 

where different tools can create different global superpositions. For example, Model 

TS313_1 for target T0869 (Fig. 4, panel D) displays the largest matching helix superposed 

by LGA, classifying all of its residues as correctly modelled (27% of all residues in the 

model) neglecting the unnatural environment of that helix. In contrast lDDT has not 

classified any of the residues as correctly modelled (local lDDT < 60.0).

We would like to emphasize that beyond the extremes shown in Fig. 4, these observations 

are valid for both, low quality and high quality models (Fig. S3). For continuous assessment 

the sensitivity of local superposition independent scores such as lDDT are crucial to correct 

for bad sidechain orientations and invalid stereochemistry. This cannot be achieved by a 

backbone only evaluation and directly contributes to the different rankings of local quality 

estimation methods in CAMEO and CASP.

Confidence estimates are undoubtedly crucial for conveying a model’s utility, and 

independently assessing a model’s quality remains a very important task until all modeling 

methods provide reliable confidence estimates. Cα distances are only useful for the hardest 

modeling cases, when judging the overall quality of the predicted fold. High quality 

predictions require superposition-independent assessment methods and the inclusion of all 

atomic interactions in the assessment. Due to the different nature of the assessment, the top 

performing methods in CAMEO are not matching those observed in CASP12.

Conclusion & Outlook

CAMEO deviates from the scoring methods used in CASP due to the requirement for 

unsupervised operation, but also to foster new algorithmic improvements by introducing new 

aspects in the assessment such as oligomers. Providing a broad spectrum of scores in 

contrast to a single ranking allows methods developers, reviewers and users to compare 

methods on such aspects which matter most to their specific interest in a transparent and 

independent way.
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CAMEO enables evaluations based on common subsets of targets as well as pairwise head-

to-head comparisons, producing publicly available publication ready data. The functionality 

to register new developments as anonymous servers alongside the public ones allowed new 

developments to reach maturity before announcing them publicly. Many groups have 

intensely used CAMEO for preparation of CASP experiments, e.g. by registering multiple 

development servers and comparing them in real time to the productive or historic versions, 

using the web-based analysis tools as well as the downloadable data provided by CAMEO. 

The result of this orthogonal assessment of different aspects is an overall increased 

robustness of the methods.

Prediction of quaternary structures remains a challenge in structure prediction[55] as 

observed both in CAMEO and CASP12. Currently, most methods require human 

intervention and only very few servers can automatically predict quaternary structure[25] 

CAMEO supports new algorithmic developments by providing new scoring schemes for 

developers, such as “QS-score” that was recently added to CAMEO, alongside with a 

growing number of other oligomeric state assessing scores[56].

Besides evaluating predictions for model accuracy, CAMEO evaluates the response time for 

each server, which is a crucial factor from a user perspective. Response time evaluation is 

obviously linked to availability of infrastructure resources, priority queuing and concurrent 

use by other processes and we should emphasize that a “slow” method in CAMEO is not 

necessarily intrinsically slow, but the servers may be at the limit of their capacity.

In summary, CAMEO has continuously added categories, scores and web-based analysis 

tools to serve the community in efficiently improving existing and developing new 

prediction algorithms. CAMEO aims at promoting methods producing biologically relevant 

models in particular concerning ligands, cofactors and oligomeric states.

Future developments in CAMEO will target the evaluation of structure prediction of hetero-

oligomers, ligand pose evaluation, and contact prediction, addressing areas of active research 

in the area of computational structural biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Illustration of the lDDT-BS analysis for target 2016-07-30_00000063_1 (Myroilysin, PDB 

ID 5CZW, black cartoon). For the evaluation a reference residue set is created based on any 

residue in a 3 Å radius from the Zinc ion (light green sphere). The lDDT is calculated based 

on a 10 Å inclusion radius (grey sphere, grey sticks). Zinc coordinating residues CYS23, 

