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ABSTRACT: Synthetic biology approaches commonly in-
troduce heterologous gene networks into a host to predictably
program cells, with the expectation of the synthetic network
being orthogonal to the host background. However,
introduced circuits may interfere with the host’s physiology,
either indirectly by posing a metabolic burden and/or through
unintended direct interactions between parts of the circuit with
those of the host, affecting functionality. Here we used RNA-
Seq transcriptome analysis to quantify the interactions
between a representative heterologous AND gate circuit and
the host Escherichia coli under various conditions including circuit designs and plasmid copy numbers. We show that the circuit
plasmid copy number outweighs circuit composition for their effect on host gene expression with medium-copy number plasmid
showing more prominent interference than its low-copy number counterpart. In contrast, the circuits have a stronger influence
on the host growth with a metabolic load increasing with the copy number of the circuits. Notably, we show that variation of
copy number, an increase from low to medium copy, caused different types of change observed in the behavior of components in
the AND gate circuit leading to the unbalance of the two gate-inputs and thus counterintuitive output attenuation. The study
demonstrates the circuit plasmid copy number is a key factor that can dramatically affect the orthogonality, burden and
functionality of the heterologous circuits in the host chassis. The results provide important guidance for future efforts to design
orthogonal and robust gene circuits with minimal unwanted interaction and burden to their host.
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Synthetic biology holds great potential for cell engineering
by introducing synthetic gene regulatory circuits to the host

chassis with the goal to generate predictable behavior. Typically
heterologous gene networks are designed and assumed to be
orthogonal (no direct genetic crosstalk interaction) to the host
cell genetic background.1−3 The hypothesis is largely based on
the fact that the heterologous components do not naturally
exist or have no homologues in the host chassis, and hence are
less likely to produce unintended regulatory interaction with
the endogenous genetic elements.4,5 Such orthogonality
assumption is expected to lead to no or minimal interference
on the host cell gene expression and physiology and thus allow
to increase the functional predictability and compatibility of the
introduced circuits. On the other hand, wholly orthogonal
circuits would be unlikely to exist since the imported circuits
will use some shared cellular resources such as metabolites,
energy equivalents as well as replication, transcription and
translation machineries. However, the design of the circuits
themselves may provide some space to mitigate crosstalk and

resource competition to minimize their physiological interfer-
ence on the host chassis.6−8

To date, a number of orthogonal genetic devices and circuits
have been constructed to perform various functions and have
demonstrated the great potential of using orthogonal
components to generate robust host cell behavior.1−3,9−12 For
example, a previously engineered orthogonal AND gate circuit
has been shown to work reliably among nearly all seven
typically used E. coli strains, whereas the same circuit using an
alternative endogenous promoter as one input (i.e., Plux
replaced by Plac) failed to function in six out of seven these
host strains.1 This reported circuit−host compatibility assay
indicate that the use of orthogonal gene elements for a circuit
help to eliminate potential unintended interactions between the
circuit and the host genetic programs. However, most of the
presumed orthogonal components and circuits have been
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designed based on prior literature knowledge and bioinfor-
matics analysis, and have not been experimentally tested for
their effects on the host cell genetic machinery. To a large
extent, this has been limited by the lack of routinely available
yet widely affordable methods to perform genomic wide
profiling of gene expression. Ideally, a genetic device should be
as orthogonal as possible to their host chassis to facilitate its
reuse and reliability in different cellular contexts, i.e., having
minimal interruption on the host gene expression and imposing
low metabolic load on the host growth.
Here we used RNA sequencing (RNA-Seq)13 to quantify the

entire transcriptome to study the interactions between a
representative heterologous AND gate circuit and the host
Escherichia coli under various conditions including different
circuit designs and plasmid copy numbers. We envision that
such genome-wide gene expression profiling will enable a
quantitative measure of the orthogonality and effect of the

various imported circuits on their host, which in turn could
provide important insights and guidance for future efforts to
design more orthogonal and robust gene circuits with minimal
unwanted interaction and burden to their host. We show that
the heterologous circuits themselves have little effect on the
host gene expression profile, whereas the circuit plasmid copy
number matters more with medium copy number plasmid
having more prominent effect on the host transcriptome than
its low copy number counterpart. In contrast, the circuits have
stronger influence on the host cell growth with a metabolic load
proportional to the circuit copy number. Moreover, we show
that variation of copy number, an increase from low to medium
copy, caused different types of change observed in the behavior
of components in the AND gate circuit leading to an unbalance
and distortion of the two gate-inputs and thus the attenuation
of the gate output. Taken together, we demonstrate that the
circuit plasmid copy number is a key factor that can

Figure 1. Experimental design for studying the interactions between the heterologous AND gate gene circuits and the E. coli host transcriptome. (A)
Schematics showing the composition of the different gene circuits and their potential interaction with the genetic background of the host E. coli K-12
MG1655 cell. The host genome is shown on the left, whereas the different plasmids carrying circuits are shown on the right and the bottom. In total
three different circuits are carried in two types of plasmid of different copy number, i.e., one medium copy (pSB3K3, p15A ori) and one low copy
(pSB4K5, pSC101 ori). The composition of each circuit is illustrated inside the cognate plasmid backbone. (B) The dynamic output fluorescence
responses of the AND gate circuit under four input inductions. The red curves and data points are the scenario when the circuit is on the medium
copy plasmid (pSB3K3), whereas the black curves and data points are for circuits on the low copy plasmid (pSB4K5). The four input inductions used
are 100 nM AHL plus 20 ng/mL aTc, 100 nM AHL only, 20 ng/mL aTc only, and no inducers. Cells were grown in M9-glycerol media at 37 °C.
Error bars, s.d. (n = 3). a.u., arbitrary units.
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dramatically affect the orthogonality, load and functionality of
the introduced heterologous gene circuits in the host
chassis,14,15 and that RNA-Seq is a powerful method for
characterizing and debugging circuits that goes beyond the
limitation of traditionally used fluorescent reporters.16,17

