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Abstract

Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in 

regulating the immune system during tissue inflammation and host defense. Recent studies have 

identified the molecular mechanisms underlying the bidirectional communication between the 

nervous system and the immune system. Here, we highlight the studies that demonstrate the 

importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons 

detect immune mediators to produce pain, and release neuropeptides that act on the immune 

system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based 

inflammatory reflex are physiological regulators of inflammatory responses and cytokine 

production. In transplantation, neuro-immune communication could significantly impact the 

processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to 

target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. 

Therefore, understanding how the nervous system shapes the immune response could have 

important therapeutic ramifications for transplantation medicine.

1. Introduction

The mammalian peripheral nervous system (PNS) coordinates the function and physiology 

of major organ systems and barrier tissues. It is increasingly clear that the PNS also plays a 

critical role in communicating with and regulating the function of the immune system. 

Sensory neurons innervate joints, skin, muscles and the visceral organs, transmitting 

information about thermal, mechanical, inflammatory, and noxious stimuli to brain, and are 

an important component of the peripheral nervous system (1). Catecholamines and 

acetylcholine released by sympathetic and vagus nerve fibers are important mediators of 

many physiological functions including heart rate, urinary output, and gut motility. In 

addition, neurotransmitters and neuropeptides interacting with cognate receptors expressed 

on immune cells including neutrophils, macrophages, dendritic cells, T cells, B cells, and 
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innate lymphoid cells regulate inflammation and cytokine production (2, 3). Recent studies 

have advanced our understanding of peripheral neural pathways that regulate immune 

responses in autoimmune and inflammatory conditions including arthritis, colitis, asthma, 

endotoxemia and sepsis (2–4). Understanding this neuro-immune crosstalk in preclinical 

models has important implications for the treatment of disease.

Here we highlight studies elucidating bidirectional neuro-immune communication in health 

and disease. During inflammation, nociceptor sensory neurons respond to immune cells and 

their molecular mediators to signal pain; these neurons then release neuropeptides that 

actively regulates immune cell function (Figure 1). In addition, neural reflex pathways 

mediated by the afferent and efferent fibers in the vagus nerve, modulate innate and adaptive 

immune responses in different visceral organ systems (Figure 2). Given the role of neural 

reflex pathways in modulating immune responses in distal organs, it is likely that the 

immune status of donor tissue during transplantation could be controlled by neural 

pathways. The majority of donor organs are harvested from deceased donors, and are 

associated with a number of immunological abnormalities. Furthermore, in transplantation 

recipients, surgical or pharmacological perturbations may significantly alter PNS function. 

The resulting changes in neuro-immune signaling could affect the outcome of wound 

healing and inflammation. Targeting these neuro-immune pathways using vagus nerve 

stimulation or pharmacological approaches may improve the outcome of transplantation.

2.1. Sensory Neuron-Immune Interactions in Pain and Inflammation

Pain (Dolor) was defined as one of the four cardinal signs of inflammation by Celsus in 20 

A.D. Pain is mediated by nociceptor sensory neurons, which detect noxious/harmful stimuli 

to protect organisms from danger. Nociceptor neurons are pseudo-unipolar; their cell bodies 

reside within the Dorsal Root Ganglia (DRG), while their axon is split into one peripheral 

branch, which innervates the barrier tissues including the skin, lungs, gut, and one central 

branch, which innervates the spinal cord to transmit noxious signals to the central nervous 

system (CNS) to be processed as pain. The nerve terminals of nociceptors are equipped with 

an array of molecular sensors, which detect heat, cold, protons, ATP, as well as receptors for 

immune mediators including cytokines, lipid mediators, and growth factors.

Immune cells play a critical role in mediating pain during inflammation. Pain 

hypersensitivity occurs due to an increased responsiveness of nociceptor neurons to thermal 

and mechanical stimuli. Several types of tissue-resident and infiltrating immune cells act in 

concert to release cytokines and other mediators to sensitize nociceptor neurons (Figure 1A). 

