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Abstract

Background—Impaired response inhibition and poor impulse control are hallmarks of the manic 

phase of bipolar disorder but are also present during depressive and, to a lesser degree, euthymic 

periods. The neural mechanisms underlying these impairments are poorly understood, including 

how mechanisms are related to bipolar trait or state effects.

Methods—One-hundred four unmedicated participants with bipolar mania (BM) (n = 30), 

bipolar depression (BD) (n = 30), bipolar euthymia (BE) (n = 14), and healthy control subjects (n 
= 30) underwent functional magnetic resonance imaging during emotional and nonemotional 

go/no-go tasks. The go/no-go task requires participants to press a button for go stimuli, while 

inhibiting the response to no-go trials. In separate blocks, participants inhibited the response to 

happy faces, sad faces, or letters.

Results—The BE group had higher insula activity during happy face inhibition and greater 

activity in left inferior frontal gyrus during sad face inhibition, demonstrating bipolar trait effects. 

Relative to the BE group, BD and BM groups demonstrated lower insula activity during inhibition 

of happy faces, though the depressed sample had lower activity than manic patients. The BD and 

BM groups had a greater response to inhibiting sad faces in emotion processing and regulation 

regions, including putamen, insula, and lateral prefrontal cortex. The manic group also had higher 

activity in insula and putamen during neutral letter inhibition.

Conclusions—These results suggest distinct trait- and state-related neural abnormalities during 

response inhibition in bipolar disorder, with implications for future research and treatment.
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Bipolar disorder is a debilitating mood disorder with unpredictable cycles of depressive 

(bipolar depression [BD]) and manic episodes (bipolar mania [BM]) interspersed with 

variable lengths of euthymia (bipolar euthymia [BE]). Individuals with bipolar disorder 

demonstrate a range of inhibitory deficits across mood states, including euthymia (1– 4). 

While impulsivity may be most pronounced during mania (1,4), depressive symptoms have 

also been related to impulse control deficits, particularly in the context of attention and 

executive functioning (3). Therefore, it is important to distinguish how brain activity during 

emotional inhibition is related to the disorder itself (trait effects) or to manic and depressive 

phases (state effects).

Impaired response inhibition to emotional stimuli could be due to exaggerated responses to 

emotional stimuli, an impairment of regulatory mechanisms that control emotional 

responses, or a combination of the two. Very few functional magnetic resonance imaging 

(fMRI) studies have concurrently studied all three bipolar phases, which is necessary to 

separate trait- and state-related neural abnormalities. In one such study, healthy individuals 

had higher amygdala, temporal pole, and orbitofrontal cortex (OFC) activation while 

viewing faces than BM, BD, and BE groups, indicating a trait-level abnormality (5). State-

related increases in amygdala activity were present in depressed participants and decreases 

in lower right dorsolateral prefrontal cortex (PFC) activity were seen in manic patients. 

During cognitive tasks, blunted prefrontal activation has been reported across all mood 

states, relative to control subjects (6,7). In a color Stroop task, increased left ventral PFC 

activation was seen in BD, while lower right ventral PFC activation was present in BM. 

These results highlight the importance of both trait- and state-dependent modulations of 

brain activity and, more specifically, provide evidence that both manic and depressive states 

may be associated with modified top-down cortical activity during cognitive inhibition.

To examine behavioral inhibition and related neural abnormalities, the go/no-go paradigm 

has been extensively utilized in animal and human studies (8 –10). The go/no-go paradigm 

employs a continuous series of go cues to which subjects rapidly respond and no-go cues for 

which subjects must withhold a response. While the classic go/no-go task utilizes letters as 

stimuli, the emotional go/no-go paradigms aim to investigate response inhibition to 

emotional words or faces (11–13). In manic participants, medial prefrontal and anterior 

cingulate cortex activity increased during inhibition of responses to happy words (14); sad 

distracters were also related to higher prefrontal activity, although more laterally (14). In 

addition, orbitofrontal activity was greater in euthymia during inhibition of emotional faces 

(13), indicating a potential neural trait of bipolar disorder.