■ RESULTS
Orthogonal AND Gate Circuit Design and RNA-Seq

Assays. We first chose a previously reported modular and
orthogonal AND gate that has been built and characterized in
Escherichia coli,1 as the candidate heterologous gene circuit to
study its interaction with the host genetic machinery. The AND
gate circuit is designed to comprise an orthogonal σ54-
dependent hrpR/hrpS heteroregulation module from the hrp
(hypersensitive response and pathogenicity) system of Type III
secretion in Pseudomonas syringae.18−20 The AND gate (Figure
1A) comprises two coactivating genes hrpR and hrpS and one
σ54-dependent hrpL promoter, and can integrate two
interchangeable signal inputs to generate one output. The
output hrpL promoter is activated only when both the
codependent HrpR and HrpS enhancer-binding proteins are
expressed and form a heteromeric complex.
The circuit core elements, hrpR and hrpS and the hrpL

promoter, are imported from the Pseudomonas syringae. Using
online BLAST software to align their genetic sequences against
the genomic sequences of Escherichia coli MG1655, no
significant sequence similarity was found between them,
indicating low homology of these heterologous genetic
elements to the E. coli host. Due to the requirement of
modularity, both the inputs and output of the AND gate were
designed to be promoters, enabling the inputs to be wired to
any input promoters and the output to be connected to any
gene modules downstream to drive various cellular re-
sponses.21−23 Here we used the exogenous aTc inducible Ptet
and AHL inducible Plux promoters as the two inputs. Both
promoters and their cognate receptor genes tetR and luxR are
exogenous to the E. coli genome. Similarly, the BLAST results
of the two input promoter sequences also showed no significant
similarity. Hence, we assume these heterologous genetic
elements do not tend to interact with the endogenous ones
in the host, i.e., the rational for orthogonality.
To compare conditions of different circuit compositions, we

also built constructs that comprise only the two input
promoters of the AND gate with gfp reporters (Figure 1A).
Thus, with the condition of empty plasmid alone as the control,
we analyzed three types of gene circuits, namely the AND-gate,
Inputs-gfp and empty plasmid. Since the circuit copy number
could be another influencing factor, we considered two
conditions of plasmid copy number here, i.e., one medium
copy number (pSB3K3) and one low copy number (pSB4K5).
The copy number of a plasmid in the host is determined by
their origin of replication. The plasmid pSB3K3 with p15A ori
produces medium copy number (∼15−20 copies per cell) of
plasmids in host cells, while the plasmid pSB4K5 with pSC101
ori produces low copy numbers (∼5 copies per cell).24 Both
plasmids have the same kanamycin resistance (kanR) to
minimize differences (Figure S1E,F). Figure 1B shows the
dynamic output fluorescence response of the AND gate circuit
under four logic input inductions when hosted on the two
plasmids with different copy numbers.
In total, we have 6 different conditional combinations from

the above three genetic circuit compositions and two plasmid
copy numbers. Accordingly, we have generated 7 RNA-Seq

samples in total (Table 1), among which Sample 1 and Sample
2 are biological replicates of the same condition, i.e., the AND-

gate in pSB3K3 (Figure S1A). This duplicate was used to
validate the high quality and repeatability of the RNA-Seq
performed and at the same time to control the total sequencing
cost. The correlation of gene expression (Figure S4) between
the two replicate samples (S1 and S2) is significantly high (R2 =
0.9788), indicating excellent reproducibility of the RNA-Seq
data. This is also reflected in the uniform mapped sequencing
read profiles of the plasmid hosted genes from the duplicate
samples (Figure S5A,B). Table 3 shows the different paired
comparisons between the 7 RNA-Seq samples. In total there
are ten paired comparisons among the seven samples: i.e., C1 is
for studying the RNA-Seq repeatability between biological
replicates (S1 vs S2); C2, C3, C4 are grouped for studying
different circuit loads in the medium copy plasmid (pSB3K3,
p15A ori) and C8, C9, C10 are grouped for studying different
circuit loads in the low copy number plasmid (pSB4K5,
pSC101 ori); C5, C6, and C7 are grouped for studying the
effect caused by the change of copy number of the plasmid
hosting the same circuit.
Table 2 summarizes the RNA-Seq sequencing data set

obtained and the mapping of the reads to the E. coli host
genome and the cognate circuit plasmids. It shows that around
70−90% total reads were successfully mapped to the host
genome and about 2−30% total reads were mapped to the
plasmid across all samples. To obtain the expression level for
each gene, we counted the number of reads mapped to each
gene according to their location in the chromosome or plasmid.
The reads were then normalized according to the gene length
to obtain the relative expression level for each gene (RPKM
value). The distribution of the expression levels of all host
genes across all seven samples follows an expected approx-
imately normal distribution (Figure S3).