Upon degranulation, mast cells release TNF, IL-6, IL-1β, serotonin (5-HT), histamine, and 

nerve growth factor (NGF) which act on pain fibers (5, 6). After nerve injury, mast cells 

infiltrate the spinal cord and thalamus to sensitize CNS pain circuits (6). Tissue-resident 

macrophages and circulating monocytes drive pain associated with incisional wound injury 

and sciatic nerve injury (7, 8). Microglia, the resident innate immune cells of the CNS, also 

critically mediate neuropathic pain (9–12). P38/ERK is activated in microglia following 

nerve injury, leading to their release of prostaglandins and IL-1β within the spinal cord (9, 

12). Inflammatory neutrophils contribute to pain by release of neutrophil elastase, which 

activates protease activated receptor-2 (PAR2) on neurons (13). T cells also contribute to 
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chronic pain by infiltrating the DRG and release of leukocyte elastase (14). The immune 

contribution to pain may be sexually dimorphic: a recent study showed that T cells were 

necessary for chronic neuropathic pain in female mice, whereas microglia but not T cells 

drove chronic pain sensitization in male mice (11).

To respond to the immune system, nociceptor neurons express a wide array of receptors for 

cytokines, lipids, and growth factors (Figure 1A). For example, nociceptors express 

receptors for the proinflammatory cytokines IL-1β, TNF, IL-6, and IL-17A, which play roles 

in pain sensitization in rheumatoid arthritis and osteoarthritis. Nociceptors express G-protein 

coupled receptors that respond to mast cell-derived histamine and serotonin (5-HT). 

Prostaglandin E2 (PGE2) is also a critical mediator of pain by targeting EP1-EP4 on 

neurons. Non-steroidal anti-inflammatory drugs (NSAIDs) act to inhibit cyclooxygenase 

mediated production of PGE2. Nociceptors also express TrkA, which recognizes nerve 

growth factor (NGF) released by macrophages and mast cells during inflammation. In 

addition to responding to immune-derived mediators, nociceptor neurons are also able to 

respond to pathogens and their molecular mediators including N-formyl peptides, the toxin 

α-hemolysin, and TLR ligands (15, 16) (Figure 1A). Neuronal signaling through cytokine 

and growth factor receptors leads to calcium influx, cAMP induction, as well as kinase 

signaling pathways through PKC, PLCγ and MAP Kinases, which converge to induce 

changes in neuronal membrane properties and the gating of nociceptive ion channels (Figure 

1A). Nav1.7, Nav1.8, and Nav1.9 are voltage-gated sodium channels that play a critical role 

in generation of action potentials in nociceptors; congenital mutations in these channels are 

linked to human insensitivity to pain. Transient Receptor Potential (TRP) channels including 

TRPV1, TRPA1, TRPV4, mediate the sensation of noxious thermal and mechanical stimuli 

(1, 17). Immune-mediated signaling within nociceptor neurons lead to phosphorylation of 

TRP channels and voltage-gated sodium channels to decrease their threshold for activation, 

thus potentiating pain hypersensitivity. Therefore, nociceptor neurons are exquisitely tuned 

to respond to the immune system to produce pain.

2.2. Nociceptor Sensory Neuron Regulation of the Immune Response

Nociceptor neurons also play an important role modulating the function of immune cells 

(Figure 1B). The neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), 

and vasoactive intestinal peptide (VIP) are small, positively charged peptides stored within 

dense-core vesicles at nociceptor nerve terminals. During pain production, local axonal 

reflexes and calcium influx into peripheral nerve terminals leads to SNARE-mediated 

vesicular fusion and release of neuropeptides which have potent effects on the vasculature 

and immune system, a process termed “neurogenic inflammation”. SP and CGRP act on 

smooth muscle cells and endothelial cells to produce edema and vasodilation, respectively.

Recent work has shown that SP, CGRP, and VIP have potent effects on the immune response 

by binding their cognate receptors on macrophages, dendritic cells, T cells and innate 

lymphoid cells to regulate their function (Figure 1B). Nociceptor neurons play an important 

role in host defense against pathogens. In skin infection by the bacterial pathogen 

Staphylococcus aureus, nociceptor neurons suppressed the infiltration of myeloid immune 

cells into infected skin and draining lymph node immune cell recruitment (16). By contrast, 
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in skin infections caused by the fungal pathogen Candida albicans, nociceptors drove 

dendritic cell activation and expression of IL-23 to mediate host protection (18). The 

differential effects observed may be due to the type of nociceptor neurons and immune cells 

involved. For example, the epidermal and dermal layers are innervated by many types of 

sensory fibers, including peptidergic and nonpeptidergic nociceptors. Each of these 

nociceptor subsets could be interacting differentially with distinct innate or adaptive immune 

cells to mediate either immune activation or suppression depending on the type of 

pathogenic stimulus. Given the importance of preventing infections during and after organ 

transplantation, the role of nociceptor neurons and modulation of pain could aberrantly 

affect the outcome of infection.

