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Abstract

Precision oncology involves identifying drugs that will effectively treat a tumor and then 

prescribing an optimal clinical treatment regimen. However, most first-line chemotherapy drugs do 

not have biomarkers to guide their application. For molecularly targeted drugs, using the genomic 

status of a drug target as a therapeutic indicator has limitations. In this study, machine learning 

methods (e.g., deep learning) were used to identify informative features from genome scale omics 

data and to train classifiers for predicting the effectiveness of drugs in cancer cell lines. The 

methodology introduced here can accurately predict the efficacy of drugs, regardless of whether 

they are molecularly targeted or non-specific chemotherapy drugs. This approach, on a per-drug 

basis, can identify sensitive cancer cells with an average sensitivity of 0.82 and specificity of 0.82; 

on a per-cell line basis, it can identify effective drugs with an average sensitivity of 0.80 and 

specificity of 0.82. This report describes a data-driven precision medicine approach that is not only 

generalizable but also optimizes therapeutic efficacy. The framework detailed herein, when 

successfully translated to clinical environments, could significantly broaden the scope of precision 

oncology beyond targeted therapies, benefiting an expanded proportion of cancer patients.

Introduction

Precision oncology aims to detect and target tumor-specific aberrations with effective 

therapies(1,2). In the current practice of precision oncology, the prescription of molecularly 

targeted drugs is mainly based on the genomic status of a drug-target gene as a therapeutic 

indicator(2,3). However, this approach only benefits a small percentage of patients(4,5). 

Nonspecific cytotoxic drugs lack well-established biomarkers to guide their usage, yet they 

remain first-line chemotherapy for many patients(6), despite recent advances in molecularly 

targeted therapy and immunotherapy. Therefore, there exists a need for data driven 

approaches to improve therapeutics.
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Recent large-scale pharmacogenomics screening on cancer cell lines(7,8) and patient-

derived xenografts(9) (PDXs) have demonstrated that almost every cancer cell line or PDX 

is sensitive to one or more targeted or non-targeted drugs, but current approaches cannot 

accurately match sensitive drug-cancer pairs. For nonspecific cytotoxic medications, few 

data driven models exist. In the case of molecularly targeted drugs, genomic markers are not 

accurate indicators. Translated into a clinical setting, this indicates that many patients are 

treated with an ineffective first line of chemotherapy due to the lack of accurate prognostic 

predictors. On the other hand, for most molecularly targeted drugs, the majority of sensitive 

cancers do not host genomic alterations in the targeted gene. The clinical implication is that 

there exist patients who could benefit from molecularly targeted medications but they are 

being missed due to the inaccuracy of genomic markers. Accurately identifying these groups 

of patients would maximize the therapeutic usefulness of existing anti-cancer drugs for 

improved treatment outcomes.

Recently, pharmacogenomics experiments have collected genomic and transcriptomic data 

on a large number of cancer cell lines and PDXs, together with drug sensitivity data. 

Typically, these studies have attempted to uncover associations between omics features and 

drug sensitivity measurements, such as IC50(10). Different studies have explored the use of 

current state-of-the-art classification models, such as ridge regression and support vector 

machines(11–13) to train predictive models for IC50 using genome-scale omics data as input 

features. However, the performance of current computational models is far from adequate. 

Difficulty arises from the high dimensionality of omics data and the relatively small number 

of training cases available, which often leads to overfitting. Thus, learning novel informative 

features from omics data is a critical step in model-based prediction of drug sensitivity.

In this study, we investigate the utility of combining genome-scale omics data with 

contemporary machine learning techniques to develop predictive models that can be applied 

to both molecularly targeted and conventional chemotherapy drugs. The models developed 

in this study are trained to predict discretized effectiveness measures for drug-cell line pairs. 

