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Abstract

Calcium (Ca2+) is a ubiquitous second messenger that performs significant physiological task such 

as neurosecretion, exocytosis, neuronal growth/differentiation, and the development and/or 

maintenance of neural circuits. An important regulatory aspect of neuronal Ca2+ homeostasis is 

store-operated Ca2+ entry (SOCE) which, in recent years, has gained much attention for 

influencing a variety of nerve cell responses. Essentially, activation of SOCE ensue following the 

activation of the plasma membrane (PM) store-operated Ca2+ channels (SOCC) triggered by the 

depletion of endoplasmic reticulum (ER) Ca2+ stores. In addition to the TRPC (transient receptor 

potential canonical) and the Orai family of ion channels, STIM (stromal interacting molecule) 

proteins have been baptized as key molecular regulators of SOCE. Functional significance of the 

TRPC channels in neurons has been elaborately studied however, information on Orai and STIM 

components of SOCE, although seems imminent, is currently limited. Importantly, perturbations in 

SOCE have been implicated in a spectrum of neuropathological conditions. Hence, understanding 

the precise involvement of SOCC in neurodegeneration would presumably unveil avenues for 

plausible therapeutic interventions. We thus review the role of SOCE-regulated neuronal Ca2+ 

signaling in select neurodegenerative conditions.

27.1 Introduction

27.1.1 Molecular Determents of Ca2+ Homeostasis

Calcium (Ca2+) plays an important role in influencing virtually every aspect of cell’s life 

(Berridge et al. 2000; Putney 2011; Berridge 2012). Most of the cellular signaling events are 

orchestrated by an increase in the level of cytosolic Ca2+ ([Ca2+]cyt), which under basal 

condition is maintained at about 100nM (Berridge et al. 2003; Clapham 2007; Meldolesi et 

al. 1988; Miller 1988). The elevations in [Ca2+]cyt is largely regulated by a combination of 

intracellular Ca2+ release and extracellular Ca2+ influx events (Putney and Bird 2008). 

Intracellular compartments such as the endoplasmic reticulum (ER) and mitochondria, 

where the level of stored Ca2+ ranges from 0.1–1.0 mM, serve as a primary source of 

internal Ca2+ release (Birnbaumer 2009). On the other hand, Ca2+ channels located at the 

plasma membrane (PM) bring about an elevation in the cytosolic Ca2+ level by transporting 

Ca2+ across the membrane from the extracellular milieu, where the levels of Ca2+ is 
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generally maintained at about 1–2 mM (Berridge et al. 2003; Clapham 2007). Following an 

increase in [Ca2+]cyt, the Ca2+ pumps located in the PM, ER or the Golgi complex work in 

concert to help in attaining a basal level of [Ca2+]cyt, either by extrusion of Ca2+ to the 

extracellular environment or by its sequestration into the organellar lumen. Ca2+ is 

intracellularly compartmentalized by ATP-driven Ca2+ pumps such as sarco-endopasmic 

reticulum Ca2+ ATPase (SERCA) and secretory pathway Ca2+ ATPase (SPCA) localized at 

the ER and Golgi complex, respectively (Guerini et al. 2005; Strehler and Treiman 2004). 

Yet another important organelle, which helps in sequestering Ca2+ is the mitochondrion. 

Ca2+ readily diffuses through large pores in the mitochondrial outer membrane but crosses 

through channels and transporters across the inner membrane. One such highly Ca2+-

selective channel identified was the MiCa (Kirichok et al. 2004). Extrusion of [Ca2+]cyt is 

achieved by PM-associated pumps such as PMCA and exchangers like Na+/Ca2+ (NCX) and 

Na+/Ca2+-K+ (NCKX) exchangers. The NCX/NCKX exchange one Ca2+ for three Na+ 

(NCX) or co-transport one K+ with one Ca2+ in exchange for four Na+ (NCKX) (Guerini et 

al. 2005; Hilgemann et al. 2006). On the other hand, Ca2+ ATPases lower intracytoplasmic 

Ca2+ levels by exchanging protons for two (SERCA) or one (PMCA) Ca2+ per ATP 

hydrolyzed. These ATPases strive to strike a balance and maintain low steady-state [Ca2+]cyt 

(Brini and Carafoli 2009; Gouaux and Mackinnon 2005). In essence, this regulated flux of 

Ca2+ in and out of the cytosol results in [Ca2+]cyt oscillations that range from about 100nM 

in resting to about a 1000nM in stimulated state. These oscillatory pattern of [Ca2+]cyt is 

physiologically vital for the regulation of numerous signaling processes (Berridge 1997; 

Parekh 2011). The cellular responses mediated by Ca2+ are broadly categorized as fast or 

short-term responses (operates in seconds to minutes) and slow or long-term responses (that 

take from an hour up to several days). The fast responses such as muscle contraction, 

neurotransmission and neurosecretion require rapid and localized Ca2+ signals with 

reasonably short span of Ca2+ spikes (Putney and Bird 2008), whereas long-term cellular 

responses such as gene regulation, proliferation, differentiation rely on relatively slow and 

sustained Ca2+ signals for efficient execution (Berridge et al. 2000; Gwack et al. 2007). 

Hence, the onset of Ca2+ signals and the regulation of associated physiological events are 

spatio-temporally regulated (Berridge 1997; Berridge et al. 2003; Berridge and Dupont 

1994).