In addition to emotional inhibition, using both happy and sad faces with an emotional go/no-

go paradigm provides information regarding positive and negative emotional biases (i.e., 

increased attention or neural activity for stimuli of a certain valence). While emotional 

biases in mood disorders are associated with mood-congruent processing of emotional 

information (10,15–21), research regarding emotional biases in phases of bipolar disorder 

has provided conflicting results (10,22). Murphy et al. (10) reported biases consistent with 

mood, with manic patients biased toward positive stimuli and depressed patients biased 

toward negative information (10). However, other reports have failed to replicate this finding 

(22) and further research is needed in this area.
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A recurrent difficulty in psychiatric neuroimaging research is that psychotropic medication 

may influence fMRI measurements. Although many studies have found no significant effect 

of medication (13,23,24), other studies have reported medication effects on brain activation 

in response to emotional stimuli (25–28) in individuals with bipolar disorder. To eliminate 

the potential confound of medication, this study investigated currently unmedicated 

participants in all three phases of bipolar disorder. This study investigated brain activity 

during processing of emotional and nonemotional cues using the go/no-go paradigm. We 

hypothesized that participants with bipolar disorder would demonstrate trait-level decreased 

activity in cortical emotional control regions, particularly in OFC, lateral PFC, and anterior 

cingulate cortex during emotional response inhibition. Furthermore, in manic and depressed 

groups, we expected state-specific mood-regulating difficulties to be reflected by a failure to 

inhibit the emotional response to mood-congruent emotional faces (e.g., BD with sad faces), 

resulting in a greater response in limbic regions (insula, amygdala, putamen) during the 

inhibition of mood-congruent faces.

Methods and Materials

Subjects

Medication-free BD, BM, and BE outpatients aged 18 to 60 were recruited from the 

Outpatient Psychiatry Clinic at University Hospital at the Indiana University School of 

Medicine and by community advertisements. Closely matched healthy subjects were 

recruited via advertisement. All subjects signed an informed consent form approved by the 

local Institutional Review Board and were paid $75 for screening and $75 for the magnetic 

resonance imaging scan.

All subjects underwent a detailed, structured diagnostic interview—the Diagnostic Interview 

for Genetic Studies (29), which generated DSM-IV diagnoses. Illness characteristics, 

including psychiatric history, were recorded (Table S1 in Supplement 1). Quantification of 

prior mood episodes was estimated from self-reported frequency and duration of episodes. 

Subjects were rated on the Hamilton Depression Rating Scale (HDRS) (30) and Young 

Mania Rating Scale (YMRS) (31) at the time of the baseline scan.

Participants were included if they met full lifetime DSM-IV criteria for bipolar disorder 

(type I or II; Table S1 in Supplement 1). Individuals were in the hypomanic or manic 

(YMRS > 12), depressed (HDRS > 15), or euthymic (YMRS < 10, HDRS < 12) phase. 

These scores are consistent with symptom levels present in unmedicated bipolar outpatients, 

who may have slightly less severe mania or depression than traditional research samples. 

Patients demonstrating symptoms consistent with a mixed state (high YMRS and HDRS 

scores) were excluded. Importantly, subjects were excluded if they had used psychotropic 

medication within the last 2 weeks or fluoxetine within the last 4 weeks. In addition, 

individuals could not meet present or lifetime DSM-IV criteria for schizophrenia, 

schizoaffective disorder, or an anxiety disorder (primary diagnosis); were not acutely 

suicidal or homicidal or requiring inpatient treatment; and did not reach DSM-IV criteria for 

substance abuse or dependence within the past year, except nicotine.
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Healthy subjects had no self-reported personal or family history of psychiatric illness, 

neurologic illness, or substance abuse. All subjects denied alcohol use within a week of the 

scan session and did not have a positive urinary toxicology screening at baseline.

Functional Magnetic Resonance Imaging Procedure

Participants underwent a high-resolution three-dimensional magnetization prepared rapid 

acquisition gradient-echo scan on a 3T Tim Trio scanner (Siemens, Erlangen, Germany). 

This high-resolution (1.0 × 1.0 × 1.2 mm3 voxels) anatomical volume was comprised of 160 

sagittal slices. During functional activation scans, the blood oxygen level-dependent 

(BOLD) signal was acquired using a T2*-weighted gradient-echo echo planar imaging 

sequence (129 measurements, repetition/echo time 2250/29 msec, 39 slices to cover whole 

brain, field of view 220 × 220 mm; 2.5 × 2.5 × 3.5 mm3 voxels). An integrated parallel 

acquisition technique reduction factor of 2 was implemented with a generalized 

autocalibrating partially parallel acquisition to improve spatial resolution and to reduce 

geometric distortion and scan time.