This novel systematic production of classification models holds advantages over drug 

concentration regression models in both flexibility and ease of clinical translation. We 

addressed the dimensionality challenge by concentrating on feature selection and deep 

learning based feature learning techniques to extract informative features that reflect the 

activation states of drug-target proteins and cell-signaling pathways. We show that deep 

learning models can learn novel representations of cellular signaling systems (14). Using 

these informative features, we trained a classification model for each anti-cancer drug to 

predict the sensitivity of cancer cell lines to that drug (Figure 1A). The results indicate that 

informative features derived from deep learning can significantly enhance the accuracy of 

prediction models. We further show that our predictions can significantly expand the 

therapeutic scope of molecularly targeted drugs and reduce ineffective administration of 

nonspecific first-line drugs. If these results are reproduced (even partially) in clinical 

settings, they have the potential to significantly improve the practice of precision oncology.
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Materials and Methods

Data retrieval

We retrieved and utilized data from two large pharmacogenomics studies, the Genomics of 

Drug Sensitivity in Cancer Project (GDSC), and the Cancer Cell Line Encyclopedia 

(CCLE).

GDSC gene expression data were downloaded from ArrayExpress (http://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-783/) in the form of raw Affymetrix CEL files. Drug 

sensitivity measurements, copy number variation data, mutation data, and cell line 

annotations were downloaded from the GDSC website (http://www.cancerrxgene.org/

downloads).

CCLE gene expression data, copy number variation data, mutation data, and cell line 

annotations were downloaded from the CCLE website (http://www.broadinstitute.org/ccle). 

Drug sensitivity measurements were obtained from the associated publication(7).

Feature engineering

GDSC gene expression data in the form of Affymetrix CEL files were normalized using 

Robust Multi-Array Averaging. For replicate experiments, expression values were averaged. 

After removal of spike control probes, this procedure generated an array of 22,215 probe 

expression measurements in 727 cell lines.

The normalized gene expression data were filtered using three different variance metrics. We 

applied Hartigans’ dip test for unimodality to select for genes with multimodal 

distributions(15). The outlier sum method was used to select for genes that had largely 

unimodal distributions with significant outlier populations(16). Finally, median absolute 

deviation was used to select for genes with a high variance across samples regardless of 

distribution shape. We attempted to keep the approximately 1500 most variant gene probes 

selected by each metric. However, for the dip test, far fewer probes had statistically 

significant scores for multimodality, and only 664 were retained. The union of the three 

methods resulted in the selection of 3080 gene expression measurements out of 22,215, a 

retention of approximately 14%. After variance selection, a mixture of two normal 

distributions was fitted to each gene’s expression profile. A t-test was performed to verify 

statistical significance between the two groups for each gene. These groups were then used 

to determine a cutoff to discretize the expression levels of each gene into low and high 

values. After this procedure, the dataset contains discretized gene expression data of 3080 

genes in 727 cell lines.

GDSC copy number and mutation data for 624 cell lines were extracted from 

gdsc_en_input_w5.csv available on the GDSC website. Copy number variation data ranging 

from 0 to 10 were normalized to real values between 0 and 1. Copy number variation data 

above this range were set to 1. Mutation data was already encoded in a binary form and 

required no further processing. 426 genes were characterized for copy number variation and 

71 genes were characterized for mutations. These two feature sets were relatively low-

dimensional compared to the gene expression data, and it was determined that selective 
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preprocessing would introduce a high risk of discarding important predictive variables for 

the sake of relatively insignificant improvements in computational efficiency.

Cell line annotations were used to combine the three feature sets (gene expression, copy 

number variation, and mutation data) into a single array of data containing information on 

3577 features in 624 cell lines. Cell lines for which all three data types were not available 

were excluded from analysis.