27.1.2 Neuronal Store-operated Ca2+ Entry (SOCE)

In general, TRP channels are defined as non-selective cation-permeable channels since, in 

addition to permeating Ca2+, they also allow Na+ and Mg2+ to flow through (Zhu et al. 

1996). The TRPC (TRP Canonical) sub family constitutes a total of seven TRPC proteins 

from TRPC1 through TRPC7 (Montell 2005b; Venkatachalam and Montell 2007). 

Physiological activation of TRPC channels is brought about by a PLC-mediated signaling 

event following the activation of PM-associated G protein-coupled receptors (GPCR) or 

Receptor Tyrosine Kinases (RTK), which in turn lead to the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) into membrane-bound diacylglycerol (DAG) 

and soluble IP3. IP3 binds to IP3R, which functions as ligand-gated channel and evokes Ca2+ 

release from the ER into the cytoplasm through IP3R expressed on the ER membrane 

leading to a depletion of ER Ca2+ stores. This very store depletion triggers the activation of 

PM-associated Ca2+ channels and hence the phenomenon is termed SOCE (as indicated in 
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Fig. 1). Recent advances have identified that TRPC and Orai channels could promote SOCE 

and are thus referred to as store-operated Ca2+ channels or SOCC (Barritt 1999; Berridge 

1995; Parekh and Penner 1997; Putney 2013). Activated TRPC channels mediate 

transmembrane fluxes of Ca2+ down their electrochemical gradients, thereby raising 

intracellular Ca2+ levels. A part of the Ca2+ is pumped back into the ER by SERCA pumps 

to maintain a steady state Ca2+ concentration of the ER and thus preventing it from 

exhausting all the Ca2+ stores, which partially explains the significance of SOCE. 

Alternatively, increase in cytoplasmic Ca2+ levels also regulate a plethora of critical cellular 

functions including, but not limited to, secretion, proliferation, differentiation, apoptosis and 

motility (Beck et al. 2008; Bollimuntha et al. 2005a; Cai et al. 2006; Fabian et al. 2008; Pani 

et al. 2006; Singh et al. 2001; Selvaraj et al. 2012). More recently, the ER Ca2+ sensor 

STIM1 (Liou et al. 2005; Roos et al. 2005), and the PM Ca2+ channel Orai1 (Feske et al. 

2006; Vig et al. 2006) have been identified as molecular components of SOCE. As depicted 

in Fig. 1, STIM1 has also been shown to activate TRPC channels albeit in a way distinct 

from that of activating Orai1 channels (Huang et al. 2006; Yuan et al. 2009; Zeng et al. 

2008). Interestingly, TRPC proteins have been reported to associate with STIM1 as well as 

Orai1 and exist as ternary complexes (Cheng et al. 2008; Liao et al. 2008; Liao et al. 2007; 

Ong et al. 2007). Thus, this heterotypic association of PM-SOCC and their differential 

activation by STIM1 reveals yet another level of diversity in the regulation of SOCE.

SOCE has also been identified in many types of excitable cells and is important in 

maintaining Ca2+ homeostasis (Majewski and Kuznicki 2015; Sun et al. 2014). For a long 

time neuronal cells have been thought not to have a SOCE pathway (Friel and Tsien 1992), 

since these cells have the voltage-gated Ca2+ channels and the receptor activated Ca2+ 

channels such as glutamate and AMPA receptors as their prime Ca2+ influx components. 

However, many recent studies have provided evidence of functional SOCE in a variety of 

excitable cell types (Akbari et al. 2004; Emptage et al. 2001; Selvaraj et al. 2012). The 

impact of Ca2+ -release from neuronal ER stores, and subsequent activation of SOCE 

channels on physiological function has been best studied using various Drosophila mutant 

phenotypes (Banerjee et al. 2004; Montell 2005a; Venkiteswaran and Hasan 2009). These 

studies support the fundamental concept that IP3-mediated Ca2+ release, followed by Ca2+ 

entry is required in specific classes of neurons for phototransduction or other neuronal 

functions. This is further supported by a recent study which confirmed the functional 

importance of Type 1 IP3R function in mouse neuronal cells (van de Leemput et al. 2007). 

The existence of SOCE in neuronal cells was originally demonstrated in bovine adrenal 

chromaffin cells and in the PC12 cell line (Cheek and Thastrup 1989; Clementi et al. 1992) 

and later in other neuronal cells including the Aplyesia bag cell neurons (Philipp et al. 1998; 

Pizzo et al. 2001). Importantly, the relevance of SOCE channels in the development and 

plasticity of the nervous system was initially demonstrated by Mu-ming Poo’s group 

(Nishiyama et al. 2000). These results were further verified by Emptage and colleagues 

(Emptage et al. 2001) who showed that store depletion was essential in the opening of the 

SOCE channels in hippocampal synaptic boutons, and this entry was essential in modulating 

the rate of neurotransmitter release along with modulating the synaptic plasticity. This 

underscores SOCE as a critical regulator of neuronal (patho)physiology.
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Ca2+ entry via the G protein-coupled mechanism has been implicated in the shaping of 

action potentials, synaptic transmission, and sensory transduction (Congar et al. 1997; 