HIS137, HIS141 and HIS147 are shown as yellow sticks. Residues of the structure 

predictions matching the reference set are displayed both in ribbon and sticks in orange for 

SWISS-MODEL, in blue IntFOLD4-TS and in magenta Sparks-X. All predictions 

reproduced the Histidine residues with little variation from the reference structure, while 

they showed a much greater deviation for Cysteine 23.
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FIGURE 2. 
Model confidence ROC plot based on pooling all residues from all predictions across a 3-

months timeframe matching the CASP12 prediction season, applying a classification 

threshold of 60 lDDT. All public servers at the time are shown.
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FIGURE 3. 
Panel A - ROC analysis of the residue-wise error estimates of the public methods active in 

CAMEO during 2016-05-01 - 2016-07-30. Historically well-performing tools such as 

Verify3D, Prosa and Dfire are outperformed by newer methods. Panel B - public methods 

currently available in CAMEO. New methods are constantly emerging, such as 

QMEANDisCo, eQuant2[53] and ModFOLD6, with QMEANDisCo currently being in 

narrow lead over ModFOLD6. The insets show the lDDT distribution of the underlying 3D 

models serving as targets for the QE category.
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FIGURE 4. 
Illustration of the limitations of superposition based Cα distances in estimating model 

accuracy prediction. Panel A - Cα distances are compared to the corresponding local lDDT 

values for three exemplary quality predictions from CASP12. Cases of high Cα deviations 

contrasting high quality assigned by the all-atom lDDT values are indicated as red data 

points at the top right of the graph, and short Cα distances that contrast with low lDDT 

values are indicated as yellow and orange data points in the lower left area of the plot. The 

following examples illustrate reasons for these discrepancies: Panel B - the underlying 

global superposition fails for large domain movements and multi-domain proteins (red 

circles in panel A). Panel C – 90% of the atomic interactions are missing by focusing on Cα 
atoms, limiting in particular the assessment of high quality models. Panel D - evaluation of 

residue neighborhoods are implicitly excluded when considering Cα atoms only. lDDT 

assigns low scores to residues with large stereochemical deviations and physically 

impossible close contacts (e.g. yellow data points at lDDT value of 0.0, translating to 

unphysically positioned backbone and side chain atoms. The background image in panel A 

represents the data for all QE-stage2 submissions in CASP12.
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Table 1

CASP12 ranking based on lDDT averaging across all targets for model-1.

Server Name lDDT (all targets)

BAKER-ROSETTASERVER 49.3±18.56

RaptorX 46.1±18.35

IntFOLD4 42.5±18.51

HHPred0 40.5±18.56

RBO_Aleph 39.2±16.88

ZHOU-SPARKS-X 34.1±18.06

FLOUDAS_SERVER 31.7±17.54
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Table 2

CAMEO lDDT based ranking for the time frame 2016-05-01 - 2016-07-30. Only “public” servers at the time 

are shown, the underlying individual target sets may differ and thus cannot result in an absolute performance 

measure.

Server Name lDDT (all Targets)

Robetta 65.3 ±16.45

RaptorX 63.8±16.57

IntFOLD3-TS** 62.2±17.53

IntFOLD4-TS 62.0 ±16.32

SWISS-MODEL 56.5±22.49

SPARKS-X 56.3±18.25

Princeton_template 55.6±15.68

IntFOLD2-TS** 55.1±17.47

HHpredB* 47.6±17.41

M4T** 45.1±16.74

Phyre2** 44.5 ±23.135

NaiveBLAST** 43.3±25.59

RBO Aleph* 38.6±16.28

*
method had technical problems during the CASP12 season, leading to suboptimal or missing data.

**
Method is not reflecting the current development and shown in CAMEO for historic comparison.
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Table 3

Averaged ligand binding site quality scores for the servers registered as public in CAMEO during the CASP12 

time frame, the underlying individual target sets may differ and thus do not represent an absolute performance 

measure.