Deep learning

Code for training a deep autoencoder as described by Hinton and Salakhutdinov was 

obtained from Hinton’s website (http://www.cs.toronto.edu/~hinton/

MatlabForSciencePaper.html) and modified to utilize the feature selected GDSC dataset for 

unsupervised representation learning. To train the autoencoder, the 624 cell lines in the 

dataset were randomly split into training and testing datasets of 520 and 104 samples, 

respectively. The training dataset is used to train the weights of the model via conjugate 

gradient descent. During training, the current performance of the model is periodically 

evaluated on the testing dataset, enabling application of the early stopping rule to prevent 

overfitting. Using a batch size of 26, an autoencoder with hidden layers of size 1300, 552, 

235, and 100 was trained. This model was learned using 50 epochs of pretraining a stacked 

restricted Boltzmann machine and 400 epochs of backpropagation.

Drug sensitivity data

GDSC drug sensitivity measurements in the form of activity area values were extracted from 

gdsc_manova_input_w5.csv available on the GDSC website. These were discretized into 

sensitive and resistant categories by applying the waterfall method to each drug(7). The 

waterfall method is summarized as follows: Drug sensitivity measurements for all cell lines 

are sorted in increasing order to generate a waterfall distribution. A linear regression is fitted 

to this distribution. A Pearson correlation is calculated to determine goodness of fit for the 

linear regression equation. If the Pearson correlation coefficient is less than 0.95, the major 

inflection point is estimated to be the point on the sensitivity curve with the maximal 

distance to a line drawn between the start and end points of the waterfall distribution. If the 

Pearson correlation coefficient is greater than 0.95, the median value is used instead. This 

value is then determined to be the cutoff for separating sensitive and resistant cell lines for 

each drug.

Elastic net regression

We used elastic net regression to generate logistic models for drug sensitivity prediction. 

Elastic net regression is a form of logistic regression with a hybrid regularization term that 

combines lasso and ridge regularization(17). The elastic net contains two hyperparameters, 

alpha and lambda. Alpha defines the relative weight of the lasso and ridge penalization 

terms. Lambda determines the overall size of the regularization penalty. We fixed alpha at 

0.5 and optimized for predictive performance over a range of lambdas7. Regression was 

performed with 25-fold cross validation using the glmnet R package.
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For each model, the target vector consists of the discretized sensitivity data for that 

particular drug. For each drug, six models were built, with input vectors of varying size. 

These input vectors were: the original unprocessed genomic features, the feature selected 

dataset, and each of the four layers of latent variables from the deep learning autoencoder.

Support Vector Machine

We also used a support vector machine (SVM) with a Gaussian kernel to predict drug 

sensitivity. Although SVM is ordinarily a linear classifier, the custom kernel maps the input 

into high-dimensional feature spaces, allowing for the modeling of non-linear classifications. 

SVM training was performed with 25-fold cross validation using the e1071 R interface to 

the libsvm C++ implementation.

As with elastic net regression, the target vector consists of the discretized sensitivity data for 

that particular drug. For each drug, two SVM models were built. One used the original 

unprocessed genomic features as input, while the other used the feature selected dataset.

Consensus clustering

Consensus clustering was performed with 50 repetitions and a sample probability of 0.8 

using the ConsensusClusterPlus algorithm(18). During each repetition, 80% of the cell lines 

in the dataset were randomly selected to be clustered via agglomerative hierarchical 

clustering. Samples that consistently clustered together during these repetitions were 

subsequently assigned to the same cluster upon compilation of the repetitions. Enrichment of 

drug sensitivity in specific clusters was determined by Fisher’s exact test, Bonferroni 

corrected for the number of clusters.

Tissue type modeling

In addition to omics data, the GDSC provides tissue type information describing the cell line 

samples studied in the experiment. The 624 cell lines originate from one of 19 different 

tissues. To sufficiently power statistical tests, we chose to analyze those tissue categories 

with more than 30 cell lines. The 9 largest tissue categories are lymphoma, breast, large 

intestine, skin, aerodigestive tract, nervous system, leukemia, urogenital system, and non-

small cell lung carcinomas. Enrichment of drug sensitivity in specific tissue categories was 

determined by chi-square test, yielding 89 drug-tissue pairs.