Linden 1994). Additionally, changes in cytosolic Ca2+ is also known to regulate the motility 

of many cellular structures, including the axonal growth cones (Gomez et al. 2001) and 

dendritic filopodia of developing neurons (Lohmann et al. 2005). Thus, it can be anticipated 

that TRPC channels may have a significant role in regulating these fundamental neuronal 

processes. Indeed, Ca2+ entry through the TRPC channel has been shown to play a critical 

role in basic fibroblast growth factor (bFGF)-induced cortical neural stem cells (NSCs) 

proliferation (Fiorio Pla et al. 2005). It has been shown that activation of TRPC1 (C1), but 

not TRPC3 (C3) regulates cell proliferation in neural stem cells. In contrast, Ca2+ influx 

through C1 and C3 controlled the switch between proliferation and differentiation in 

immortalized hippocampal H19-7 cells (Wu et al. 2004). Similarly in mammals, C3 and C6, 

but not C1, have been shown to be associated with BDNF-mediated neuronal growth (Jia et 

al. 2007). These distinct physiological outcomes can be partially explained by the 

differences in spatial localization and functional activation of individual TRPC channels in 

diverse neuronal populations. Additionally, the differential distribution of membrane 

receptors (GPCRs/RTKs), concentration and availability of the desired agonist can further 

add to the complex regulation of distinct set of TRPC channels. Importantly, both Orai and 

STIM proteins are expressed in skeletal and brain tissues, albeit with different expression 

patters (Kraft 2015) and STIM2-deficient mice were protected from cerebral damage after 

ischemic stroke (Berna-Erro et al. 2009). However, another study showed that loss of STIM2 

induced a massive neuronal loss in the hippocampal region (Sun et al. 2014), suggesting that 

STIM2 could have differential role on different cells.

27.2 Ca2+ and Neuropathophysiology

Neuronal cell injury is mediated via both increase and decrease of cytosolic Ca2+ 

concentration (Sattler and Tymianski 2000). Changes in intracellular Ca2+ concentration 

stimulate a number of intracellular events and could either trigger or inhibit the cell death 

process (Berridge et al. 2000; Putney 2003). Importantly, disturbances in Ca2+ homeostasis 

have been implicated in many neurodegenerative diseases such as, PD, AD, and HD (Albers 

and Beal 2000; Bollimuntha et al. 2005b; O’Bryant et al. 2009; Zuccato and Cattaneo 2007; 

Zuccato and Cattaneo 2009; Sun et al. 2014). It is not surprising that disturbances in Ca2+ 

signaling pathways underlie neuronal loss, since many factors involved in neuronal function 

are dependent on Ca2+ signaling (Berridge et al. 2000; Putney 2003). However, the cellular 

mechanism(s) underlying neurodegeneration, due to alterations in Ca2+ homeostasis, 

remains to be elucidated (Bezprozvanny and Mattson 2008). In addition, several factors 

including generation of free radicals, impairment of mitochondrial function, ER stress, and 

apoptosis have been proposed to be regulated by alterations in cytosolic Ca2+. Increased 

cytosolic Ca2+ leads to inappropriate activation of Ca2+-dependent processes, that stay 

inactive at low Ca2+ levels, causing metabolic derangements leading to neuronal death 

(Berridge et al. 2000; Bezprozvanny and Mattson 2008; Putney 2003). In contrast, decrease 

in ER Ca2+ can induce ER stress, which can activate cell death cascades (Ermak and Davies 

2002) suggesting that controlled Ca2+ influx from external media is critical for neuronal 

function and its survival (Selvaraj et al. 2012). Since TRPCs are essential for replenishing 
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and maintaining ER Ca2+, chronic depletion of ER Ca2+, as would occur in the absence of 

TRPC function, could influence ER-dependent processes such as protein folding and 

trafficking, the ER stress response, and apoptosis. In the following sections, we discuss the 

findings that link TRP channels and SOCE with the neurodegenerative condition.

27.2.1 SOCE Potentiates Alzheimer’s Disease

Alzheimer’s disease is a progressive and irreversible neurodegenerative disorder marked by 

neuronal atrophy, synapse degeneration, amyloid plaques and neurofibrillary tangles. This 

disease can be divided into two major forms, one that has an early onset – the Familial 

Alzheimer’s Disease (FAD) and the other that has a late onset – the Sporadic Alzheimer’s 

disease (SD). FAD accounts for less than 10% of all the AD, however, have provided clues 

to understand the molecular and cellular basis of this genetically complex disease. The 

pathogenesis of FAD has been attributed to missense mutations in one of the three principle 

genes encoding Amyloid Precursor Protein (APP), Presenilin 1 (PS1) and Presenilin 2 

(PS2). APP is a plasma membrane protein which is processed in succession by β- and γ-

secretase yielding Aβ (40 and 42) peptides based on the site of cleavage. Aβ40 is the 

soluble form and is secreted out, whereas Aβ42, formed from a missense mutation of APP, 

is an insoluble form and is retained within the PM. This then leads to the formation of Aβ 
aggregates in specific regions of the brain thereby causing neurodegeneration (De Strooper 

and Annaert 2000). PS1 and PS2 are integral membrane proteins localized in the ER and are 

implicated in the γ-secretase activity of APP. Interestingly; presenilins are also suggested to 

function as ER Ca2+ leak channels (Tu et al. 2006). Accumulating evidence over the last 

decade has shown a strong link between pathogenesis of AD and impaired Ca2+ homeostasis 

(Bezprozvanny and Mattson 2008). Since Ca2+ signaling depends on both the release of 

Ca2+ from the ER and the subsequent influx across the PM, dysregulation in any of these 

pathways can create an imbalance in the overall cellular Ca2+ homeostasis. Information 

obtained from mutant PS1 and PS2 transgenic mice as well as from primary cortical neurons 

expressing various presenillin mutations has shown that in AD, the basal ER Ca2+ stores are 

larger which results in an increased dynamic flow of Ca2+ into the cytosol (LaFerla 2002; 