Nociceptor neurons also play direct roles in driving inflammatory diseases of the respiratory 

tract, skin, and gut. In mouse models of asthma, nociceptor neurons drive 

bronchoconstriction, airway hyperreactivity, and type 2 immune cell responses (19–21). 

Neurons have been found to release VIP in the lungs, which acts on type 2 innate lymphoid 

cells (ILC2) to recruit downstream T cell and eosinophil responses to drive antigen-specific 

allergic responses (19). Nociceptor neurons have also been found to drive inflammation in a 

mouse model of psoriasis; nociceptors interact with Dendritic cells to induce their 

production of IL-23, that in turn drives IL-17A production and skin pathology (22). In 

mouse models of colitis, the nociceptive ion channel TRPA1 and neuropeptide SP drive 

cytokine production and tissue inflammation (23). By contrast, the cold-sensing ion channel 

TRPM8 and the nociceptive neuropeptide CGRP downmodulates colitis-associated 

inflammation (24). Therefore, nociceptor neurons actively communicate with immune cells 

through neuropeptides to play potent roles in host defense and inflammation.

3.1. Neural reflex regulation of inflammation

Advances in the immunological and neurophysiological techniques have facilitated the 

studies of neural reflex circuits that regulate inflammatory responses. A typical neural reflex 

circuit is comprised of sensory neurons that transmit information about peripheral changes 

to the interneurons in the CNS, and motor neurons which in turn relay efferent signals to the 

peripheral tissues. The inflammatory reflex is the prototypical neural circuit comprised of 

afferent and efferent signals in the vagus nerve that regulate the output of the innate immune 

system (2, 25, 26). Within the immune system, lymphoid organs including thymus, lymph 

nodes, liver and spleen are richly innervated by a peripheral neural network that transmits 

information to and from the CNS in response to infection or sterile injury, and modulate 

inflammatory responses. Peripheral inflammatory signals play an important role in 

regulating host defense responses orchestrated by the CNS. Pioneering work by the Watkins 

group in the 1990s have mapped how the intact vagus nerve is required for a fever response 

to low doses of intraperitoneal IL-1β, suggesting that vagus sensory fibers are important to 

detect and transmit the information about peripheral immune responses to CNS (27, 28). 

Afferent vagus nerve signals are also implicated in mediating the sickness syndrome, 

associated with febrile response, social withdrawal, lethargy and other symptoms, in 

response to peripheral inflammatory challenges (29, 30). Vagal sensory neurons are activated 

in response to infectious challenges and inflammatory mediators via pattern recognition 

receptors or cytokine receptors expressed on these sensory neurons or on the chemosensory 
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cells in the associated vagal paraganglia (30–32). Furthermore, in addition to inducing 

afferent vagus nerve activity, peripheral increases in IL-1β induce increased splenic nerve 

activity (33–35). Together, these studies opened up an important question of whether 

inflammatory mediators lead to an activation of a selective neural ensemble within the vagus 

nerve. Using electrophysiogical recordings, a recent study demonstrated that inflammatory 

cytokines (IL-1β and TNF), induce discriminating patterns of afferent vagus nerve activity 

or “neurograms” (36). This cytokine-specific activity is absent in animals with genetic 

ablation of the IL-1β or TNF receptors. Furthermore, selective vagus transection distal to the 

recording electrodes ablates the signals, indicating that majority of the signals are associated 

with afferent vagus fibers (36). These studies indicate that afferent vagus nerve fibers 

mediates the sensory arc of the inflammatory reflex, where it senses perturbations in 

peripheral immune homeostasis and transmits the information to the CNS in a mediator-

specific manner.

The discovery of the motor arc of the inflammatory reflex occurred during studies focused 

on delineating the anti-inflammatory mechanisms of CNI-1493, a tetravalent 

guanylhydrazone. CNI-1493 (Cytokine Network Incorporation-1493) was originally 

described as an inhibitor of macrophage activation, carrageenan-induced inflammation and 

endotoxin-induced lethality (37). CNI-1493 suppressed cytokine release by inhibiting 

phosphorylation of p38 mitogen activated protein kinase (37–39). During the course of 

studying the activity of CNI1493 in cerebral ischemia, it was observed that intracerebral 

administration of low quantities of CNI-1493 not only inhibited inflammatory responses in 

the brain but also in peripheral organs including spleen, liver and heart (40). This was a 

surprising result as the quantities administered in the brain were less than required to 

suppress macrophages in vitro. By selectively cutting the vagus nerve, it was then possible to 

isolate signals from the brain to the periphery, and show that an intact vagus nerve was 

required for cytokine inhibition in the periphery. These results indicated that signals 

descending from the brain stem, and transmitted in the vagus nerve regulated inflammatory 

responses in the visceral organs (Figure 2). Efferent signals traveling in the vagus nerve 

terminate in the celiac ganglia (41, 42), and activate adrenergic splenic nerve, which 

originate from the celiac ganglia. Norepinephrine released by splenic neurons induces 

acetylcholine release by a small subset of splenic T cells that express choline 

acetyltransferase (ChAT), a rate-limiting enzyme in the acetylcholine biosynthesis (43, 44). 