Circuit Metabolic Load Increases with Its Copy
Number in the Host. To probe the metabolic load of gene
circuits imposed on their hosts, we monitored cell growth by
measuring cell density periodically for all sample conditions.
Figure 2A shows the cell growth curves for each sample culture.
It can be seen that cells containing the empty plasmid alone
(Samples 4 and 7) have the fastest growth among all
conditions, whereas cells containing circuits on the low copy
number plasmid (pSB4K5) had faster growth rates than their
counterparts on the medium copy number plasmid (pSB3K3).
This indicates the imported gene circuits have affected the host
cell growth with a projected load increasing with their copy
numbers in the host. We view the observed metabolic load
could be linked to the competitive usage of shared cellular
resources between the host endogenous machineries and the
inserted synthetic circuit as indicated previously.6,8,25

Table 1. Summary of the RNA-Seq Samples in This Study

sample # circuit insert hosting plasmid copy number

S1 AND-gate pSB3K3 medium
S2 AND-gate pSB3K3 medium
S3 Inputs-gfp pSB3K3 medium
S4 none pSB3K3 medium
S5 AND-gate pSB4K5 low
S6 Inputs-gfp pSB4K5 low
S7 none pSB4K5 low
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To obtain exact cell growth rate, we fit the cell growth data to
the modified Gompertz model for cell growth.26 Figure 2B lists
the fitted growth model parameter values for each sample
condition with Figure S2 displaying the model fitting
performance. It shows that the growth rate (μm) for each
sample ranks in the descending order as Sample 7 > Sample 4 >
Sample 5 > Sample 6 > Sample 2 > Sample 1 ⩾ Sample 3.
Notably cells with gene circuits hosted on the low copy number
plasmid have higher growth rates than those with the same
circuits hosted on the medium copy number plasmid (Figure
2C).
We next calculated the metabolic load for each circuit by

measuring the relative reduction in growth rate in comparison

to a reference condition.7 We used the fastest growing sample
(S7), i.e., host carrying the low copy number plasmid pSB4K5
alone, as the reference (zero load) to obtain the metabolic load
for all other sample constructs following the equation detailed
in the Materials and Methods section.
Figure 2D shows that the metabolic load induced from the

same gene circuit are significantly lower when it was hosted on
the low copy number plasmid, in particular for the conditions
with a complete AND gate circuit. The empty plasmid pSB3K3
showed a negligible load difference compared to the reference
empty pSB4K5, suggesting that plasmid replication from low to
medium number bears only a small fitness cost. The more
pronounced metabolic load associated with the AND gate and

Table 2. Summary of the RNA-Seq Dataset with Mapping to the E. coli Host Genome and Circuit Plasmid

features S1 S2 S3 S4 S5 S6 S7

total reads 19 625 015 19 304 441 18 016 312 15 732 889 12 522 316 26 114 723 21 623 806
GC content 45% 45% 44% 46% 46% 46% 46%
genome mapped 13 777 962 12 805 437 11 722 783 13 170 363 10 465 952 21 954 375 19 153 164
host genes mapped 8 161 736 7 624 657 6 737 923 7 604 894 6 345 500 12 926 900 11 963 227
plasmid mapped 3 458 262 3 963 547 3 823 566 357 583 514 191 816 200 65 752
plasmid genes mapped 3 371 909 3 886 264 3 766 222 309 625 477 403 747 665 38 594

Figure 2. Host cell metabolic load imposed by gene circuit of varying compositions. (A) Cell growth curves of the seven samples used in this study.
The vertical dashed line indicates the snapshot time point when the cells were sampled for RNA-Seq. Error bars, s.d. (n = 3). (B) Fitted growth
model parameter values of each sample. μm, the growth rate of the cells at exponential growth phase; λ, the lag time before cells entering exponential
growth phase A; the maximum growth density achieved. (C) Sample growth rates (μm) derived from the fitted cell growth model at log phase. The
grow rate for AND-gate in pSB3K3 is the mean of that of Samples 1 and 2. (D) Metabolic load of the circuit imposed on the host. The metabolic
loads are calculated from their cognate sample cell growth rates by setting the least affected sample (i.e., S7 carrying the low copy number plasmid
pSB4K5 only), as the reference (zero load).
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Inputs-gfp circuits implies that the expression of circuit parts
represents a higher fitness penalty than plasmid replication. In
addition, the AND gate circuit imposed a lower load on the
host compared to the Inputs-gfp circuit in both plasmids. This
is likely due to that the later circuit produced significantly
higher GFP proteins from its two gfp reporters which are highly
stable and hence readily accumulate compared to its counter-
part transcription factors in the AND gate circuit. Taken
together, these data demonstrate that the copy number of a
gene circuit has a pivotal role for its metabolic load imposed on
the host, whereas its hosting plasmid only has a minor impact.
Typically the circuit metabolic load is increasing with its copy
number in the host cell.
Plasmid Copy Number Outweighs Circuit Composi-

tion for Effect on Host Gene Expression. To explore
genome-wide interaction between gene circuit and the host, we
applied hierarchical clustering of host gene expression derived
from the RNA-Seq data set for all samples. The result (Figure
3) showed that the samples containing the same copy number
plasmids clustered together, despite the apparent lower
metabolic load associated with copy numbers per se, and
indicating the plasmid copy number outweighs the gene circuit
composition. Overall the host genes can be divided into 4
expression clusters. Clusters 1 and 2 comprise genes whose
expression levels in the presence of the low copy hosting
plasmid are higher than those in the presence of the medium
copy number hosting plasmid, whereas Clusters 3 and 4 show
the opposite. Notably host genes within Clusters 1 and 4
display a more consistent expression pattern.
We next identified differentially expressed genes (DEGs)