External validation

CCLE gene expression data in the form of Affymetrix CEL files were normalized using 

Robust Multi-Array Averaging. This procedure generated an array of 54,675 probe 

expression measurements in 1067 cell lines. A mixture of two normal distributions was fitted 

to each gene’s expression profile, and these groups were used to determine a cutoff to 

discretize the expression levels of each gene into low and high values.

CCLE copy number data were extracted from CCLE_copynumber_byGene_2013-12-03.txt 

available on the CCLE website. These values are HapMap normalized. To make them 

comparable to the estimated copy number counts used in GDSC, we assumed a base 

frequency of two copies per gene to estimate raw copy number. We then normalized values 
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from 0 to 10 to values between 0 and 1. Copy number variation above this range were set to 

1.

CCLE mutation data were collected using two methods: Oncomap 3.0 and hybrid capture 

analysis. These data were extracted from CCLE_Oncomap3_2012-04-09.maf, and 

CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS_2012.05.07.

maf respectively, both available on the CCLE website. These annotations were classified as 

mutated or not based on The Cancer Genome Atlas specification for the Mutation 

Annotation Format.

After this extraction and processing, values for the 3577 features in the GDSC selected 

dataset were extracted and combined to create a CCLE selected dataset. Information on all 

3577 features were available in CCLE, with the exception of mutation data for four genes. 

These missing values were filled in with uninformative average values derived from the 

GDSC dataset. After this procedure, the CCLE dataset consists of 3577 features measured in 

1067 cell lines.

CCLE drug sensitivity data in the form of activity area values was extracted from 

CCLE_NP24.2009_Drug_data_2015.02.24.csv available on the CCLE website. These were 

discretized into sensitive and resistant categories by applying the waterfall method as 

described previously.

The GDSC autoencoder was used to encode the CCLE selected dataset, and the subsequent 

encoding was used as inputs to make drug sensitivity predictions using GDSC elastic net 

models for 15 drugs shared by the two datasets. These predictions were evaluated against the 

waterfall discretized CCLE sensitivity data for those drugs.

Results

Limited predictive capability of genome status markers

We collected data from the Genomics of Drug Sensitivity in Cancer (GDSC)(8) 

pharmacogenomics study and systematically analyzed the utility of using genome-status 

markers as therapeutic indicators for molecularly targeted drugs. The GDSC dataset contains 

the results of drug sensitivity experiments of 140 drugs in 624 cell lines. Each cell line is 

characterized by the following genomic features: somatic copy number alteration (SCNA) 

status of 426 genes, mutation status of 71 genes, and gene expression values of 22,215 gene 

probes.

Each drug was tested on a median of n = 586 cell lines. In these experiments, only 11 cell 

lines were found to be not responsive to any drugs. The remaining 613 cell lines, comprising 

98.2% of the dataset, were typically responsive to a median of 14.5 drug compounds (Figure 

1B). These results suggest the existence of effective therapies for the majority of cancer cells 

investigated in the dataset.

Out of the 140 drugs in the dataset, 29 have unknown or nonspecific mechanisms of action, 

leaving 111 molecularly targeted specific therapies (Supplementary Tables S1, S2). Of these 

111 drugs, some combination of mutation or SCNA information is available for 53 drug 
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targets, whereas the genomic status of the target genes of the remaining 58 drugs were not 

measured. For the 53 drugs, we built a rule-based classifier for each drug to predict drug 

sensitivity. Among these, 10 drugs have an FDA-approved genomic testing indication for 

their clinical use, and our rule-based classifier mirrors these predefined indications. These 10 

drugs are comprised of PARP and tyrosine kinase inhibitors, with genetic tests for 

BRCA1/2, EGFR, ERBB2, ALK, and BCR-ABL mutations. In the cases of the remaining 

43 drugs, the rule-based classifier consists of one simple rule: If the genomic status of the 

target protein of a drug is abnormal – either mutated or copy number amplified – the cell line 

should be sensitive to the drug (Figure 1C).