Nude mice deficient in T cells fail to respond to suppressive effects of the vagus nerve 

stimulation, and adoptive transfer of ChAT-expressing T cells into nude mice restores the 

anti-inflammatory effect, indicating that ChAT-expressing T cells are necessary for the 

integrity of the inflammatory reflex (44). Acetylcholine released by these splenic T cells 

under vagus nerve control binds to α7 nicotinic acetylcholine receptor (α7nAChR) on 

macrophages (44, 45) and suppresses cytokine production via activation of a JAK2/STAT3 

pathway, suppression of NF-kB nuclear translocation, and attenuation of inflammasome 

activation (2, 46–48). Subsequent studies have established the anti-inflammatory and 

disease-alleviating function of vagus nerve signaling in a number of preclinical disease 

models including endotoxemia (42), sepsis (49), arthritis (50), pancreatitis (51), ischemia 

reperfusion and injury (52, 53), inflammatory bowel disease (54), post-operative ileus (55), 

hemorrhagic shock (47), and autoimmune myocarditis (56).
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These preclinical studies have paved the way to clinical exploration of neuromodulation 

modalities using bioelectronic devices. Bioelectronic medicine is an emerging field that 

focuses on targeting neural networks that regulate molecular mechanisms of disease, and 

using bioelectronic devices to modulate these neural networks as a treatment strategy. Two 

recent clinical studies demonstrated efficacy of electrical stimulation of the inflammatory 

reflex in attenuating disease severity in inflammatory and autoimmune diseases (57, 58). 

Rheumatoid arthritis is a disabling chronic autoimmune disease characterized by synovial 

inflammation and painful swollen joints. Stimulation of the inflammatory reflex using 

implanted bioelectronic devices in rheumatoid arthritis patients inhibited cytokine 

production and attenuated disease severity (58). Withdrawal of the vagus nerve stimulation 

exacerbated the disease, and reinstating the stimulation treatment restored the protective 

effect. Another clinical study reported significant benefit of vagus nerve stimulation using 

implanted devices in Crohn’s disease patients (57). Crohn’s disease is a debilitating chronic 

inflammatory disease of the bowel, and affects mainly young adults. Chronic vagus nerve 

stimulation for six months offered significant clinical, biological and endoscopic remission 

in five out of seven patients. These beneficial effects were associated with restoration of 

vagus nerve activity as assessed by heart rate variability (57).

3.2. Neural Reflex Regulation of Transplantation

In transplantation medicine, inflammatory reactions in the graft have a pivotal influence on 

acute as well as long-term function of the transplanted graft. The inflammatory responses in 

the donor organs are principally mediated by ischemia/reperfusion injury in the donor organ, 

infection, and rejection episodes in the recipient. Currently, majority of the organs for 

transplantation are acquired from brain-dead donors; however, the presence of brain death is 

an important risk factor that dictates the graft function. As the demand for organ 

transplantation continues to grow, a major challenge in the transplantation medicine is to 

increase graft acceptance and function in chronic condition. Using pharmacological 

interventions, Yeboah and colleagues (59) have demonstrated that cholinergic agonists 

attenuate renal ischemia and reperfusion injury in experimental models. In a series of studies 

using preclinical models of acute and chronic renal transplantation, Hoeger and colleagues 

(60, 61) noted that vagus nerve stimulation in brain dead donors improves both acute and 

long-term graft function in the recipients after transplantation. These studies suggest that 

activation of the inflammatory reflex via vagus nerve stimulation in brain dead donors 

improves ischemia reperfusion mediated renal graft injury, and paves a way to improve graft 

function in the recipient. A very recent study provided an important mechanistic insight into 

the mechanisms underlying the protective effects of vagus nerve stimulation in attenuating 

ischemia and reperfusion injury (53). Ischemia reperfusion injury is a critical determinant of 

the graft function in transplantation. Vagus nerve stimulation prior to renal ischemia and 

reperfusion significantly attenuated acute kidney injury and decreased plasma TNF. Genetic 

ablation of α7nAChR abrogated this protective effect. Furthermore, splenectomy abolishes 

the effects of vagus nerve stimulation that can be restored by adoptive transfer of 

splenocytes obtained from vagus nerve stimulated animals. These observations indicate that 

α7nAChR-positive splenocytes play an important role in mediating vagus nerve induced 

attenuation of kidney injury during ischemia reperfusion. Together, these results suggest that 
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bioelectronic devices for modulation of neural circuitries can be an efficient alternative of 

drug treatments in the transplantation medicine.