across all compared comparisons of C1−C10 (Table 3) using
two statistical methods, i.e., χ2-test and edgeR, to cross-validate
by minimizing potential false positives. Table 3 summarizes

identified DEGs including the overlapped DEGs cross-validated
by the aforementioned two methods. It shows that the three
paired comparisons of C5, C6 and C7 resulted in the highest
numbers of identified DEGs, highlighting the prominent effect
corresponding to the variation of plasmid copy number. The
DEGs from C5−C7 tend to be located in Clusters 1 and 4,
which possess highly consistent gene expression patterns
(Figure 3). In contrast, paired comparisons of C2−C4 and

Figure 3. Genome-wide host gene expression clustering showing prominent effect caused by changes in circuit plasmid copy number. The expression
of 3084 host genes in the six sample conditions are hierarchically clustered (the additional 1431 genes are excluded according to the clustering
criteria due to their atypical absolute gene expression values). The result shows that the samples containing the plasmid of same copy number
clustered together (Samples 1−4 containing medium copy number plasmid pSB3K3, Samples 5−7 containing low copy number plasmid pSB4K5).
Overall the host genes can be divided into four expression clusters. The DEGs from the paired comparisons of C5, C6 and C7 tend to be located in
the Clusters 1 and 4, which are related to the impact caused by the change in circuit plasmid copy number. S1/2 are the means of the gene
expression values of the two replicate Samples 1 and 2. The color bar indicates the scale for gene expression (normalized across the seven samples for
each gene).

Table 3. Ten Paired Comparisons between RNA-Seq
Samples and Identified Number of DEGsa

paired comparison DEGs (χ2-test) DEGs (edgeR) DEGs overlapped

C1 (S1 vs S2) 63 13 13
C2 (S1/2 vs S3) 50 25 25
C3 (S3 vs S4) 111 47 46
C4 (S1/S2 vs S4) 67 41 41
C8 (S5 vs S6) 14 8 8
C9 (S6 vs S7) 201 64 62
C10 (S5 vs S7) 137 42 42
C5 (S1/2 vs S5) 356 168 129
C6 (S3 vs S6) 481 387 273
C7 (S4 vs S7) 1265 941 627

aThis table shows the number of DEGs in each paired comparison
highlighting the conditions (C5, C6, C7) attributing to the effect of
changes in circuit plasmid copy number. S1/2 represents means of the
gene expression values of the two replicate Samples 1 and 2. Ten
paired comparisons performed among the 7 samples: C1 is for
studying RNA-Seq repeatability between biological replicates (S1 vs
S2); C2, C3, C4 are grouped for studying different circuit loads in the
medium copy plasmid (pSB3K3); and C8, C9, C10 are grouped for
studying different circuit loads in the low copy plasmid (pSB4K5); C5,
C6, and C7 are grouped for studying the effect caused by changes in
plasmid copy number of the same circuit.
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C8−C10 for studying the effect of different circuit loads in the
same type of plasmids only produced moderate numbers of
DEGs. Taken together, these results indicate that the plasmid
copy number outweighs circuit composition among contribu-

ting factors that affect host gene expression, although copy

number only marginally affected the apparent metabolic load

and growth rates.

Figure 4. Host gene expression profile comparison across all RNA-Seq samples. The blue curve represents the mean expression value of each gene in
the seven samples. The red curve represents the upper bound of 1.44 times the mean expression value, whereas the green curve represents the lower
bound of 1/1.44 times the mean value. Hence, if the gene expression value is significantly outside the region between the red and green curves, it is
likely that the gene will be a candidate of differentially expressed genes. The gene expression profiles of DNA polymerases, RNA polymerases,
transcriptional termination factors and other transcription related genes (A), ribosomes and related genes (B), tRNA and tRNA related genes (C),
transcription factors (D), housekeeping genes (E) and essential genes (F) are shown, respectively. The differentially expressed genes resulted from
each paired comparison are listed in the upper right-hand corner of each figure panel. In all panels, genes on the horizontal axis are ranked in
ascending order by their mean values of gene expression (RPKM).
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To further investigate what host cellular processes may have
been affected by the heterologous gene circuits, we studied the
change of expression levels of genes required for protein
biosynthesis and regulation, including genes encoding for the
transcription and translation machineries, transcription regu-
lation genes, housekeeping genes and essential genes (Table
S5−S9). Figure 4A shows that the circuits have little effect on
the host transcription process including DNA polymerase, RNA
polymerase, transcription termination factor and various
transcription-related genes across all samples. The circuits
affected the translation process mainly on tRNA related genes
(Figure 4C) but with little effect on ribosome and ribosome
related genes (Figure 4B). There is minor effect on the host
transcription factor genes (Figure 4D) though largely owing to
the copy number increase of the circuit plasmid (in C6 and
C7). The circuits did not show any obvious interference on the
39 host housekeep genes (Figure 4E). Figure 4F shows the
C5−C7 paired comparisons contain the highest numbers of
DEGs across the 703 host essential genes,27 corroborating the
aforementioned prominent effect caused by copy number
increase of the circuit plasmid. Overall, the results demonstrate
that the heterologous gene circuits only had minor effect on
cells biosynthesis machinery.
Next, we performed functional enrichment analysis among

the identified overlapped DEGs using the online tool
DAVID.28,29 Table S3 compares cellular processes by the
change of copy number of plasmid hosting otherwise same
constructs, broadly showing a wide range of similarly affected
metabolic processes and including those involved in the cell’s
major biosynthesis and energy production pathways (carbon

metabolism, nitrogen metabolism, respiration, transport). We
conclude that the introduced plasmid copy numbers affect the
overall cellular expression profiles, but that these changes per se
lead only to small growth differences and indicating that cells
can adapt well to costs associated with replicating low and
medium copy number plasmids.
The significant metabolic burden observed between the