Stutzmann et al. 2006). The proposed mechanism for this effect is reasoned due to the 

disruption of Ca2+ leak function of mutant presenillin creating an imbalance between Ca2+ 

leak and Ca2+ reuptake. Contrary to this ‘Ca2+ overload’ hypothesis, there are strong 

evidences showing no increase in Ca2+ stores, rather Ca2+ stores in PS1 and PS2 mutant 

phenotypes are reduced (Cheung et al. 2008; Giacomello et al. 2005; Lessard et al. 2005). It 

has also been shown that FAD PS1 and PS2 mutants interact with IP3R rendering it sensitive 

to lower IP3 concentrations, thus affecting the receptor’s gating and resulting in exaggerated 

[Ca2+]cyt (Cheung et al. 2008). These discrepancies could be attributed to the type of 

mutations on the presenillin and the cell type used, which would dictate the eventual 

phenotypic disparity. In another set of studies the increase in Ca2+ influx is also attributed to 

the increased expression of ryanodine receptors (RyR) in AD-affected cells (Stutzmann et al. 

2006). However, irrespective of the content of Ca2+ stores, SOCE was abrogated with most 

of the presenilin mutation. One of the logical interpretations could be that since the size of 

the ER store always remains high, the threshold levels of store depletion required to trigger 

SOCE are not attained and hence a decrease in SOCE is observed. On the other hand, when 

PS1 function was abrogated by knock down or dominant negative strategy, there was a 
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marked potentiation of SOCE suggesting that PS1 in general negatively regulate SOCE and 

their mutations create a gain-of-function phenotype that would further augment the 

inhibition. It is of note that the elevated [Ca2+]cyt acts proximal to the disease phenotype 

resulting in the enhanced secretase activity and thus capable of modulating Aβ peptides 

levels (Yoo et al. 2000). However, the addition of Aβ peptides to the cells expressing PS1 

mutations did not show any significant increase in SOCE. Interestingly, a recent study 

showed that mouse embryonic fibroblast lacking presenilins had increased levels of STIM1 

and decreased levels of STIM2 expression with a marked potentiation of SOCE. Expression 

of FAD mutants in these cells attenuated SOCE without altering the STIM expression 

(Bojarski et al. 2009). In contrast, a recent report showed that STIM2 is essential for the 

SOCE in hippocampal neurons and downregulation of STIM2 leads to massive loss of 

neurons. Consistent with this, samples of AD patients also showed a decrease in STIM2, but 

not STIM1 (Sun et al. 2014). However, still the molecular identity of the Ca2+ channel that 

could contribute to these results (Orai vs TRPC) is not yet established. In addition, STIM2 

has been shown to actually inhibit SOCE in some cases and contribute to basal Ca2+ 

regulation, rather than agonist-mediated Ca2+ entry. Thus, in this context, the question of 

how STIM2 functions differently in neuronal vs non-neuronal cells needs further 

clarification.

27.2.2 Loss of SOCE Can Induce Parkinson’s Disease

Parkinson’s disease (PD) is the second most common progressive neurodegenerative 

disorder caused by the degeneration of a particular group of neurons in the substantia nigra 

pars compacta, which control motor regulation of the limbic system. As is the case with 

Alzheimer’s disease, this also have two forms – the less prevalent familial PD and the more 

prevalent sporadic PD. The pathological hallmarks of the disease are pronounced 

degeneration of nigrostriatal dopaminergic neurons and the presence of cytoplasmic 

inclusions called Lewy bodies (LBs) formed by the aggregation of several proteins including 

α-synuclein, parkin, ubiquitin and neurofilaments. Not all cases of PD exhibit LB 

pathogenesis and hence have to be diagnosed by clinical symptoms. Even though the actual 

cause or etiology of sporadic PD is not clearly understood, the most common modes of 

neuronal degeneration, as understood from gene mutations in familial PD, appear to be due 

to mitochondrial dysfunction, oxidative stress and impairment of the ubiquitin proteasome 

pathway. These effects are similar to those induced by 1-methyl, 4-phenyl, 1, 2, 3, 4-

tetrapyridine (MPTP) neurotoxin and hence it is commonly used as toxin-based model to 

study PD (Dauer and Przedborski 2003). MPP+, the metabolite of MPTP, is preferentially 

taken up by dopaminergic neurons through dopamine transporter, which then gets 

accumulated in the mitochondria and inhibits complex I of the respiratory chain. As a result, 

there is a loss of mitochondrial membrane potential, depletion of ATP and increased free 

radical production creating oxidative stress within the cell (Przedborski et al. 2004). The free 

radicals thus released from the mitochondria disturb the intracellular Ca2+ homeostasis, 

possibly by compromising the function of Ca2+ signaling components of the ER and PM 

(Mattson 2007). With regard to ER store-depletion, the cell has its own way of replenishing 

the stores through the activation of SOCE channels. But following MPP+ treatment, TRPC1 

expression is drastically decreased. As a result, the ER fails to maintain the normal Ca2+ 

levels required for its proper functioning, which eventually leads to ER stress (Bollimuntha 
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et al. 2005b; Selvaraj et al. 2009; Selvaraj et al. 2012). The mitochondrion on the other hand 

takes up the excess Ca2+ present in the cytoplasm (released from the ER) and loses its 

membrane potential due to Ca2+ overload. This in turn exacerbates the free radical 

production thus creating a vicious cycle of oxidative stress, which initiates an intrinsic 

apoptotic cascade. Our findings also suggest that overexpression of TRPC1 combat some of 

the negative effects of MPP+-induced oxidative stress and mitochondrial dysfunction, thus 

providing the cells an opportunity to recover from the stressed state. In addition, autophagy 

has been also shown to work in conjunction or independently to help the cell cope with ER 

stress by removal of misfolded proteins, and autophagy has been shown to modulate by 