4. Implications for Transplantation Medicine

Neuro-immune interactions could play an important role in clinical settings of 

transplantation. Organ transplantation and surgery could lead to changes in the peripheral 

neural circuits that disrupts or aberrantly activates sensory or autonomic neuron 

communication with immune cells. Pharmacological interventions could also directly affect 

these neuro-immune interactions. For example, opioids, NSAIDs and other analgesics are 

often given to treat pain during surgery and for post-surgical care. Given the role of 

nociceptor neurons in modulating innate and adaptive immune cell function, alterations in 

pain signaling could adversely affect normal inflammatory processes required for wound 

healing. Similarly, pharmacological agonists or antagonists of sympathetic and 

parasympathetic neurons could affect immune responses and transplant rejection.

Targeted modulation of neuro-immune interactions to treat inflammation could be an 

exciting way to improve inflammatory outcomes during and after transplantation. Vagus 

nerve stimulation, currently applied in treatment of rheumatoid arthritis and inflammatory 

bowel disease, could be an interesting approach to modulate the immune response in organ 

transplantation. Implantable bioelectronics devices that work on specific branches of the 

vagus nerve could further target this immunomodulation to distinct organ systems. In 

addition to electrical stimulation of the inflammatory reflex, pharmacological interventions, 

such as α7nAChR or β2 adrenoreceptor agonists to activate the inflammatory reflex have 

been explored in preclinical settings. Future advances in the field of neuro-immunology in 

genetic targeting, electronic stimulation of neural circuits, and pharmacological modulation 

of the communication between the nervous and immune system could lead to new 

approaches to modulate the immune response and improve the outcomes of transplantation.
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Abbreviations

PNS Peripheral nervous system

DRG Dorsal root ganglia

Ach Acetylcholine

NE Norepinephrine

CNS Central nervous system

SP Substance P

CGRP calcitonin gene-related peptide

Chavan et al. Page 7

Am J Transplant. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VIP Vasoactive intestinal peptide

NGF Nerve Growth Factor

PGE2 Prostaglandin E2

TRP Transient Receptor Potential

α7nAChR α7 nicotinic acetylcholine receptor

ChAT choline acetyltransferase

References

1. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 
2009; 139(2):267–284. [PubMed: 19837031] 

2. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and Therapeutic Relevance of Neuro-immune 
Communication. Immunity. 2017; 46(6):927–942. [PubMed: 28636960] 

3. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain 
and Inflammation. Trends Immunol. 2016

4. Inoue T, Tanaka S, Okusa MD. Neuroimmune Interactions in Inflammation and Acute Kidney 
Injury. Frontiers in immunology. 2017; 8:945. [PubMed: 28848551] 

5. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain 
and Inflammation. Trends Immunol. 2017; 38(1):5–19. [PubMed: 27793571] 

6. Heron A, Dubayle D. A focus on mast cells and pain. J Neuroimmunol. 2013; 264(1–2):1–7. 
[PubMed: 24125568] 

7. Ghasemlou N, Chiu IM, Julien JP, Woolf CJ. CD11b+Ly6G- myeloid cells mediate mechanical 
inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A. 2015; 112(49):E6808–6817. 
[PubMed: 26598697] 

8. Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, et al. Impaired 
neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S 
A. 2003; 100(13):7947–7952. [PubMed: 12808141] 

9. Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal 
nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the 
generation of neuropathic pain. J Neurosci. 2003; 23(10):4017–4022. [PubMed: 12764087] 

10. Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 Signal Elicits 
Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. J Neurosci. 2016; 
36(43):11138–11150. [PubMed: 27798193] 

11. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, et al. Different immune cells 
mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015; 18(8):
1081–1083. [PubMed: 26120961] 

12. Zhao H, Alam A, Chen Q, MAE, Pal A, Eguchi S, et al. The role of microglia in the pathobiology 
of neuropathic pain development: what do we know? Br J Anaesth. 2017; 118(4):504–516. 
[PubMed: 28403399] 

13. Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, et al. Neutrophil Elastase 
Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 
(TRPV4) to Cause Inflammation and Pain. J Biol Chem. 2015; 290(22):13875–13887. [PubMed: 
25878251] 

14. Vicuna L, Strochlic DE, Latremoliere A, Bali KK, Simonetti M, Husainie D, et al. The serine 
protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte 
elastase. Nat Med. 2015; 21(5):518–523. [PubMed: 25915831] 

15. Liu T, Gao YJ, Ji RR. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci 
Bull. 2012; 28(2):131–144. [PubMed: 22466124] 

Chavan et al. Page 8

Am J Transplant. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, et al. Bacteria activate 
sensory neurons that modulate pain and inflammation. Nature. 2013; 501(7465):52–57. [PubMed: 
23965627] 

17. Julius D. TRP channels and pain. Annual review of cell and developmental biology. 2013; 29:355–
384.

18. Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive Sensory Fibers 
Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective 
Cutaneous Immunity. Immunity. 2015; 43(3):515–526. [PubMed: 26377898] 

19. Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ, Pascal MA, et al. Silencing Nociceptor 
Neurons Reduces Allergic Airway Inflammation. Neuron. 2015; 87(2):341–354. [PubMed: 
26119026] 

20. Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C. Population of sensory neurons essential for 
asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A. 2014; 111(31):11515–
11520. [PubMed: 25049382] 

21. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al. A sensory 
neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl 
Acad Sci U S A. 2009; 106(22):9099–9104. [PubMed: 19458046] 

22. Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A, Alvarez D, et al. Nociceptive 
sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014; 
510(7503):157–161. [PubMed: 24759321] 

23. Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipovic MR, et al. TRPA1 and 
substance P mediate colitis in mice. Gastroenterology. 2011; 141(4):1346–1358. [PubMed: 
21763243] 

24. Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, et al. TRPM8 activation 
attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A. 2013; 
110(18):7476–7481. [PubMed: 23596210] 

25. Chavan SS, Tracey KJ. Essential Neuroscience in Immunology. J Immunol. 2017; 198(9):3389–
3397. [PubMed: 28416717] 

26. Tracey KJ. The inflammatory reflex. Nature. 2002; 420(6917):853–859. [PubMed: 12490958] 

27. Milligan ED, McGorry MM, Fleshner M, Gaykema RP, Goehler LE, Watkins LR, et al. 
Subdiaphragmatic vagotomy does not prevent fever following intracerebroventricular 
prostaglandin E2: further evidence for the importance of vagal afferents in immune-to-brain 
communication. Brain research. 1997; 766(1–2):240–243. [PubMed: 9359608] 

28. Watkins LR, Goehler LE, Relton JK, Tartaglia N, Silbert L, Martin D, et al. Blockade of 
interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation 
of immune-brain communication. Neuroscience letters. 1995; 183(1–2):27–31. [PubMed: 
7746479] 

29. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological 
implications. Pharmacology & therapeutics. 2011; 130(2):226–238. [PubMed: 21334376] 

30. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-
brain communication: a visceral chemosensory pathway. Autonomic neuroscience : basic & 
clinical. 2000; 85(1–3):49–59. [PubMed: 11189026] 

31. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents 
and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. 
Brain, behavior, and immunity. 2005; 19(4):334–344.

32. Hosoi T, Okuma Y, Matsuda T, Nomura Y. Novel pathway for LPS-induced afferent vagus nerve 
activation: possible role of nodose ganglion. Autonomic neuroscience : basic & clinical. 2005; 
120(1–2):104–107. [PubMed: 15919243] 

33. Niijima A. The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in 
the anesthetized rat. Journal of the autonomic nervous system. 1996; 61(3):287–291. [PubMed: 
8988487] 

34. Niijima A, Hori T, Aou S, Oomura Y. The effects of interleukin-1 beta on the activity of adrenal, 
splenic and renal sympathetic nerves in the rat. Journal of the autonomic nervous system. 1991; 
36(3):183–192. [PubMed: 1787257] 

Chavan et al. Page 9

Am J Transplant. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Niijima A, Hori T, Katafuchi T, Ichijo T. The effect of interleukin-1 beta on the efferent activity of 
the vagus nerve to the thymus. Journal of the autonomic nervous system. 1995; 54(2):137–144. 
[PubMed: 7499725] 

36. Steinberg BE, Silverman HA, Robbiati S, Gunasekaran MK, Tsaava T, Battinelli E, et al. Cytokine-
specific neurograms in the sensory vagus nerve. Biolectronic Medicine. 2016; (3):7–17.