AND gate and Inputs-gfp circuit plasmids compared with
empty vectors suggested that the expressed circuit parts explain
growth penalties, either through their specific interference with
host functionality (crosstalk) or through costs associated with
their expression (luxR, tetR, hrpR, hrpS, gfp; Figure 1A). Table
S4 shows the functional annotations of DEGs in pairwise
comparisons between different circuit compositions with empty
plasmids. The most predominant differences in gene expression
are associated with GO processes involved in amino acid
biosynthesis (general amino acid, tryptophan aromatic amino
acid and nitrogen compound biosynthesis) and specific KEGG
pathways required for alanine, aspartate and glutamate
biosynthesis, as well as numerous ABC transporters, including
several amino acid transporters for lysine/arginine/ornithine
(argT), glutamine (glnH), glutamate/aspartate (gltL), arginine
(artJ) and branched amino acids (livK). These findings strongly
suggest that protein production of the introduced synthetic
components place an amino acid burden on the host cell that
could to a large degree account for the metabolic burden
observed. The higher copy number plasmids expressing circuit
parts clearly impose a high metabolic burden compared with
the low copy number versions, correlating with more DEGs
involved in amino acid synthesis, assuming that higher plasmid

Figure 5. Transcription profiles of the genes in the circuits hosted on the two plasmids of different copy numbers. (A) The transcript read counts of
the genes in the AND gate circuit that are carried on the two plasmids of different copy number (i.e., medium copy pSB3K3 and low copy pSB4K5,
S1/2 (mean) vs S5). (B) The transcript read counts of the genes in the Inputs-gfp circuit that are carried on the two plasmids of different copy
number (i.e., medium copy pSB3K3 and low copy pSB4K5, S3 vs S6). (C) The transcriptional profiles of the AND gate circuit in S1, S2 (pSB3K3)
and S5 (pSB4K5). (D) The transcriptional profiles of the Inputs-gfp circuit in S3 (pSB3K3) and S6 (pSB4K5). Note that the read counts of the two
gfp transcripts can be distinguished by their different 5′ UTRs (RBSs) downstream their inducible promoters (i.e., gfp-Plux and gfp-Ptet). See also
Figure S5 and S6.
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copy numbers result in overall higher expression rates. This
assumption is supported by the higher transcription rates of the
antibiotic resistance and origin of replication control genes in
pSB3K3 compared to pSB4K5 (Figure S6).
We did not observe any striking or specific differences in

expression patterns between constructs harboring AND gate or
Inputs-gfp that could indicate any specific cross talk between
host and synthetic parts, lending support to the notion that the
heterologous synthetic circuits introduced no obvious genetic
cross talk.
Copy Number Variation Caused Contrary Changes in

Circuit Components. Notably we found the AND gate circuit
behaved differently in the two plasmids of different copy
numbers. Figure 1B shows that the output fluorescence of AND
gate hosted in medium copy number plasmid pSB3K3 is about
half that when hosted in low copy number plasmid pSB4K5.
This is counterintuitive since generally the expression level of a
gene is expected to proportional to its copy number in the host
cell.
To investigate potential underlying cause, we examined the

mRNA levels of all genes in the two circuits (i.e., AND-gate and
Inputs-gfp) from their transcription profiles30 (gene tran-
scription activity) on the two types of hosting plasmids (Figure
5). It reveals that the transcript levels of the constitutively
expressed luxR and tetR genes (Figure 5A and 5B) are in
proportion to their plasmid copy number, which is also
reflected by the expression levels of the antibiotic resistance and
origin of replication control genes (Figure S6) in the two circuit
plasmids. However, we note the regulated hrpR and hrpS genes
under the two inducible promoters expressed quite differently
on the two plasmids. Whereas both hrpR and hrpS were
transcribed at similar levels when hosted in the low copy
number plasmid pSB4K5, the hrpR transcription level is
consistently much higher than that of hrpS when hosted in
the medium copy number plasmid pSB3K3 (Figure 5A). This is
also consistent with the significantly differential expression
levels of the two gfp reporter genes downstream the two
inducible promoters of Ptet and Plux in the Inputs-gfp circuit
when hosted on the medium copy number plasmid (Figure
5B). Strikingly, hrpR transcription was increased significantly
while hrpS transcription was decreased drastically when the
circuit moved from the low copy number plasmid to the
medium copy number one. Because HrpR and HrpS need to
form a hetero hexamer to activate its target hrpL output
promoter, the total activator complex available in the host
would be determined by the lower level of the two component
molecules, i.e., displaying the short-board-effect and explaining
the aforementioned counterintuitive output attenuation of the
AND gate circuit present in higher copy number.
Cleary the data shows that an increase in copy number has

caused contrary changes observed in the behavior of
components in the AND gate circuit leading to the unbalance
and distortion of the two gate inputs and thus the output
attenuation. We view that such contrast in behavior change is
due to the difference in mode-of-action of the two inducible
promoters of which the Plux is activator receptor (LuxR)
regulated and Ptet is repressor receptor (TetR) regulated, and
discuss this further in the Discussion section.