Task Description

Subjects were trained on the go/no-go task before their scan. The task design was identical 

to that described by Shafritz et al. (32), using the Ekman and Friesen (33) Pictures of Facial 

Affect. This task consists of alternating go and no-go blocks between beginning and ending 

fixation blocks (Figure 1). There were two go and two no-go blocks each for sad faces, 

happy faces, and letters. During go blocks, participants were directed to press a button for 

each presented stimulus (face or letter), with only a single stimulus type (happy face, sad 

face, letter) presented. For no-go blocks, subjects were instructed to press a button for go 

trials (targets), while withholding a response to no-go trials (nontargets). Presented stimuli 

during no-go blocks were evenly divided between targets and nontargets. For the inhibition 

of sad faces (sad no-go), subjects were instructed to press only for happy faces and inhibit 

presses to sad faces. Similarly, for the happy no-go condition, instructions were to press the 

button only for sad faces (i.e., inhibit presses to happy faces). For the nonemotional 

condition (letter no-go), subjects were requested to withhold a response only for the letter X. 

There were 12 trials per block, with the stimulus presented for 500 milliseconds followed by 

a black screen for 1000 milliseconds to record the response. Before each condition, subjects 

were shown an instruction screen for 2.25 seconds.

Behavioral Analysis

To examine potential performance differences between groups, go and no-go accuracy 

scores and go reaction times were compared via one-way analysis of variance (ANOVA) 

with IBM SPSS Statistics, Release 19.0 (IBM, Armonk, New York). Post hoc tests on 

significant results were planned via Tukey’s honestly significant difference test.

Image Analysis

Imaging data were preprocessed and analyzed with standard procedures using Statistical 

Parametric Mapping software (SPM5, Wellcome Trust Centre for Neuroimaging, London, 

United Kingdom; http://www.fil.ion.ucl.ac.uk/spm5). No subject included had head 
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movement exceeding 3 mm of translation or 4° rotation in any direction. The six motion 

parameters were used as covariates in the analysis to account for residual motion confounds.

Each participant’s functional images were aligned and co-registered to the structural 

magnetization prepared rapid acquisition gradient-echo volume. After normalization to a 

standard Montreal Neurological Institute template with 2 mm isotropic voxels, functional 

data were smoothed with a 6 mm full-width at half maximum Gaussian kernel. To perform 

individual analyses, a delayed boxcar function was convolved with each stimulus type 

(fixation, instructions, and conditions) to create a general linear model to model the BOLD 

response. A beta coefficient was calculated for each condition of interest (happy go, happy 

no-go, sad go, sad no-go, letter go, letter no-go, rest) that reflected its contribution to the 

BOLD time series. Next, group effects were obtained using second-level analyses within 

SPM5, utilizing beta coefficients for each condition.

To quantify brain activity during response inhibition, no-go conditions were contrasted with 

go conditions within and between groups. The appropriate contrast for each emotional no-go 

condition was the go condition of the opposite valence (e.g., sad no-go –happy go), to best 

distinguish the inhibition of each particular valence. In sad no-go – happy go, for instance, 

both blocks require pressing a button for happy faces. However, because sad no-go has the 

additional requirement of monitoring for and inhibiting responses to sad faces, the contrast 

of sad no-go – happy go is assumed to solely reflect emotional inhibition processes. Finally, 

to examine potential valence-dependent differences in inhibition-related activity between 

diagnostic groups, the two emotional inhibition contrasts were compared to each other ([sad 

no-go – happy go] vs. [happy no-go – sad go]). For between-group contrasts, one-way 

analyses of covariance (ANCOVAs) (controlling for age, gender, reaction time, and 

accuracy) were conducted to test for a main effect of diagnostic group. Post hoc analyses of 

go only blocks were also conducted (Supplement 1), to ensure go blocks were not driving 

significant results in no-go – go contrasts.

From ANCOVA tests, significant clusters indicating a main effect of diagnostic group on 

each contrast were identified. To clarify and visualize between-group differences, mean 

contrast data (i.e., beta coefficients) of each subject were extracted from these clusters for 

the relevant contrast and analyzed within SPSS. Main effects solely from go blocks were 

also tested within these contrasts, via similar ANCOVA tests. Significant no-go – go 

contrasts were only included if go coefficients were not significant on their own. For post 

hoc between-group tests, Tukey’s honestly significant difference was employed to control 

for multiple comparisons while identifying specific group differences (e.g., BD vs. BM). 

Because the BE group was smaller, Levene’s test of equality of variance was performed to 

ensure that assumptions of equal variances were not violated.