TRPC1 and Ca2+, suggesting that these could also contribute to the survival of these neurons 

(Sukumaran et al. 2016). In addition, dopamine and other neurotransmitters levels regulate 

mood disorders such as schizophrenia, anxiety, bipolar disorders and others, which could 

also be regulated by Ca2+ signaling; however, the role of Ca2+ channels in this regard is still 

not well defined.

27.2.3 A Functional Look at SOCE in Ataxia

Cerebellar ataxias represent a heterogeneous group of neurodegenerative disorders. To date, 

26 different genetic subtypes of spinocerebellar ataxias (SCA) have been identified. 

Spinocerebellar ataxia type 1 (SCA1) is an inheritable autosomal dominant 

neurodegenerative disease caused by expansions of a CAG trinucleotide repeats encoding 

polyglutamine tract, within the SCA1 encoded ATXN1 (Ataxin 1) protein. The pathogenesis 

involves a gain-of-function mutation in ATXN1, which mainly affects the Purkinje cells of 

the cerebellum and brainstem neurons (Vig et al. 2001). Although the genetic diversity and 

affected cellular pathways of hereditary ataxias are broad, one common theme amongst 

these genes is their effects on maintaining Ca2+ balance primarily in the cerebellum (Mark et 

al. 2017). Moreover, it has also been shown that the polyglutamine mutation may affect the 

gene expression pattern and was found that certain neuronal genes involved in signal 

transduction and Ca2+ homeostasis were down regulated in a sequential pattern in SCA1 

mice (Lin et al. 2000). Among other genes, this study identified IP3R, SERCA2, Inositol 

polyphosphate 5-phosphatase type 1 (5-phosphatase), and TRPC3 genes important for Ca2+ 

homeostasis. Importantly, IP3R and SERCA2 were down regulated in the first two weeks of 

age, whereas in the subsequent three to four weeks - phosphatase and TRPC3 were down 

regulated. These results are striking given the fact that IP3R, SERCA2 and TRPC3 constitute 

the molecular components of SOCE. This clearly infers that in SCA1 the ER Ca2+ 

homeostasis can be compromised under sustained stress conditions, which can lead to a 

variety of cellular dysfunctions. Additionally, spinocerebellar ataxia14 (SCA14), one of the 

sub types of spinocerebellar ataxias, is caused by mutations in the protein kinase C gamma 

(PKCγ) gene (Adachi et al. 2008). PKCγ has been found to negatively regulate TRPC3 

activity by phosphorylating TRPC3, but in the case of SCA14 it fails to phosphorylate 

TRPC3 resulting in sustained Ca2+ influx following stimulation. Hence, the PKCγ kinase 

activity is seemingly indispensable for TRPC3 phosphorylation and feed back regulation of 

Ca2+ influx, which when fails, as in the case of SCA14, might cause imbalance in cellular 

Ca2+ homeostasis and account for disease progression. One of the intriguing features is the 

differences in the expression and mechanism of action of TRPC3 in two different subtypes 

of SCAs – rather opposing functions. Furthermore, in an attempt to identify crucial gene 
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products implicated in cerebral ataxia, phenotype-driven dominant mutagenesis screens were 

performed and an ataxic mouse mutant by the name moonwalker (Mwk) mice was 

identified. These mice exhibited a gain-of-function mutation (T635A) of TRPC3 that 

rendered the channel constitutively active due to the lack of negative feedback regulation by 

PKCγ-mediated phosphorylation of the threonine residue (Becker et al. 2009). As a result of 

impaired TRPC3 channel function, diminished dendritic arborization and progressive loss of 

Purkinje neurons was observed. The disparity in the mode of expression and functionality of 

TRPC3 in various forms of SCA, which eventually results in degeneration of cerebellar 

neurons and ataxic phenotype can be reconciled from the fact that TRPC3 might not be the 

sole cause of the disease, rather a component of secondary effect in the dysfunctional 

signaling cascade. Importantly, to establish TRPC3-dependent mechanisms, it has been 

recently shown that activated Ca2+ signaling is coupled to lipid metabolism and the 

regulation of Purkinje cell development in the Mwk cerebellum (Dulneva et al. 2015), 

confirming the role of TRPC3 in ataxia.