■ DISCUSSION
In this study we applied RNA whole transcriptome sequencing
to probe the interactions between imported heterologous gene
circuits and the host E. coli using various circuit compositions

and different copy number plasmids. The method provides
genome-wide gene expression profiling that enables a
quantitative measure of the orthogonality and effect of the
imported circuits on their host. Though the circuits have
utilized many host resources including DNA polymerases, RNA
polymerases, transcription factors, ribosomes and other trans-
lation related factors, it is striking that the circuits present in
low copy number did not significantly affect the gene
expression of these resource related factors and neither the
transcription regulation in the host. This provides evidence that
the heterologous AND circuit studied is highly “orthogonal” to
their host genetic background, and the orthogonality design
between an imported circuit and the host could be vital to help
reduce any potential genome-wide interactions.1,4

However, we found that the circuit plasmid copy number
significantly impacts on the metabolic load,31 orthogonality and
functionality14 of the introduced heterologous gene circuits in
the host chassis. The gene circuits imposed notable metabolic
load on the host, whereas empty plasmids did not, resulting in
cell growth reduction that is generally in proportion to their
copy numbers in the host, suggesting that expression of the
synthetic genes are responsible. The analysis of the number of
differentially expressed genes in the host transcriptome and
their clustering collectively shows that an increase in the circuit
plasmid copy number has led to more prominent increase in
the interference between the circuits and the host genetic
background in contrast to the change with circuit compositions
alone. Our results reveal that the plasmid copy number that is
concomitant with higher gene expression, outweighs circuit
composition for their effect on differential host gene expression.
Our data revealing a large number of genes involved in nitrogen
metabolism, amino acid biosynthesis and transport affected in
the host when expressing synthetic circuit parts from high copy
number plasmids suggests resource competition between host
and synthetic circuit at the level of translation. Thereby as a rule
of thumb, we propose that it will be beneficial to design and
implement functional gene circuits in low copy number, and
predict low expressional levels to be similarly advantageous, in
the host if possible. In return this will help increase the
orthogonality and robustness of the underlying circuits with
reduced or minimized host physiological interference, in
particular for large scale circuits comprising many parts.32

That said, it is recognized that low copy number of molecules
may increase the noise within a biological system.33,34 Hence,
attention should be paid to designing the exact copy number
and the expression levels of relevant genes within a circuit with
an aim to achieve a desired balanced system behavior. In some
cases, it could be worthwhile and necessary to use multiple
compatible plasmids with different copy numbers to address the
resource allocation, robustness and modularity requirements
pertaining to the design of a particular circuit.1,32 In addition,
the amounts of available host cellular resources (e.g., proteases,
ribosomes, amino acids, sigma factors) may vary depending on
the strains used which could have significant impact on circuit
behavior.1,7,35

We show that the change in circuit plasmid copy number
could cause contrary changes to be observed in the behavior of
different components within the circuits, which can lead to the
imbalance of the predesigned/tested stoichiometry among the
underlying circuit blocks. This has been evidenced by the
disproportionate transcription of the two input promoters and
the subsequent drastic output attenuation of the AND gate
circuit when the circuit migrating from a low copy number
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plasmid to a medium copy number one. Our previous
characterization of receptor-mediated small molecule inducible
promoters have revealed that a low concentration of the
repressor receptor (e.g., TetR) in the cell can significantly
increase the sensitivity and dynamic range, whereas a high
activator receptor (e.g., LuxR) concentration will achieve the
same outcome.34 A copy number increase would be equivalent
to the effect of an increased concentration of both the
constitutively expressed receptors (TetR and LuxR) in the
cytoplasm, leading to contrary changes of the output behavior
of the repressor and activator receptor-mediated promoters.
This is also echoed by the evidence that output fluorescence
from the GFP reporters under the two inducible promoters in
the Inputs-gfp circuit exhibited contrary change when migrating
from the low copy plasmid to the medium copy one (Figure
S7). Thus, we view such contrast in copy number-induced
behavior change are owing to the difference in mode-of-action
of the two inducible promoters of which the Plux is activator
receptor (LuxR) mediated, whereas the Ptet is repressor
receptor (TetR) mediated.
The study exemplifies that RNA-Seq represents a new

powerful method for characterizing and debugging circuits that
goes beyond the limitation of traditionally used fluorescent
reporters. RNA-Seq uses next-generation sequencing to reveal
the presence and quantity of all RNAs in a biological sample at
a given moment, including for genes of both the circuit and
host. Thereby it produces a global snapshot of the internal
workings of the intact gene circuits in real action, which
provides unprecedented detailed information to assist identify-
ing any imbalanced or failed circuit nodes or components such
as the two disproportionate AND-gate inputs disclosed in this
work. That being said, the method presently has its own
limitation that it would only provide the mRNA levels but not
the protein levels at a given moment. We think that this may be
complemented by new emerging technology such as the
genome-wide ribosome profiling (Ribo-Seq)36 or selected
reaction monitoring-based mass spectrometry proteomics37

that could help quantify the relative levels of translated proteins
corresponding to all transcripts in a host. Combining these
methods can serve as powerful tools for more accurately
diagnosing gene circuits and probing their interactions with the
host genomic background. Moreover, the high cost of RNA-Seq
could be reduced with newly adapted versions in the field such
as the RNAtag-Seq,38,39 which uses DNA barcodes to uniquely
“tag” RNAs from each sample, allowing multiple samples to be
pooled early before RNA library preparation in a single reaction
and being sequenced together. Such multiplexed approach
simplifies library preparation and significantly reduces library
preparation costs, resulting in lower time and cost per sample.

