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ABSTRACT
The questionable effectiveness of routine sperm parameters in determining male factor infertility problems 
and increasing the success rates of assisted reproductive techniques have led to the investigation of more 
detailed sperm parameters that could affect the male fertility and reproduction. Thus, the effects of differ-
ent sperm parameters such as sperm DNA integrity was started to be investigated thanks to the previously 
described methods such as single cell gel electrophoresis (COMET) assay, sperm chromatin structure assay 
(SCSA), acridine orange test (AOT), terminal deoxynucleotidyl transferase-mediated deoxyuridine (TdT) 
triphosphate (dUTP) nick end labeling (TUNEL) assay and sperm chromatin dispersion (SCD) test. How-
ever, studying on sperm DNA might be very complex because the sperm DNA differs from the somatic cell 
DNA with its unique structure. Also, the sperm DNA undergoes many changes during spermatogenesis 
and it is condensed by being packaged tightly with different types and numbers of protamines in different 
species. Despite all these difficulties, these methods provide important information about the reasons and 
consequences of DNA damages in sperm and the effects of these damages on reproduction.

Keywords: COMET; DNA fragmentation; SCD test; sperm; SCSA; TUNEL.

Introduction

Sperm is the male gamete cell which can move 
and has the ability of capacitation, penetration 
and fertilization. The ultimate aim of sperm 
is to maintain the generation by transferring 
the male genetic material into the ovum, the 
female gamete cell. 

Routine semen examinations are widely used to 
predict the fertilization ability of sperm. Routine 
semen parameters consist of sperm concentra-
tion, motility, live sperm ratio and morphologi-
cal examination. However, the previous studies 
conducted in humans have demonstrated that 
it is not always possible to achieve an accurate 
decision about male fertility according to the 
results of routine semen examinations[1,2] and 
when all the routine sperm parameters are nor-
mal, sperm population of an ejaculate may be 
subfertile or infertile.[2] Therefore, the effects 

of more detailed parameters such as deoxyri-
bonucleic acid (DNA) integrity of sperm on the 
fertility are considered. Previous studies have 
indicated that percentage of DNA damaged 
sperm in the sperm population of the individu-
als could affect the fertilization capacity of their 
sperm, the qualities of their embryos and preg-
nancy outcomes achieved after assisted repro-
ductive techniques.[1,3] Thus, it is considered that 
detection of sperm DNA integrity might pro-
vide complementary data to predict fertilization 
capacity of sperm, quality of embryos obtained 
from these sperms and success rate of assisted 
reproductive techniques such as in vitro fertil-
ization and intracytoplasmic sperm injection. 
The detection of DNA damaged sperm is not 
only important to find out their harmful effects 
on reproduction in mammals but also to take 
preventive measures, and understand the causes 
and consequences of DNA damage in sperm. 
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Sperm DNA
The DNA of mammalian sperm is the mostly known compact 
eukaryotic DNA which is packaged six times more tightly than 
the tightly packaged mitotic chromosomes of somatic cells.[4] 

For example, the sperm nucleus of mouse is compacted into a 
volume that is approximately 20 times smaller than the liver cell 
nucleus.[5,6] In the mammals, the DNA of sperm is situated as 
anchored to a single structure which is called the nuclear annu-
lus.[7,8] It is believed that the nuclear annulus is important in the 
organization of sperm DNA.[8] The previous studies conducted 
on chromatin condensation during spermiogenesis indicated 
that this process starts from the anterior tip of sperm head and 
progresses towards the tail.[9,10] In the process of chromatin con-
densation, after histones are restructured by transition proteins, 
they are reconstructed again to finalize their shape by prot-
amines which are DNA-binding proteins of sperm.[11] The prot-
amines are half size of histones and the majority of the amino 
acids in protamines are arginine.[12] The sperm of different spe-
cies contain varying numbers of different types of protamines 
with different amino acid sequences. It was reported that the 
sperm nuclei of bulls,[13] rams[14] and rats[15] contained a single 
type of protamine, sperm nuclei of mice[16] and humans[15,17] 
contained two types of protamines, and sperm nuclei of some 
fish species[18] contained three different types of protamines.[12] 
Contrary to the sperm of some species such as bull that has a 
single type of protamine, the sperm of other species like human 
consist of two different types of protamines which contain less 
cysteine.[19] This situation leads to formation of fewer disulfide 
bonds in the sperm nuclei which contain two different types 
of protamines and being less stable than those which contain a 
single type of protamine.[19]