27.2.4 SOCE in Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized 

by muscle degeneration. The pathology of this disease is attributed to the deficiency of 

dystrophin, which is located at the cytoplasmic face of the sarcolemma. In normal skeletal 

muscle cells, dystrophin acts as a bridge that connects the extracellular matrix protein 

laminin-2 to the cytoskeletal f-actin filaments. Hence, in DMD the lack of dystrophin and 

consequent disorganization of the cytoskeleton can make the PM vulnerable to mechanical 

damage and can result in functional deregulation of several PM ion channels (Gailly 2002; 

Vandebrouck et al. 2002). Store-operated Ca2+ channels, TRPC1 and TRPC4 in particular, 

are among those whose disruption can lead to increased Ca2+ influx resulting in cellular 

Ca2+ overload, and their knockdown resulted in a 10-fold decrease in Ca2+ influx. Hence, 

the imbalance in intracellular Ca2+ levels and the resulting Ca2+-dependent activation of 

proteases are suggested to be the probable reasons for muscle degeneration in DMD 

(Vandebrouck et al. 2002). In another interesting study, forced expression of minidystrophin 

at the plasma membrane resulted in regaining normal Ca2+ homeostasis in dystrophin-

deficient Sol8 myotubes. It is suggested, that under normal conditions minidystrophin 

negatively regulates store-operated Ca2+ channels resulting in reduced store-dependent Ca2+ 

influx and hence over expression of mini dystrophin in dystrophin-lacking myotubes 

restored the function of store-dependent channels, resulting in less Ca2+ influx and 

subsequent prevention of Ca2+ mishandling (Vandebrouck et al. 2006). Importantly, it has 

recently been shown that Ca2+ influx across an unstable sarcolemma due to increased 

activity of a STIM1–Orai1 complex is a disease determinant in muscular dystrophy, and 

hence, SOCE represents a potential therapeutic target (Goonasekera et al. 2014).

27.2.5 SOCE Induces HIV Associated Dementia

Human immunodeficiency virus (HIV) infection-induced cognitive impairment has been 

suggested to precipitate in memory loss and dementia. Thus, HIV-associated dementia 

(HAD) forms a neuropathological manifestation of the virus infection (Masliah et al. 1996; 

Mattson et al. 2005). Activation of immune cells by HIV results in the secretion of soluble 

factors that destabilize neuronal Ca2+ homeostasis, encourage oxidative stress and result in 
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neural damage, which is thought to underlie the cognitive-motor dysfunction that develops 

in many HIV-infected patients. The HIV-1 transactivator protein (Tat) has been reported to 

be involved in cognitive impairment (Li et al. 2004) and promotes neuronal death by 

inducing mitochondrial dysfunction and oxidative stress (Norman et al. 2007; Self et al. 

2004). Additionally, evidence also suggests a role of HIV-1 Tat in altering cellular Ca2+ 

homeostasis (Bonavia et al. 2001; Self et al. 2004), presumably interfering with molecular 

components of Ca2+ stores (Haughey et al. 1999; Norman et al. 2008). Tat, via Ca2+ 

dysregulation, has been shown to promote calpain-1 cleavage of p35 to p25, which hyper-

activates CDK5 resulting in abnormal phosphorylation of downstream targets such as Tau, 

collapsin response mediator protein-2 (CRMP2), doublecortin (DCX) and MEF2. Thus, it is 

conceivable that SOCE might affect Tat-toxicity in a way analogous to the protective role of 

TRPC1 in MPP+-induced PD (Bollimuntha et al. 2005b; Selvaraj et al. 2009). Indeed, two 

recent interesting studies from the same group have implicated the involvement of TRPC 

channels in Tat-toxicity and HAD (Yao et al. 2009a; Yao et al. 2009b). The first study 

reports that the HIV-1 Tat induces significant cell death in rat midbrain neurons. Treatments 

of the neurons with the chemokine CCL2, a member of the C-C subfamily of chemokines, 

alternatively known as monocyte chemoattractant protein-1 (MCP-1), substantially alleviates 

Tat toxicity and improves neuronal survival. The premise that CCL2 engages PLCβ-

mediated IP3 production and that IP3-mediated store-depletion can activate TRPC channels, 

thus contributing to neuroprotection prompted this group to further investigate the 

involvement of TRPC channels. Interestingly, SKF-96365 and 2-APB, the non-specific 

SOCE blockers, significantly blocked the CCL2-induced neuroprotection against Tat 

toxicity. Further, using RNAi the authors found that TRPC1 and TRPC5 channels were 

involved in mediating the protective effects of CCL2, preferably via an ERK/CREB 

signaling axis (Yao et al. 2009b). In the similar context of HIV-1 Tat-induced neurotoxicity, 

this group demonstrated the involvement of TRPC channels in platelet-derived growth factor 

(PDGF)-mediated protection of the rat midbrain neurons. In addition to the neuroprotective 

effects of PDGF in vitro, its pretreatment in vivo also rescued loss of dopaminergic neurons 

following Tat exposure. This study revealed a prominent role of TRPC5 and TRPC6 

channels in engaging a Pyk2/ERK/CREB pathway to elicit PDGF-mediated neuroprotection 

(Yao et al. 2009b). In another study, pretreatment of cells with either the PI3K inhibitor or a 

TRPC blocker resulted in the failure of PDGF to inactivate GSK3β, thereby suggesting the 

intersection of PI3K and TRPC signaling at GSK3β (Peng et al. 2012).

27.2.6 SOCE and Oxidative Stress

The steady-state generation and proper compartmentalization of free radicals to specific 

cellular microdomains transduce physiological redox-signals to carryout anabolic activities 

such as proliferation, migration, transcription and neurotransmission. However, in specific 

pathological condition these oxidants can leave their spatial confinements thereby leading to 

oxidative stress (Durackova 2010; Kamata and Hirata 1999). Oxidant-induced toxicity and 

cognitive impairment has been reported in a variety of neurodegenerative diseases including, 

AD, PD, ALS, HD, stroke and prion pathogenesis (Bezprozvanny and Hayden 2004; 

Cassarino et al. 1997; Dauer and Przedborski 2003; Mattson 2007; Patten et al. 2010). A 

prime commonality in free radical production and associated neurodegeneration is 

mitochondrial dysfunction and there appears to be a positive correlation between them in 
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regulating disease progression (Lin and Beal 2006). Changes in the levels of cytosolic Ca2+ 

influence numerous physiological processes (Berridge 1998; Berridge et al. 2000). Free 

radicals can influence the physiological activity of a cell by altering cytosolic Ca2+, either by 

mobilizing Ca2+ from internal stores or by modulating Ca2+ influx across the PM. 