■ MATERIALS AND METHODS
Plasmid Circuit Construction. Plasmid construction and

DNA manipulations were performed following standard
molecular biology techniques. The hrpR, hrpS genes, hrpL
promoter, the aTc (anhydrotetracycline, rbs30-tetR-B0015-
Ptet2) and AHL (3OC6HSL, rbs30-luxR-B0015-Plux2) inducible
promoters were synthesized by GENEART following the
BioBrick standard (http://biobricks.org),24 by eliminating the
four restriction sites (EcoRI, XbaI, SpeI and PstI) for the
BioBrick standard via synonymous codon exchange and
flanking with prefix and suffix sequences containing the
appropriate restriction sites and RBS (ribosome binding site)
sequences. The double terminator BBa_B0015 (http://

partsregistry.org) was used to terminate gene transcription in
all cases. pSB3K3 (p15A ori, kanR) and pSB4K5 (pSC101,
kanR)24 was used to clone and characterize all the genetic
constructs in this study. The GFP (gfpmut3b, BBa_E0840)
reporter was from the Registry of Standard Biological Parts
(http://partsregistry.org). The various RBS sequences (Table
S10) for each gene construct were introduced by PCR
amplification (using PfuTurbo DNA polymerase from Stra-
tagene and an Eppendorf Mastercycler gradient thermal cycler)
with primers containing the corresponding RBS sequences and
appropriate restriction sites. The constitutive promoters used
were assembled from two annealed single stranded primers
flanked with appropriate restriction sites. All circuit constructs
were assembled following the BioBrick DNA assembly method
and verified by DNA sequencing (Beckman Coulter Genomics)
prior to their use. Primers were synthesized by Sigma-Aldrich.
Further information can be found in Figure S1 (plasmid maps)
and Table S10 (part genetic sequences) describing the circuit
constructs used. All plasmids used are available upon request
and selected plasmids may be obtained from the Addgene
repository (https://www.addgene.org/Baojun_Wang/).

Strains, Media and Growth Conditions. Plasmid cloning
work was performed in E. coli TOP10 strain, whereas all circuit
construct characterization were all performed in E. coli K-12
NCM3722 strain. Cells were cultured in M9 minimal media
(11.28 g/L M9 salts, 1 mM thiamine hydrochloride, 0.2% (w/
v) casamino acids, 2 mM MgSO4, 0.1 mM CaCl2, 0.4% (v/v)
glycerol). The kanamycin used was 25 μg/mL. Cells inoculated
from single colonies on freshly streaked LB plates were grown
overnight in 5 mL M9 in sterile 30 mL universal tubes at 37 °C
with shaking (200 rpm). Overnight cultures were diluted into
prewarmed M9 media at OD600 = 0.02 for the day cultures (100
mL in 500 mL flasks), which were all induced by 100 nM AHL
plus 20 ng/mL aTc and grown for 4 h at 37 °C prior to be
harvested for RNA-Seq sample preparation. For fluorescence
assay by fluorometry, diluted cultures were also loaded into a
96-well microplate (Bio-Greiner, chimney black, flat clear
bottom) and induced with 5 μL (for single input induction) or
10 μL (for double input induction) inducers of varying
concentrations to a final volume of 200 μL per well by a
multichannel pipet. The microplate was covered by a UV
transparent lid to counteract evaporation and incubated in the
fluorometer (BMG FLUOstar) with continuous shaking (200
rpm, linear mode, 37 °C) between each cycle of repetitive
measurements. Chemical reagents and inducers used were
analytical grade from Sigma-Aldrich. For cell growth curve
assay, diluted cultures were cultured separately in 200 mL flasks
at a volume of 50 mL and cell absorbance (OD600) were
measured by a spectrophotometer (Jenway Genova Plus)
around every 30 min by sampling half ml culture into 1 mL
cuvettes that have been preloaded half mL M9 media.

Assay of Gene Expression. Fluorescence levels of gene
expression were assayed by fluorometry at the cell population
level. Cells grown in 96-well plates were monitored and assayed
using a BMG FLUOstar fluorometer for repeated absorbance
(OD600) and fluorescence (485 nm for excitation, 520 ± 10 nm
for emission, Gain = 1000) readings (20 min/cycle). The
fluorometry data of gene expression were first processed in
BMG Omega Data Analysis Software (v1.10) and were
analyzed in Matlab after being exported. The medium
backgrounds of absorbance and fluorescence were determined
from blank wells loaded with M9 media and were subtracted
from the readings of other wells. The fluorescence/OD600
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(Fluo./OD600) at a specific time for a sample culture was
determined after subtracting its triplicate-averaged counterpart
of the negative control cultures (GFP-free) at the same time.
RNA-Seq Sample Preparation and Sequencing. E. coli