DNA fragmentation in sperm
It is known that DNA damage occurs in sperm due to various 
reasons. The most common cause of DNA damage in sperm 
is oxidative stress. Oxidative stress occurs due to the imbal-
ance between the production of reactive oxygen species and 
antioxidant defense system.[20] The fact that spermatozoon 
membrane contains high amounts of polyunsaturated fatty acid 
and its cytoplasm has inadequate antioxidant capacity make 
spermatozoa highly vulnerable to the attacks of reactive oxygen 
species and lipid peroxidation.[21,22] For this reason, many dif-
ferent factors can cause oxidative stress and DNA damage in 
spermatozoa. For example, it was reported that heat stress,[23] 

cryopreservation of sperm[24,25] and chilling of sperm[26] cause 
DNA damage in the sperm. It is known that smoking, cancer 
therapies, varicocele, and cancer can lead to DNA damage in 
the human sperm.[27] Also, DNA damage can occur in germ cells 
during spermatogenesis and some DNA damaged germ cells are 
eliminated via apoptosis.[28] Thus, the disturbances related to 
the apoptotic mechanism might lead to DNA damaged sperm 
production. 

Detection of DNA fragmentation in sperm
A number of different methods have been described to deter-
mine the DNA damaged sperm rate and the degree of these 
damages. The primary methods are as follows; Single Cell Gel 
Electrophoresis (COMET) Assay, Sperm Chromatin Structure 
Assay (SCSA), Acridine Orange Test (AOT), Terminal 
Deoxynucleotidyl Transferase-Mediated Deoxyuridine (TdT) 
Triphosphate (dUTP) Nick End Labeling (TUNEL) Assay and 
Sperm Chromatin Dispersion (SCD) Test. 

Single cell gel electrophoresis
The COMET assay was first described by Ostling and Johanson 
in 1984.[29] They detected double-stranded DNA fragments in 
somatic cells using neutral lysis and electrophoresis solutions. 
Neutral COMET assay was evolved later on by two different 
groups using alkaline solutions.[30,31] Alkaline COMET assay 
enabled identification of the lower levels of DNA fragments 
and both single and double strand DNA breaks.[30] In general, 
COMET assays are based on the evaluation of the comet image 
which is formed when the DNA, which is revealed after embed-
ding the certain number of sperm into the agar and lysing their 
cellular proteins and membranes using detergent and high den-
sity salt solutions, is exposed to electrophoresis and the existing 
DNA fragments move further than the main DNA. The basic 
steps for this technique are summarized below.

The process of embedding of spermatozoa into the agar: 
At this stage, the researchers covered the slide which had 
been previously coated with normal melting agar (NMA) 
with a low melting agar (LMA)-sperm solution which con-
tained a certain number of spermatozoa.[32,33] However, it was 
observed that some researchers preferred directly spreading 
the agar-cell solution on the frosted microscope slide or 
gelbond.[34,35] The aim of using normal melting agar, frosted 
microscope slide or gelbond as a first layer might be to pre-
vent possible loss of the cell-agar mixture during the lysis and 
electrophoresis procedures.

The lysis process: The aim of this process to lyse sperm mem-
branes and reveal the sperm DNA during the incubation period 
in lysis solutions. Several lysis solutions including variety of 
chemicals have been used for this process at different time inter-
vals in various species.[33,36-39] 

The process of electrophoresis: In this process, after the 
incubation of revealed sperm DNA in neutral or alkaline elec-
trophoresis solution, the revealed sperm DNA is exposed to 
the electrophoresis in neutral or alkaline conditions. Different 
electrophoresis solutions, variety of electric powers and applica-
tion times were used in the electrophoresis process in previous 
studies.[34,36-39]
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Assessment of comet images: In this process, the slides are 
incubated in the neutralization solution, air dried and stained 
with DNA specific stains. The stained comet images are 
assessed subjectively under fluorescence microscope or by 
computer-assisted COMET assay analysis program linked to 
fluorescence microscope. COMET assay analysis programs or 
different computer-assisted image analysis programs were used 
for the assessment of the comet images in previous studies.
[33,38,40,41] The COMET assay specific analysis programs might 
be the most objective method to be used for the assessment of 
comet images. Because it is possible to obtain many different 
parameters from these programs such as tail DNA (%), tail 
length (µm) and Olive tail moment which show the degree of 
the DNA damage in individual cells automatically.