Some of these models appear to perform well. For example, responsiveness of cell lines to 

the BCR-ABL inhibitor GNF-2 is well correlated with the presence of the BCR-ABL fusion 

(Supplementary Figure S1A). However, there are still cell lines that may be responsive to 

GNF-2 that do not have the gene fusion. In other cases, the rule-based models perform 

significantly worse. For example, it is difficult to associate the responsiveness of cell lines to 

the EGFR inhibitor Gefitinib with the genomic status of EGFR, if such a correlation exists at 

all (Supplementary Figure S1B).

We evaluated the performance of these rule-based classifiers using several metrics. First, 

sensitivity for a drug rule or model is the proportion of cell lines responsive to the drug that 

are correctly identified by the rule or model. Second, specificity is the proportion of cell 

lines that are not responsive to the drug that are correctly identified as such. Third, positive 
predictive value (PPV) refers to the proportion of cell lines predicted to be responsive to the 

drug that are in fact responsive.

The average sensitivity of the 53 rule-based models is 0.10 and the average specificity is 

0.93, indicating genomic markers fail to identify the vast majority of cancer cells sensitive to 

the molecularly targeted drugs (Figure 2A). Most cell lines are insensitive to molecularly 

targeted therapies. The majority of cell lines were predicted by each rule as being 

insensitive, because only a few cell lines host the specific genomic markers required to be 

present by the rule. Thus, these rules are generally characterized by high specificity. Under 

these circumstances, sensitivity and PPV are better indicators of the accuracy of a classifier. 

The 53 models share an average PPV of 0.38 (Figure 2B), indicating that the majority of cell 

lines hosting a genomic marker are actually resistant to the drugs.

Meanwhile, there are 21 drugs in the dataset with FDA approved guidelines that do not 

involve genetic testing. Most of these are nonspecific cytotoxic agents, and many of them 

are indicated as first line treatment for a variety of cancers. When applied indiscriminately 

across the cell lines in the dataset (equivalent to predicting every cell line as sensitive to the 

drug), these drugs achieve an average PPV of 0.17 (Figure 2C). The actual administration of 

a first line treatment often takes into account tumor size, stage, and other factors, but these 

features do not apply to cell lines, so we have calculated a reasonable lower bound on the 

PPV.

These results indicate two areas with opportunity for meaningful improvement. First, better 

prediction of the effectiveness of targeted therapies can expand the application of those 

Ding et al. Page 7

Mol Cancer Res. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drugs to patients with cancer cells that are receptive despite lacking the related genomic 

marker. Second, accurate prediction of the effectiveness of nonspecific treatments can reduce 

the prescription of those drugs to patients for whom they will not be effective, leading to 

improvements in cost and quality of life for patients who would otherwise only suffer 

through a toxic, ineffective first line regimen. To this end, we set out to investigate whether 

combining state-of-the-art machine learning methods and genome-scale omics data can 

derive more accurate therapeutic indicators.

Omics data contain information for predicting drug sensitivity

We first investigated whether current state-of-the-art classification models trained with 

omics data as input features could predict the drug sensitivity of cell lines. We tested two 

classification methods with proven ability to handle high-dimensional data: elastic net 

regression(17) and support vector machines(19) (SVMs). Since we are no longer restricted 

by the availability of known and measured genomic markers, we were able to train a model 

for each of the 140 drugs in the dataset.

The elastic net models trained with all omics features achieved an average sensitivity of 0.75 

and an average specificity of 0.78. The corresponding SVM models achieved an average 

sensitivity of 0.59 and an average specificity of 0.56. PPV averaged 0.43 for the elastic net 

models and 0.18 for the SVM models. The performance of these classification models is 

better than that of the genomic markers for molecularly targeted drugs (Supplementary 

Figure S2).