37. Bianchi M, Ulrich P, Bloom O, Meistrell M 3rd, Zimmerman GA, Schmidtmayerova H, et al. An 
inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute 
inflammation and endotoxin lethality. Molecular medicine. 1995; 1(3):254–266. [PubMed: 
8529104] 

38. Bianchi M, Bloom O, Raabe T, Cohen PS, Chesney J, Sherry B, et al. Suppression of 
proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone. The Journal of 
experimental medicine. 1996; 183(3):927–936. [PubMed: 8642296] 

39. Tracey KJ. Suppression of TNF and other proinflammatory cytokines by the tetravalent 
guanylhydrazone CNI-1493. Progress in clinical and biological research. 1998; 397:335–343. 
[PubMed: 9575574] 

40. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, et al. Pharmacological 
stimulation of the cholinergic antiinflammatory pathway. The Journal of experimental medicine. 
2002; 195(6):781–788. [PubMed: 11901203] 

41. Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in 
prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the 
rat. Microscopy research and technique. 1996; 35(1):80–86. [PubMed: 8873061] 

42. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve 
stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000; 405(6785):
458–462. [PubMed: 10839541] 

43. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is 
required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl 
Acad Sci U S A. 2008; 105(31):11008–11013. [PubMed: 18669662] 

44. Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, et al. 
Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011; 
334(6052):98–101. [PubMed: 21921156] 

45. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine 
receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003; 421(6921):384–
388. [PubMed: 12508119] 

46. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. 
Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 
signaling pathway. Nature immunology. 2005; 6(8):844–851. [PubMed: 16025117] 

47. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, et al. Efferent vagal fibre 
stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic 
shock. Circulation. 2003; 107(8):1189–1194. [PubMed: 12615800] 

48. Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, et al. alpha7 nicotinic acetylcholine 
receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. 
Molecular medicine. 2014; 20:350–358. [PubMed: 24849809] 

49. van Westerloo DJ, Giebelen IA, Florquin S, Daalhuisen J, Bruno MJ, de Vos AF, et al. The 
cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. The 
Journal of infectious diseases. 2005; 191(12):2138–2148. [PubMed: 15898001] 

50. Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, et al. Neurostimulation of 
the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. 
PLoS One. 2014; 9(8):e104530. [PubMed: 25110981] 

51. van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, et al. The vagus nerve 
and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology. 
2006; 130(6):1822–1830. [PubMed: 16697744] 

52. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, et al. Cholinergic 
antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. Journal 
of vascular surgery. 2002; 36(6):1231–1236. [PubMed: 12469056] 

Chavan et al. Page 10

Am J Transplant. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, et al. Vagus nerve stimulation 
mediates protection from kidney ischemia-reperfusion injury through alpha7nAChR+ splenocytes. 
J Clin Invest. 2016; 126(5):1939–1952. [PubMed: 27088805] 

54. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic 
inhibitory influence associated with inflammatory bowel disease in a murine model. 
Gastroenterology. 2006; 131(4):1122–1130. [PubMed: 17030182] 

55. Lubbers T, Buurman W, Luyer M. Controlling postoperative ileus by vagal activation. World 
journal of gastroenterology. 2010; 16(14):1683–1687. [PubMed: 20379998] 

56. Leib C, Goser S, Luthje D, Ottl R, Tretter T, Lasitschka F, et al. Role of the cholinergic 
antiinflammatory pathway in murine autoimmune myocarditis. Circulation research. 2011; 109(2):
130–140. [PubMed: 21597011] 

57. Bonaz B, Sinniger V, Hoffmann D, Clarencon D, Mathieu N, Dantzer C, et al. Chronic vagus nerve 
stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterology and 
motility : the official journal of the European Gastrointestinal Motility Society. 2016; 28(6):948–
953. [PubMed: 26920654] 

58. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve 
stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. 
Proc Natl Acad Sci U S A. 2016; 113(29):8284–8289. [PubMed: 27382171] 

59. Yeboah MM, Xue X, Duan B, Ochani M, Tracey KJ, Susin M, et al. Cholinergic agonists attenuate 
renal ischemia-reperfusion injury in rats. Kidney international. 2008; 74(1):62–69. [PubMed: 
18401335] 

60. Hoeger S, Bergstraesser C, Selhorst J, Fontana J, Birck R, Waldherr R, et al. Modulation of brain 
dead induced inflammation by vagus nerve stimulation. American journal of transplantation : 
official journal of the American Society of Transplantation and the American Society of 
Transplant Surgeons. 2010; 10(3):477–489.