NCM3722 cultures were grown and growth stopped 4 h post
day dilution by adding 1/10 volume of 5% phenol 95% ethanol
(v/v). Cells were harvested by centrifugation (4500g for 30
min). Supernatants were discarded and pellets drained by
gravity flow for 5 min. Pellets wet weights were measured by
subtracting the weights of cognate empty tubes. There are 7
samples in total containing 6 different plasmid constructs in the
E. coli host. Samples 1 and 2 are biological replicates of the
same construct (AND gate in pSB3K3), Sample 3 (Inputs-gfp
in pSB3K3), Sample 4 (empty pSB3K3), Sample 5 (AND gate
in pSB4K5), Sample 6 (Inputs-gfp in pSB4K5), Sample 7
(empty pSB4K5). The pellet cell samples were frozen at −80
°C before sent out on dry ice to vertis Biotechnologie AG for
RNA-Seq In brief, the cell pellets were incubated with lysozyme
for 15 min at room temperature. The total RNA was then
isolated using the mirVana RNA isolation kit (Invitrogen)
including DNase treatment. Primary transcript enrichment was
achieved by rRNA depletion and treatment with Terminator
exonuclease (Epicenter) to remove other processed RNAs.
RNA was fragmented using RNaseIII and cDNA libraries were
built including PCR amplification with barcoded sequencing
adaptors. Samples were pooled in approximately equimolar
amounts to form one cDNA pool. The cDNA pool was
sequenced on an Illumina HiSeq 2000 machine. The short
sequence alignment software “Bowtie”40 was used to map
RNA-Seq reads (about 20 million each sample) on the E. coli
MG1655 annotated genome (NCBI accession number
NC_000913) and the cognate plasmid circuit sequences of
each sample. The number of mapped reads for each gene was
determined according to their annotated location features
(NCBI gff format). The expression levels of genes were
subsequently determined using the normalized measure of
RPKM (Reads Per Kilobase of transcript per Million mapped
reads).41 Read mapping were visualized using the Integrative
Genomics Viewer tool (IGV).42 To increase accuracy, under
the assumption of normal distribution, we treated genes with
the expression values that are out of the typical range of μ ± 3σ
as exceptions and thus did not take them into account for
subsequent statistical comparison analysis. Here, we filtered out
those genes (Table S2) due to their expression levels are either
too high or too low following this criteria. The obtained RNA-
Seq data set can be openly accessed and downloaded from the
Edinburgh DataShare Repository with the DOI: http://dx.doi.
org/10.7488/ds/2119.
Cell Growth Rate Modeling and Metabolic Load

Calculation. The cell growth curve for each sample, as
described by the measured cell density (OD600), were fitted
using the Gompertz model,26 an S-shaped function as shown
below.
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where μm stands for bacterial growth rate at exponential growth
phase; A is the maximum cell density that the culture would be
achieved; λ is the lag time before cells entering exponential
growth phase. The nonlinear least-squares fitting function
(cftool) in Matlab (MathWorks R2014a) was applied to fit the

experimental data of cell growth to parametrize the growth
model (Figure 2B and Figure S2).
Metabolic load is calculated following the method defined

previously,7 i.e., the relative growth rate reduction against a
reference sample. Here we used the fastest growing Sample 7,
i.e., host carrying the empty low copy number plasmid pSB4K5,
as the reference to calculate the metabolic load for all other
sample constructs following the equation

μ μ
μ

=
−

load mc m

m

where μm and μmc are the cell growth rates of a sample and the
selected reference sample, respectively.

Gene Expression Clustering and Differential Expres-
sion Analysis. The hierarchical clustering function (cluster-
gram) in Matlab was used to cluster gene expression levels in all
sequenced transcriptomes with the exception that the mean
gene expression levels of the two biological repeats (Samples 1
and 2) were treated as one condition. Hierarchical clustering
was performed twice, on both directions, row (gene) wise and
column (sample/condition) wise to obtain the heat map with
dendrograms as shown in Figure 3.
To minimize potential false positives, two parallel methods

were used to find differentially expressed genes between
compared conditions. The first method used is the combined 2-
fold expression change detection and χ2-test. Differentially
expressed genes were determined when both the expression
levels between compared conditions having more than 2-fold
difference and the false discovery rate-adjusted p-value <0.005
from the χ2-test. For the second method, the software edgeR43

was used. Since duplicate is available for one circuit condition,
as suggested by edgeR, we used the duplicate samples (S1 and
S2) to calculate the dispersion value in the experiment (0.025)
which was subsequently adopted for all other paired
comparison analysis in this study. The p-values and FDRs
associated with the DEGs were provided in the Supporting
Information of gene expression analysis. The online tool
DAVID28,29 was used for the functional enrichment analysis
among identified differentially expressed genes. Gene functions
were retrieved from the Gene Ontology biological processes44

and KEGG pathway databases.45
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(8) Qian, Y., Huang, H.-H., Jimeńez, J. I., and Del Vecchio, D. (2017)
Resource competition shapes the response of genetic circuits. ACS
Synth. Biol. 6, 1263.
(9) Stanton, B. C., Nielsen, A. A. K., Tamsir, A., Clancy, K., Peterson,
T., and Voigt, C. A. (2014) Genomic mining of prokaryotic repressors
for orthogonal logic gates. Nat. Chem. Biol. 10, 99−105.
(10) An, W., and Chin, J. W. (2009) Synthesis of orthogonal
transcription-translation networks. Proc. Natl. Acad. Sci. U. S. A. 106,
8477−8482.
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