We also evaluated the area under the receiving operator curve (AUROC) as a summary 

statistic for how well the model performs across various sensitivity and specificity values. 

The elastic net models have an average AUROC of 0.81. In contrast, the SVM models have 

an average AUROC of 0.55 (Supplementary Figure S2). These results indicate that omics 

data contain useful predictive information that can be captured by different classification 

models, and that machine learning algorithms outperform the rule-based method. Since 

elastic net models appear to outperform SVMs, we hereafter only present results derived 

using elastic net models.

Although the elastic net model has intrinsic feature selection capability, most classification 

algorithms suffer from an overfitting problem when the dimensionality of input features is 

very large. We sought to determine whether additional feature selection techniques could be 

applied to enhance the performance of these classifiers. We applied a variance-based 

mixture-fitting feature selection scheme, since features that lack significant variation across 

samples should have low predictive value(20). We found that, on the level of individual 

models, some drugs are better predicted with feature selection than without. However, 

feature selection did not enhance the overall aggregate performance of the elastic net, likely 

due to the loss of some useful information during feature selection (Figure 3A).

Learning cellular state features using deep learning

For certain drugs, neither elastic net nor SVM perform well using the original or the selected 

features as predictive inputs. We hypothesized that the signals of some cellular pathways are 

embedded as complex statistical structures in the omics data, which cannot be detected and 

Ding et al. Page 8

Mol Cancer Res. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fully utilized by elastic net and SVM. This problem may be addressed by models designed 

to reveal such complex statistical structures. Recently, our team reported that deep learning 

algorithms may be able to capture the signals of biological entities in cell signaling 

systems(14,21). In this study, we applied an autoencoder(22), a type of unsupervised deep 

neural network, to learn features that are potentially reflective of the cellular state.

The autoencoder aims to learn new representations of a vector of observed variables using 

multiple hidden layers of hierarchically organized latent variables. In each hidden layer, the 

input data are transformed using a set of weights and then propagated to the next layer. In 

this manner, the statistical distributions underlying the omics data are compositionally 

encoded by latent variables in each of the hidden layers. We learn one such model for each 

drug. Once learned, we can apply the model to infer the expected states of latent variables 

for each cell line, providing a set of new representations, potentially reflecting the state of 

signaling pathways in these cells. These latent variables become additional features in 

learning a drug-specific elastic-net model that predicts a response of each cell-line to the 

drug.

Since different layers of an autoencoder capture information with differing degrees of 

abstraction, we represented each cell line using the states of latent variables within specific 

layers and then trained an elastic net classifier for each drug. Although aggregate 

performance does not improve when using latent variables as predictive features, some drugs 

modeled poorly by original or selected omics features are significantly better predicted by 

hidden layer models (Figure 3A). For a given drug, the performance often varies when latent 

variables from different layers are used as predictive features. 57 drugs are best predicted 

using the original omics features, 30 are best predicted using selected features, and 53 drugs 

are best predicted by deep-learning-derived hidden layer features. These findings indicate 

that useful complex relationships are uncovered by deep learning (Figure 3B).

As a group, the best models have an average AUROC of 0.87 (Figure 3A). Average 

sensitivities, specificities, and positive predictive values are 0.82, 0.82, and 0.51, 

respectively (Figure 3C, D). Exceptional performance was achieved for 15 drugs, in which 

sensitivity and specificity values were greater than 0.98, positive predictive value was greater 

than 0.94, and AUROC values were greater than 0.99 (Supplementary Table S3).