Server Name lDDT BS (all targets)

IntFOLD4-TS 67.8±24.58

IntFOLD3-TS** 67.3±24.57

SWISS-MODEL 66.9±29.01

RaptorX 66.6±22.45

Robetta 66.5±22.51

SPARKS-X 65.0±22.98

IntFOLD2-TS** 62.3±25.83

M4T** 58.5±23.79

Princeton_template 56.1±20.83

HHPredB* 56.0±24.43

Phyre2** 55.5±30.56

NaiveBlast** 53.2±27.49

RBO Aleph* 40.4±25.22

*
method had technical problems during the CASP12 season, leading to suboptimal or missing data.

**
Method is not reflecting the current development and shown in CAMEO for historic comparison.
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Table 4

Average response time from submission of the sequence to reception of structure prediction by CAMEO. 

Please note that results are subject to undisclosed priority scheduling of CAMEO submissions are directly 

dependent on the performance of the compute cluster employed.

Server Name Avg. response time (hh:mm:ss)

HHpredB* 00:21:38

SWISS-MODEL 00:27:35

SPARKS-X 01:29:17

Phyre2** 02:14:08

Princeton_template 03:22:15

NaiveBLAST** 04:07:31

M4T** 08:20:48

RaptorX 13:53:17

RBO Aleph* 16:12:39

IntFOLD2-TS** 28:09:28

IntFOLD3-TS** 28:23:14

Robetta 29:03:28

IntFOLD4-TS 36:42:55

*
method had technical problems during the CASP12 season, leading to suboptimal or missing data.

**
Method is not reflecting the current development and shown in CAMEO for historic comparison.
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Table 5

Response times and selected scores for a common subset based on data from the last three months 

(2017-03-24 - 2017-06-17) in CAMEO.

Server Name Avg. response time (hh:mm:ss) lDDT lDDT-BS

SWISS-MODEL 00:15:11 63.9 72.4

Phyre2** 00:38:27 42.9 55.9

NaiveBLAST** 01:00:05 49.2 55.9

PRIMO_BST_CL 01:08:22 45.6 50.0

PRIMO 01:12:26 45.6 50.0

PRIMO_BST_3D 01:21:09 44.4 49.6

SPARKS-X 01:51:03 59.7 66.1

PRIMO_HHS_CL 02:10:46 33.0 41.5

PRIMO_HHS_3D 02:24:50 32.4 41.4

Princeton_TEMPLATE 03:05:11 57.7 53.8

RBO Aleph 10:36:44 49.0 52.1

RaptorX 10:57:31 67.5 68.5

M4T** 11:08:04 47.6 53.4

IntFOLD4-TS 20:00:47 57.6 60.3

HHpredB 25:09:48 64.7 67.1

IntFOLD3-TS** 25:33:26 66.0 70.2

IntFOLD2-TS** 29:58:10 50.8 50.2

Robetta 34:08:11 69.4 67.6

**
Method is not reflecting the current development and is kept in CAMEO for historic reasons.
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Table 6

ROC AUC values of the pooled model confidence analysis based on lDDT (2016-05-01 – 2016-07-30). Note 

that not all methods provide confidence estimates in the server versions registered with CAMEO.

Server Name ROC AUC pROC AUC (0.0-0.2)

IntFOLD3-TS** 0.90 0.12

IntFOLD2-TS** 0.89 0.12

IntFOLD4-TS 0.89 0.12

HHPredB 0.87 0.10

SWISS-MODEL 0.87 0.11

M4T** 0.80 0.07

Robetta 0.70 0.06

RBO Aleph 0.66 0.08

NaiveBlast** 0.64 0.03

RaptorX 0.63 0.03

SPARKS-X 0.51 0.02

Princeton_template 0.50 0.02

Phyre2** 0.50 0.02

**
Method is not reflecting the current development and is kept in CAMEO for historic reasons.
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