Interestingly, perturbation in Ca2+ homeostasis has also been described to result in the 

generation of free radicals and leading to oxidant-induced neuronal programmed cell death 

(Bezprozvanny and Mattson 2008; Chakraborti et al. 1999; Ermak and Davies 2002; 

Mattson 2007). Thus, it is conceivable that the components of neuronal SOCE will have a 

prominent influence on regulating the redox status of a cell. Alternatively, there also lies the 

possibility that the SOCE channels can themselves be regulated by cellular redox 

fluctuations. From a neuronal perspective, evidence on oxidative stress-regulated SOCE is 

limited; however, in non-excitable cells the same has been more elaborately studied.

Several members of TRPs and more recently the Orai1 and STIM2 components of SOCE 

have been identified to be redox-responsive (Aarts and Tymianski 2005; Berna-Erro et al. 

2009; Birnbaumer 2009; Bogeski et al. 2010; Miller 2006). One of the earliest evidences that 

oxidants have the potential to activate SOCC comes from a study demonstrating H2O2 to 

induce Ca2+ influx in canine endothelial cells. Interestingly, this H2O2-induced Ca2+ influx 

was dose-dependant and sensitive to the SOCE blocker SKF-96365 (Doan et al. 1994). 

Additionally, in human oocytes a similar H2O2 dose-dependent increase in Ca2+ influx was 

observed which was sensitive to 2-APB, yet another SOCE blocker (Martin-Romero et al. 

2008). Further, in porcine aortic endothelial cells (PAECs), induction of oxidative stress 

activates non-selective cation entry. In the initial study, treatment of the endothelial cells 

with tert-butyl hydroperoxide elicited cation conductance which was suppressed by 

dominantly interfering with the function of TRPC3 channels (Balzer et al. 1999). In a 

subsequent study, the same group showed that the stress-induced cation conductance in 

PAECs were due to the heteromeric assembly of TRPC3/TRPC4 channels. TRPC1 in these 

cells weakly interacted with TRPC3; however, its involvement in heteromeric channel 

assembly and in redox-sensing remains to be determined (Poteser et al. 2006). Interestingly, 

amyloid-β aggregates have been shown to induce oxidative stress (Bezprozvanny and 

Mattson 2008) and since TRPC3 has a redox sensing ability, it can potentially exacerbate 

AD. Similarly, TRPC5 has also been demonstrated to be activated by NO via S-nitrosylation 

(Yoshida et al. 2006) and thus posses the ability to participate in neurodegenerative 

conditions. In addition to members of the TRPC sub-family, the TRPMs have also been 

identified as redox-sensitive. In particular, TRPM2 and TRPM7 have been associated with 

oxidative insult-induced cell death. TRPM2 is known to be activated by ROS including 

H2O2 and oxidant-induced Ca2+ influx via TRPM2 channels results in cell death (Hara et al. 

2002). H2O2 and amyloid β-peptide have been shown to induce cell death in rat striatal 

neurons expressing endogenous TRPM2 and inhibiting the function of TRPM2 improves 

cell survival following stress (McNulty and Fonfria 2005). A study also describes PARP 

(poly ADP-ribose polymerase) as a mediator between oxidative stress and TRPM2 

activation and that PARP inhibitors tend to suppress TRPM2 function and protect cells from 

oxidative injury (Fonfria et al. 2004; Miller 2004; Yang et al. 2006). Similarly, H2O2 also 

activates TRPM7 conductance and RNAi-mediated inhibition of the channel reduces 

oxidant-induced Ca2+ influx, suppress ROS production and protects neurons from anoxic 
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cell death (Aarts and Tymianski 2005; Yamamoto et al. 2009). Interestingly, in a human 

endothelial cell line it was recently shown that DHA, a polyunsaturated fatty acid attenuates 

H2O2-induced oxidative stress by reducing Ca2+ influx. DHA apparently alters the lipid 

composition of the plasma membrane raft domains and in doing so it displaces the caveolar 

raft-localized TRPC1 to non-raft compartment, thus rendering the channel non-functional 

(Ye et al. 2010). In cultured hippocampal neurons, stress-induced exacerbation in a TRP 

channel-related Ca2+ influx leads to neuronal death and pre-treatments of the cells with the 

anti-oxidant alpha-tocopherol protects the neurons by inhibiting the TRP-mediated 

intracellular Ca2+ overload (Crouzin et al. 2007). Additionally, in Drosophila 

photoreceptors, anoxia activates TRP and TRP-like (TRPL) currents and genetic depletion 

of these channels is shown to protect the photoreceptor cells from anoxic-stress (Agam et al. 

2000). From the findings discussed above it follows that oxidative stress activates SOCE and 

in a pathological situation oxidant-induced exaggeration in SOCE can potentially amplify 

cell injury. Thus, components of SOCE emerge as attractive targets in controlling oxidative 

stress-induced cell death. A reduction in SOCE in glutamate-resistant HT22 cells protected 

against oxidative death, suggesting that dysregulated Ca2+ entry through Orai1 mediates the 

detrimental Ca2+ entry in programmed cell death induced by GSH depletion (Henke et al. 