In the 53 rule-based models for molecularly targeted drugs, the opportunity for improvement 

lies in the expansion of therapeutic use. When compared to these rule-based models, the best 

models reduced the rate of false negatives (recovering missed therapeutic opportunities) by 

an average of 80%, at the cost of reducing the rate of true negatives (introducing ineffective 

therapies) by just 9% (Figure 4A). Conversely, for the 21 FDA approved nonspecific 

medications, the improvement potential is in the reduction of ineffective administration. In 

this group, use of the best models resulted in an 82% reduction in false positives (reducing 

ineffective therapies) while incurring a 18% reduction in true positives (missing some other 

therapeutic opportunities) (Figure 4B).

To investigate whether deep-learning-derived features performed well because they capture 

information relevant to the cellular signaling system, we hypothesized that cell lines with 
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similar representations may present similar drug response profiles. We applied 

agglomerative hierarchical clustering to the GDSC cell lines based on the autoencoder’s first 

hidden layer of 1300 features. Consensus clustering into 12 groups recovered a stable 

partitioning (Figure 5A). We found that sensitivity to 74 drugs was significantly enriched (p 

< 0.05) in at least one group (Figure 5B). Altogether, this supports the idea that deep 

learning produces a novel representation from the input data, and that the deep learning 

representation is useful for predicting drug sensitivity.

Tissue specific prediction of predictive models

In the GDSC, sensitivity to 72 of the 140 drugs studied was significantly enriched (p < 0.05) 

in at least one major tissue type (Supplementary Table S4). As cell lines from the same 

tissue often share similar gene expression and genomic sequence profiles, these occurrences 

of enrichment are potential instances of confounding. In these situations, a predictive model 

could theoretically achieve strong performance by simply learning to predict tissue type 

based on omics features. However, such a model would have limited utility, because tissue 

type is usually a known variable that does not require predicting. Although the 89 drug-

tissue pairs in which enrichment occurs represents only 7% of all drug-tissue combinations, 

we investigated the performance of our predictive models in these specific instances to 

explore the possibility of tissue type confounding.

For any particular drug, a model based on tissue type would assign a sensitive prediction to 

samples originating from tissue with enriched sensitivity. This method results in an average 

accuracy of 0.47 for drugs in enriched tissue. In the same samples, the corresponding best 

elastic net models achieve a significantly higher (p < 10e-7) average accuracy of 0.62 

(Supplementary Figure S3). This advantage in performance indicates that the deep learning 

representations are not merely recapitulating the tissue type of the input sample. Additional 

information regarding the cellular state is being encoded and utilized to predict drug 

sensitivity. Training tissue specific models is currently not feasible, but may be interesting as 

more experimental samples become available.

External validity of predictive models

To further investigate the validity of our predictive models, we sought to evaluate them using 

data from a different study. A total of 15 of the drugs studied in the GDSC are also 

investigated in the Cancer Cell Line Encyclopedia (CCLE) pharmacogenomics study(7). 

Although the level of agreement between the two studies is unclear, the methods employed 

by the two groups are similar(23,24). We collected omics data from the CCLE, applied the 

autoencoder trained on GDSC data to derive features for the 1067 CCLE cell lines, and then 

applied the best elastic net models trained using GDSC to predict drug sensitivity for CCLE 

cell lines. We then evaluated these predictions against actual sensitivity calls from the CCLE 

experiment (Figure 6). The fifteen models achieved an average AUROC of 0.67. This is 

significantly higher than results obtained using randomly permuted input data (p < 10e-5), 

indicating that the relationships modeled by deep learning persist even under different 

experimental conditions.

Ding et al. Page 10

Mol Cancer Res. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

In this study, we combined genome scale omics data and contemporary machine learning 

techniques to accurately predict the performance of a wide range of targeted and untargeted 

therapies on cancer cell lines. Our results indicate that data-driven approaches significantly 

outperform current rule-based methods using the genomic status of drug targets as 

therapeutic indicators. Although this represents a significant improvement, further 

refinements are possible. Individual models can be tuned for sensitivity or specificity based 

on the use case, and the performance of all models would be expected to improve with 

additional training data. The positive results reported here provide support for further 

investigating the extent to which the introduced methods can improve prediction of the 

sensitivity of patient tumors to currently available drugs. In addition, recent success using 

cell line studies to motivate the eventually successful clinical trials of cyclin D kinase 4/6 

inhibitor palbociclib (25–27) indicates the value of cell line based drug screening.