For whole-brain analyses, Monte Carlo simulations using AFNI (National Institute for 

Mental Health, Bethesda, Maryland) (34) software program 3dClustSim were utilized, 

determining a cluster of 108 voxels corrected for multiple comparisons at p < .05, with a Z-

transformed peak > 3 (uncorrected).
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For a priori hypotheses, a predefined anatomical mask was created using Montreal 

Neurological Institute atlas-defined regions involved in regulating mood and responding to 

emotional stimuli: amygdala, hippocampus, cingulate cortex, insula, orbitofrontal cortex, 

thalamus, caudate, and putamen. Monte Carlo simulations established smaller cluster 

thresholds separately for each a priori region (corrected p < .05 for the smaller volumes). At 

least 16 contiguous voxels significant at p < .01 were required for identifying a cluster as 

significant within the mask to further reduce false positives. This threshold is in line with 

previous work (13), although in larger regions more stringent thresholds were required for 

appropriate corrections (cingulate: 43 voxels; OFC: 26 voxels; insula: 23 voxels).

Results

One hundred twenty-one subjects passed screening criteria. Two participants with bipolar 

disorder were excluded because mood symptoms changed from screening to scan day. Four 

were excluded due to excessive motion or other problems in image acquisition, all from 

bipolar groups. Groups closely matched for age and gender were created from the remaining 

sample, with a total of 30 BM, 30 BD, 14 BE, and 30 healthy control (HC) participants. 

Groups did not significantly differ in mean age, gender, or racial makeup (Table S1 in 

Supplement 1). In addition, the three bipolar groups did not differ in clinical or medication 

history. By design, the BD group had higher HDRS scores and the BM group had higher 

YMRS scores (all ANOVA and post hoc t test p < .001). As expected, this unmedicated 

sample had more lifetime mood episodes than typically seen in research samples comprised 

of medicated participants. Because we recruited unmedicated outpatients, most patients in 

the mania subgroup (27/30) were in the hypomanic phase.

Behavioral Results

Diagnostic groups did not differ on most response time and accuracy measures (Table S2 in 

Supplement 1). Although a significant main effect of accuracy was found for the happy go 

condition and go trials during letter no-go blocks, assumptions of ANOVA tests were 

violated since several groups had no variance (100% accuracy). Furthermore, post hoc tests 

revealed no significant between-group effects.

Imaging Within-Group Results

Brain activation during emotional inhibitory processing, as revealed by contrasts of no-go 

and go blocks, was consistent with prior research showing increased lateral prefrontal and 

insula activity during response inhibition (Figure 2). These regions consistently showed 

greater activity during no-go blocks, regardless of stimulus content.

Imaging Between-Group Results

See Table 1.

Happy Face Inhibition—During the happy no-go condition, a main effect for diagnosis 

was present in bilateral insula (Figure 3A) and right temporal cortex. Post hoc tests revealed 

increased left insula activation in the BE group compared with the HC group. The BD group 

had lower neural activation than all other groups in a cluster encompassing right insula and 
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superior temporal cortex. Both the BM and BD groups showed lower activity than the BE 

group in additional insula and temporal clusters.

Sad Face Inhibition—A main effect of diagnostic group was demonstrated in bilateral 

insula and right putamen among a priori regions (Figure 3B). In addition, a significant effect 

was found in left inferior frontal gyrus (IFG). Post hoc results showed increased left IFG 

activation in the BE group compared with the HC group. Both the BD and BM groups 

exhibited increased activation in right putamen, right insula, and left IFG compared with the 

HC group and increased activation of right putamen compared with the BE group.

Letter Inhibition—During inhibition of letters, a group main effect was seen in the right 

insula and left putamen in the a priori network. The BM group exhibited higher activation 

compared with the BE group in these regions and greater activation of left putamen only 

compared with the HC group.

Sad Face Inhibition Versus Happy Face Inhibition—In this contrast, greater activity 

indicates a greater neural response to inhibiting sad faces relative to the response during 

happy face inhibition. Among a priori regions, a significant diagnostic group effect was seen 

in right medial orbitofrontal cortex and bilateral putamen. The left IFG and left precuneus 

also demonstrated an effect of diagnosis. Post hoc tests revealed that the BE group 

demonstrated greater activity during sad face inhibition (relative to happy) in medial OFC 

compared with HC and BD groups (Figure 3C). In general, the BD group demonstrated 

greater activity while inhibiting sad faces, with a higher such response in lateral prefrontal, 

insula, and putamen compared with BE and HC groups. Relative to BM patients, the BD 

group had higher sad inhibition-related activity in the left precuneus. The BM group showed 

increased right putamen activity compared with the BE group and less activation of the left 

precuneus relative to the HC group.