2013). However, ROS has also been shown to regulate SOCE, which could be due to direct 

effects on the core SOCE machinery, including STIM proteins and their partner channels, or 

indirectly by influencing the status of ER Ca2+ stores. STIM1 was shown to be S-

glutathionylated at C56 amino acid during oxidative stress induced by bacterial 

lipopolysaccharide (LPS) or butathionine sulfoximine-induced GSH depletion, which 

lowered the affinity of STIM1 for Ca2+ and facilitated oligomerization, leading to store-

independent activation of STIM1 (Nunes and Demaurex 2014). Similarly, Orai1 was also 

recently demonstrated to act as a direct redox sensor mainly by virtue of a reactive cysteine 

at position C195 and exposure to H2O2 inhibited Ca2+ influx in normal Orai1, but not in 

Orai1 mutated at position 195 (Nunes and Demaurex 2014). These results suggest that ROS 

regulates the Ca2+ channels and its modulators that modify Ca2+ entry and could promote 

degeneration.

27.3 SOCE, Membrane Rafts and Neurodegeneration

It is being widely accepted that the PM is not just a uniform stretch of the protein-lipid 

bilayer, rather it is spatially organized into multiple microdomains that constitute unique 

signaling nodes to efficiently relay external signals into the cell’s interior. Regions of the PM 

that are rich in cholesterol and sphingolipids fall into a broader class of membrane 

microdomain termed as membrane ‘lipid rafts’ that have the ability to cluster specific 

signaling molecules required to bring about a specific cellular response. Involvement of 

membrane rafts in the progression of neurodegeneration has been described in a variety of 

dementing conditions including AD, PD, ALS and prion pathogenesis. In AD, the 

generation of amyloid β-peptide by the processing of amyloid precursor protein (APP) 

hallmarks disease initiation (De Strooper and Annaert 2000). Interestingly, in cultured 

neurons it had been shown that acute extraction of membrane cholesterol by MβCD or by 

chronic statin treatments to inhibit cholesterol synthesis, reduces the accumulation of 

amyloid β-peptide (Ehehalt et al. 2003). Similarly, molecules involved in PD pathogenesis 
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such as parkin, PINK1, α-synuclein and LRRK2 have been shown to be associated with 

lipid raft microdomains (Hatano et al. 2007; Park et al. 2009; Parkin et al. 1999). 

Importantly, most TRPCs have been identified to be expressed in lipid rafts and Ca2+ entry 

was dependent on the integrity of lipid rafts (Pani and Singh 2009). However, information on 

the membrane raft perspective of SOCE regulation in disease progression is still lacking. 

Since components of the SOCC localize to membrane rafts and work in concert with 

multiple regulators, it would be worthwhile to investigate their physical state in various 

neurodegenerative conditions such as attenuation of TRPC1-SOCE in PD and exaggeration 

of SOCE in neuronal oxidative stress and AD. This will not only provide mechanistic insight 

into the altered Ca2+ homeostasis but will also presumably shed light on the onset and 

progression of the disease.

27.4 Concluding Remarks

SOCE is a unique aspect of neuronal Ca2+ signaling wherein the intracellular Ca2+ stores 

communicate with the plasma membrane channels to orchestrate cellular Ca2+ homeostasis. 

This process is essential for maintaining intracellular Ca2+ stores as well as influencing vital 

physiological processes of the excitable cells. TRPC and Orai channels have been recently 

identified as SOCE channels and there has been intense focus on TRPC channels as recent 

data from various labs indicate a possible role of TRPC channels in neuronal function. 

However, conclusive data regarding the exact physiological function of most of these 

channels in neuronal cells is still lacking. Studies using single or multiple gene knockouts 

will be essential to validate the diverse roles of these channels in neuronal function. 

Additionally, as TRPC proteins cross-talk with Orai and are activated by STIM1, studies 

focused on delineating the function of the ‘TRPC-Orai-STIM’ complex in neuronal context 

will be critical in understanding their plausible role in neuronal pathophysiology.
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Fig. 27.1. 
Store-operated Ca2+ entry and neuronal function. This illustration depicts the current 

understanding of SOCE regulated by STIM1-mediated activation of PM-SOCC (TRPC/Orai 

channels). Agonist-induced activation of PM receptors (GPCR/RTK) results in the 

generation of the diffusible cellular messenger IP3 following the PLC-mediated hydrolysis 

of PIP2. IP3 binds to its receptor (IP3R) in the ER depleting the ER Ca2+ stores. This leads to 

STIM1 oligomerization and recruitment of the STIM1-clusters to ER-PM juxtaposed sites 

where STIM1 physically gates the TRPC and Orai1 channels to bring about Ca2+ entry. This 

raises the [Ca2+]cyt which not only aids in the SERCA pump-mediated ER store refilling but 

also promotes the regulation of several cellular functions. Additionally, diacylglycerol 

(DAG), the membrane-associated lipid messenger also has the ability to activate select 

TRPC channels independent of the ER store and presumably STIM1 as well.
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Fig. 27.2. 
Consequences of abnormal Ca2+ signaling. This illustration depicts the current 

understanding of the consequences of abnormal Ca2+ signaling. Altered Ca2+ signaling leads 

to issues such as oxidative stress, ROS production, Ca2+ overload, unfolded protein response 

and ER stress, mitochondrial and lysosomal dysfunction and inhibition of autophagy. This 

leads to loss of neuronal function and induction of neuronal diseases.
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