Sperm chromatin structure assay 
SCSA was described for the first time in 1980.[42] SCSA is based 
on the principle that DNA damaged sperm are more vulnerable 
to heat or acid denaturation compared to the intact sperm.[42,43] 
The denatured DNA damaged sperm are stained red while the 
intact sperm turn into green when exposed to acid and acri-
dine orange stain.[44] The stained sperm are analyzed by flow 
cytometry and DNA fragmentation index (DFI) is calculated to 
determine DNA damaged sperm rate. The greatest advantage of 
SCSA is that a large number of cells and 1024 discrete chan-
nels of red and green fluorescence could be evaluated by flow 
cytometry.[45,46] 

Acridine orange test
Generally, AOT is similar to SCSA but the DNA damaged 
and intact sperm are classified subjectively under florescence 
microscope in AOT. When the intact sperm emit green flores-
cence, DNA damaged sperm emit red florescence.[44] After the 
evaluation of spermazoa according to their color, DNA dam-
aged sperm rate are detected. AOT is simpler and cheap test 
compared to the SCSA. But, the evaluation of limited number 
of spermatozoa, the quick loss of florescence emissions under 
florescence microscope and limited classification of florescence 
emissions between green and red with naked eye are the disad-
vantages of AOT.[45-47]

Terminal deoxynucleotidyl transferase-mediated 
deoxyuridine triphosphate nick end labeling assay
TUNEL test is based on detection of single or double stranded 
DNA fragments marked by dUTP owing to a reaction which are 
catalyzed by the TdT enzyme. The TUNEL test generally consists 
of respectively fixation and permeabilization of sperm, marking 
of DNA fragments, staining and evaluation of sperm stages. In the 
evaluation process, the sperm can be assessed subjectively under 
light and fluorescence microscope or by flow cytometry.[48-50] The 
TUNEL assay can be also used to identify the apoptotic cells in the 
tissues during histological examinations.[51,52]

Sperm chromatin dispersion test
In classical SCD test, the slides, which are covered with sperm-
agar solution, are prepared similarly as in COMET assay proce-
dure. Then, these sperm samples are incubated respectively in 
acid denaturation solution to reveal fragmented DNA in sperm, 
in neutralizing-lysing solutions to remove cellular proteins, and 
in washing and ethanol solutions to wash and dehydrate the 
samples.[53] The air-dried sperm samples are stained with Diff-
Quik stain or DNA specific stains and the sperm samples are 
evaluated under light or fluorescence microscope.[53] In classical 
SCD test, while the sperm which produced halo were regarded 
as intact, the sperm which had no halo were regarded as DNA 
damaged.[53-55] Contrary to the classical version of SCD test, the 
sperm which produced halo are regarded as DNA damaged; 
the sperm which had no halo are regarded as intact in modified 
commercial version of the SCD test.[55-58] 

Comparison of tests used to detect DNA damage in 
spermatozoa
In humans, SCSA, TUNEL and SCD tests have been found quite 
effective in detecting DNA damage in sperm contrary to AOT.
[46] Although SCSA and AOT have same experimental principles; 
the reason of different results obtained from these tests might be a 
consequence of different evaluation procedures.[46] Both COMET 
assay and SCSA were found to be more sensitive to distinguish 
and detect DNA damage in mouse spermatozoa which were col-
lected from caput or cauda of epididymidis compared to SCD 
test and TUNEL assay.[59] Sperm chromatine condensation and 
the formation of disulphide bridges between protamines maintain 
during transport of sperm through epididymis. Thus, the sensitiv-
ity of these tests might be dependent on sperm maturity.[59] 

In conclusion, the previous studies showed that all these tests 
can be applied to determine the preventive measures, causes 
and consequences related to DNA damage in sperm. Also, these 
tests provide complementary information to predict fertiliza-
tion capacity of sperm, success rates of assisted reproductive 
techniques and qualities of embryos which are obtained from 
this sperm. However, the sensitivity of these tests might change 
dependent on the species, maturational stages of sperm and 
different evaluation methods. The widespread usage of flow 
cytometry and computer assisted analysis programs can contrib-
ute standardization of the results obtained from different tests. 
Also evaluation of oxidative stress parameters in sperm might 
be beneficial to support results of these tests. 
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