Discussion

This investigation is the first to study neural activity during emotional response inhibition 

across all three phases of bipolar disorder (i.e., mania, depression, euthymia). Because 

clinically significant impairments central to all phases of bipolar disorder relate to 

difficulties in controlling emotional responses, it is important to understand the neural 

mechanisms driving these emotion regulation abnormalities. By examining brain activation 

associated with emotional response inhibition, one aspect of emotion regulation, this study 

attempted to differentiate neural functioning in bipolar disorder as a trait and across all 

bipolar mood states.

Trait Effects

Euthymic participants had abnormal insula, prefrontal, and orbitofrontal activity during 

inhibition of emotional faces relative to healthy control subjects, indicating trait effects of 

bipolar disorder separate from any active mood symptoms. Notably, these increases in top-

down cortical regions were present while inhibiting emotional information but not while 

inhibiting cognitive stimuli, indicating that abnormal inhibitory neural processes in bipolar 

disorder are dependent on emotional content. To our knowledge, no prior reports implicate 
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these prefrontal cortical regions as trait-related neural markers of emotional inhibition in 

bipolar disorder; thus, replication of these findings is needed.

A similar task has shown higher OFC activity in euthymic patients during inhibition of both 

happy and sad faces combined (13), although happy and sad inhibition were not separately 

contrasted in the prior study. Other studies, however, have reported lower orbitofrontal 

activity in bipolar disorder across mood states (5,35–37) during a variety of cognitive and 

emotional tasks. Here, we found that bipolar trait-related modifications in OFC activity were 

dependent on facial valence. This array of findings indicates that future research needs to 

delineate the precise role of orbitofrontal regions in regulating emotional activity in bipolar 

disorder.

State Effects

In general, the BD and BM groups demonstrated similar activity during emotional face 

inhibition, particularly for sad faces. Both samples generally had lower activity than the BE 

group throughout mood-regulating regions during happy inhibition and greater activity than 

HC or BE groups during sad face inhibition. These similarities reflect some consistency in 

neural activation patterns during emotional inhibition between manic and depressed phases.

However, several notable differences were present between BD and BM groups. During 

happy face inhibition, the depressed sample demonstrated lower activity than manic patients 

in right insula, which has a known role in processing emotional information (38–40), 

potentially playing a role in integrating subcortical and cortical emotional processes. During 

depressed states, individuals may demonstrate mood-congruent biases toward negative 

information (10,41). Thus, inhibiting positive information from happy faces is consistent 

with prior literature on biases in emotional processing in depression. Decreased insula 

activation for the BD group may drive impairments in recognizing or responding to positive 

facial cues. In addition, when contrasting sad versus happy inhibition (Table 1), the BD 

group demonstrated more consistent and widespread activation differences from the BE and 

HC samples than did the BM group, although significant differences directly between BD 

and BM samples were limited. Therefore, in BD, neural responses during emotional 

inhibition may depend more on the emotional valence of cues, which would indicate a 

greater potential for an affective bias during BD compared with BM or BE.

The BM group, however, did not demonstrate brain responses as closely aligned with 

potential affective biases, instead responding similarly to the BD group, albeit with less 

consistent decreases in happy inhibition activity. However, BM brain activity was increased 

during letter response inhibition in emotional processing regions (insula and putamen). 

These data may reflect the overall inhibitory deficits of manic patients (10,42,43), which 

increase brain activity in emotion generating regions even during nonemotional tasks (44).

In similar samples, facial recognition tasks have elicited effects of bipolar phase in OFC, 

amygdala, anterior cingulate, and insula (5,45), underscoring the relevance of corticolimbic 

mood-regulating circuitry to state and trait characteristics, during both emotional inhibition/

control and recognition.
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The lack of differences in task performance may be due to the limited number of trials in the 

paradigm, as previous research has revealed performance biases in both manic and depressed 

patients (10,41,46). However, other studies have found no such effects on emotional 

attention (22,47,48), meaning that these neuropsychological measures may not be 

sufficiently sensitive to detect subtle biases in bipolar disorder (49), which may be better 

revealed by neuroimaging methods (41,46). Conversely, these discrepancies may represent a 

fundamental difference between how environmental input is perceived and how it is 

regulated.