Our study demonstrates that omics data contains information beyond genomic markers that 

are important and useful for the prediction of cancer drug sensitivity. As biotechnology 

advances and the cost of collecting omics data decreases, we anticipate that genomic, 

transcriptomic, proteomic, and metabolomics data may play a significant role in guiding 

data-driven precision medicine. In order for this to happen, the data must first be available. 

Therefore, systematic collection of molecular phenotypes must become standard clinical 

practice.

Precision oncology can and should be a practice of effectively utilizing all available 

treatments, including molecularly targeted, immunotherapy, and cytotoxic chemotherapies in 

a patient-specific manner. In the future, using procedures that build on the methods 

introduced here and elsewhere, we anticipate that an oncologist equipped with a computer-

based decision support system will be able to select for any given patient an optimal regimen 

that maximizes therapeutic efficacy while minimizing the negative effects associated with 

ineffective treatments. We believe that such collaboration as well as the system itself will be 

key elements in realizing the promise of precision oncology.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Drug sensitivity prediction workflow utilizing GDSC data
A, Workflow for the training and optimization of drug sensitivity prediction models. There 

are three main steps. First is the feature engineering of omics data from the Genomics of 

Drug Sensitivity in Cancer Project. Second is feature construction via a deep neural network 

autoencoder. Third is training of machine learning models to predict drug sensitivity 

response using various feature sets as inputs. B, Histogram of the number of effective drug 

compounds for any given cell line in the GDSC pharmacogenomics study (median = 14.5). 

C, Descriptive breakdown of drugs tested in the GDSC pharmacogenomics study.
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Figure 2. Limited predictive capability of genomic markers
A, Sensitivity and specificity of 43 genomic marker rule based models (GM) and 10 FDA 

genomic guideline clinical indications (FDA). B, Sensitivity and positive predictive value of 

43 genomic marker rule based models (GM) and 10 FDA genomic guideline clinical 

indications (FDA). C, Drug sensitivity of 21 nonspecific FDA-approved medications.
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Figure 3. Learning cellular state features using deep learning
A, Predictive performance of elastic net models relative to predictive features used as inputs. 

B, Proportion of best models from each category of input feature. C, Sensitivity and 

specificity of 140 best elastic net models (Best EN) compared to 43 genomic marker rule 

based models (GM) and 10 FDA genomic guideline clinical indications (FDA). D, 

Sensitivity and positive predictive value of 140 best elastic net models (Best EN) compared 

to 43 genomic marker rule based models (GM) and 10 FDA genomic guideline clinical 

indications (FDA) *** p < 10e-3
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Figure 4. Improvement in predictive performance achieved with optimized models
A, Percent change in true positives and false positives identified by optimized elastic net 

models relative to simply giving the drug to all patients for 21 FDA-approved nonspecific 

medications. B, Percent change in true negatives and false negatives identified by optimized 

elastic net models relative to genomic marker rule-based models for 53 targeted drugs.
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Figure 5. Consensus clustering of GDSC tumor cell line samples
A, consensus clustering of GDSC cell lines based on autoencoder constructed Hidden 1 

features. The intensity of the plot indicates the relative frequency, or consensus, with which 

a pair of samples cluster together in repeated hierarchical clustering of subsamplings from 

the dataset. B, enrichment of sensitivity to drugs in autoencoder constructed Hidden 1 

consensus clusters.
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Figure 6. External validity of predictive models
AUROC values for fifteen elastic net models developed using GDSC omics data and 

autoencoder, evaluated using CCLE omics data, and randomly permuted data. *** p < 10e-6
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