61. Hoeger S, Fontana J, Jarczyk J, Selhorst J, Waldherr R, Kramer BK, et al. Vagal stimulation in 
brain dead donor rats decreases chronic allograft nephropathy in recipients. Nephrology, dialysis, 
transplantation : official publication of the European Dialysis and Transplant Association - 
European Renal Association. 2014; 29(3):544–549.

Chavan et al. Page 11

Am J Transplant. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Nociceptor Sensory Neurons Crosstalk with Immune Cells in Pain and Inflammation
(a) Nociceptor neurons are activated by immune cells and their molecular mediators. 

Pathogens, tissue injury, and other inflammatory insults trigger a immune response. These 

immune cells including neutrophils, mast cells, macrophages and T cells release molecular 

mediators including pro-inflammatory cytokines, nerve growth factor (NGF), prostaglandin 

E2 (PGE2), serotonin and histamine. Nociceptor sensory neurons express receptors for these 

immune-derived mediators, including cytokine receptors, G-protein coupled receptors, and 

tyrosine kinase receptor type 1 (TrkA). Sensory neurons also express pathogen recognition 

receptors including FPR1, and toll-like receptors (TLRs). The bacterial toxin α-hemolysin 

also forms pores in neuronal membranes to directly activate neurons. Upon ligand binding, 

generation of second messenger signaling through cAMP or Ca2+ can lead to intracellular 

phosphorylation cascades that produce changes in the gating properties of TRPV1, TRPA1 

cation channels and the voltage-gated sodium channels Nav1.7, Nav1.8, and Nav1.9. These 

ion channels are critical for pain production, and their sensitization during inflammation 

leads to increased action potential generation, neuronal plasticity, and transcriptional 

changes in nociceptor neurons that results in pain. (b) Nociceptor neurons play an important 

role in regulating immune cell function by communication with them through neuropeptides. 

In peripheral nerve terminals, neuropeptides including substance P, calcitonin gene-related 

peptide (CGRP), and vasoactive intestinal peptide (VIP) are stored in dense-core vesicles. 

During inflammation, generation of action potentials, local axonal reflexes, and Ca2+ entry 

into these terminals leads to SNARE-mediated vesicle release of these neuropeptides. These 
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neuropeptides then regulate tissue inflammation by activating receptors present on smooth 

muscle cells, endothelial cells, macrophages, dendritic cells and innate lymphoid cells 

(ILCs). These neuro-immune interactions mediate host-pathogen responses, asthma, 

inflammatory bowel disease, arthritis, and other inflammatory disease conditions.
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Figure 2. Vagal Efferent Anatomy and the Cholinergic Anti-inflammatory Reflex
Visceral organs in the thoracic and abdominal cavity including the lungs, heart, liver, 

stomach, gut, pancreas and kidneys are innervated by parasympathetic and sympathetic 

nerves. The efferent portion of the vagus nerve, which is the preganglionic parasympathetic 

fiber, originates from the dorsal motor nucleus (DMN) and nucleus ambiguous (NA) in the 

medulla oblongata and project to postganglionic fibers in proximity with or within visceral 

organs. Both the preganglionic and postganglionic vagal fibers are cholinergic. 

Postganglionic vagal fibers release acetylcholine (Ach) into viscerl organs to regulate 

smooth muscle activity, gut motility, and gland secretion. In the spinal cord, sympathetic 

neurons received descending projects from the locus coeruleus (LC) and the 

rostroventrolateral medulla (RMLM) in the brainstem. The sympathetic preganglionic fibers 
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interact with postganglionic fibers within the paravertebral and prevertebral ganglia. 

Postganglionic fibers from paravertebral and prevertebral ganglia innervate visceral organs 

in the thorax (lungs, heart) and the abdominal cavity (liver, stomach, gut, kidneys, pancreas) 

respectively, and release norepinephrine (NE). Sympathetic preganglionic fibers also 

innervate the adrenal medulla directly and stimulate the secretion of epinephrine (EP) from 

chromaffin cells. Both vagal and sympathetic preganglionic fibers give projections to the 

splenic nerve within the celiac and superior mesenteric ganglion. In a cholinergic anti-

inflammatory reflex, NE released by the splenic nerve acts on choline acetyltransferase 

(ChAT)+ CD4+ T cells through β2-adrenergic receptors. These T cells release Ach to 

regulate macrophage production of TNF-α and other cytokines.
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