Although group contrasts corrected for cluster size within each a priori region of interest 

(ROI), the use of a large number of ROIs may have impacted the significance of presented 

results. Given the need to balance issues of type I and type II error concerns (50), the 

strength of the present results is best confirmed via independent replication, with a particular 

focus on prefrontal cortex, insula, and putamen.

One limitation of the study is that while we can statistically define state and trait effects by 

how bipolar groups differ from each other or from control subjects, in reality the distinction 

is murkier. Because state and trait effects are additive, nonsignificant differences of both 

state and trait effects may combine to produce a significant effect that is solely associated 

with the manic or depressed state.

Another limitation lies in the implementation and interpretation of the emotional go/no-go 

paradigm. While the task provides a way to examine inhibition of emotional stimuli distinct 

from traditional cognitive go/no-go paradigms, there are inherent difficulties to testing 

emotional control. First, while we attempted to isolate the effects of response inhibition by 

contrasting no-go blocks with go blocks, this contrast could not completely account for 

discrepancies in motor responses or the number of faces of a certain valence. We did exclude 

regions likely driven by differences in face viewing, identified as those clusters with 

significant effects of diagnosis for any go blocks (Table S3 in Supplement 1). However, in 

future studies, an event-related design may be better to specifically measure inhibitory 

processes. Next, the letter go/no-go task represents a cognitive task, rather than a neutral 

face task, so direct contrasts with emotional inhibition tasks were not appropriate. However, 

such a task would need to be fundamentally different (with responses focused on a 

nonemotional cue, such as gender) and the letter go/no-go task presented as a well-validated 

fMRI task for qualitative comparisons of state and trait effects.

The focus on currently unmedicated individuals may have created selection biases. There are 

many reasons why individuals with bipolar disorder could be off medication; yet, detailed 

interviews confirmed that individuals were indeed mentally ill and functionally impaired. 

Nonetheless, it is possible that medicated patients differ in illness degree or characteristics. 

Because unmedicated individuals are greatly understudied in psychiatric neuroimaging, the 

present results are particularly valuable. However, the generalizability to medicated patients 

is unclear, and findings should be integrated with neuroimaging studies of medicated bipolar 

patients across all three mood states.
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Some euthymic subjects may have had mild subthreshold depressive symptoms, but this 

reflects the real life situation for unmedicated bipolar subjects. However, there was 

significant separation between the euthymic and depressive groups in terms of depressive 

symptomatology (Table 1).

In this investigation, the BE group was smaller than the BD and BM groups, due to greater 

difficulty in recruiting unmedicated euthymic patients. This lack of balance may have 

influenced between-group comparisons by introducing greater noise within the BE group, 

although variance did not differ between groups in ROI clusters. Future investigations 

should likewise attract large samples, particularly in unmedicated euthymic samples, and can 

include targeted regression analyses to associate symptom levels with neural activity. Future 

work with more participants with bipolar disorder, type I, can also address potential 

differences in neural activity related to bipolar subtype (I vs. II). While no significant group 

differences were present in this study in bipolar types I or II diagnoses, adequately powered 

samples are necessary to address this question.

Despite these limitations, this study provides strong evidence for the presence of both trait 

and state effects of bipolar disorder on neural activity during emotional response inhibition. 

These findings need to be replicated and investigated further in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Functional magnetic resonance imaging paradigm. Examples of presented instructions and 

stimuli for (A) letter go and (B) sad no-go blocks. The paradigm for the entire run is shown 

below (C).
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Figure 2. 
Group activation during response inhibition. Significant activity within healthy control (HC), 

bipolar depressed (BD), bipolar manic (BM), and bipolar euthymic (BE) groups is depicted. 

For HC, BD, and BM groups, voxels significant at p < .005 and within clusters of at least 76 

voxels to correct for multiple comparisons (p < .05) are depicted. Due to smaller size of BE 

group, individual voxel threshold is lowered to p < .01 for graphical purposes.
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Figure 3. 
Group activation differences during inhibition of happy faces (happy no-go – sad go) (A), 
inhibition of sad faces (sad no-go – happy go) (B), and sad inhibition vs/happy inhibition 

([sad no-go – happy go] – [happy no-go – sad go]) (C). Depicted voxels demonstrate a main 

effect of diagnosis at p < .01, with cluster-size thresholds correcting for multiple 

comparisons (p < .05). Boxplots represent mean activation of all voxels within the cluster. 

BD, bipolar depressed; BE, bipolar euthymic; BM, bipolar manic; HC, healthy control 

group; IFG, inferior frontal gyrus.
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