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Abstract

A precise predictive model is important for obtaining a clear understanding of the changes in

dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved

oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide

more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D)

dissolved oxygen content prediction model based on a radial basis function (RBF) neural

network, K-means and subtractive clustering was developed and named the subtractive

clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive

clustering methods were employed to enhance the hyperparameters required in the RBF

neural network model. The comparison of the predicted results of different traditional models

validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model

for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed

model can effectively display the three-dimensional distribution of dissolved oxygen content

and serve as a guide for feeding and future studies.

Introduction

Dissolved oxygen content plays a vital role in aquatic ecosystems because it has a substantial

influence on water quality management, feed consumption, and energy expenditure [1].

Proper control and management of dissolved oxygen content in crab pond aquaculture is cru-

cial for the developing crabs and has a significant impact on the quality and quantity of the

final product [2]. An inappropriate dissolved oxygen content can cause crab hypoxia and even

more severe disease [3]. Therefore, establishing an efficient and accurate model for predicting

dissolved oxygen content in crab aquaculture is important to provide a basis for water quality

control and reduce aquaculture risk. Liu et al. and Yu et al. built dissolved oxygen content

prediction models based on the machine learning method, which achieves time dimension

forecasting without considering three-dimensional prediction [2, 3]. However, a three-dimen-

sional prediction model for dissolved oxygen content can reveal changing trends and provide
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guidance for aquaculture. Therefore, in this study, we propose a hybrid three-dimensional

(3D) dissolved oxygen content prediction model that can achieve more accurate results and

overall guidance for dissolved oxygen content in crab ponds.

Many artificial methods have been applied to water quality prediction and achieved signifi-

cant results, including the water quality index [4], artificial neural networks [5], and support

vector regression methods [6]. Water quality assessment models based on dynamic analysis

methods have been applied to lakes [7] and rivers [8] to precisely assess impact factors for

water quality. Although the dynamic factor mode enables long-term water quality analysis and

prediction, it is not suitable for the nonlinear problem and cannot provide precise prediction

accuracy [9]. Artificial neural networks and support vector regression methods not only solve

nonlinear prediction but also improve prediction accuracy [10]. A back propagation neural

network (BP-NN) has been used to predict the water quality in intensive aquaculture water

management [11]. Dissolved oxygen content is one of the most important parameters in the

characterization of the water condition [12]. Artificial neural networks have been successfully

applied in a number of studies focused on dissolved oxygen content prediction. Anita et al.

applied three alternative neural network models radial basis function neural network

(RBFNN) and multivariate linear prediction neural network (MLPNN) and a multivariate lin-

ear regression model (MLR) for dissolved oxygen content prediction in river water and

showed that the best performing models were GRNN and RBFNN [12]. A RBFNN model was

developed to predict the dissolved oxygen from biochemical oxygen demand (BOD) and

chemical oxygen demand (COD) in the Surma River [13]. Samira and Salim developed an

adaptive neural based fuzzy inference system [14] and dynamic evolving neural-fuzzy infer-

ence system [15] for modeling river dissolved oxygen concentration. Recently, a new extreme

learning machine model was applied to predict dissolved oxygen concentration with and with-

out water quality variables as predictors. The ability of ELM to outperform MLPNN and MLR

for modeling DO with and without water quality variables as predictors was assessed [16].

Additionally, Liu et al. proposed a dissolved oxygen prediction model based on the least square

support vector regression (LSSVR) optimized by particle swarm organization [3]. Various

computational intelligence techniques (e.g., MLP, RBF, LGP, and SVM) for estimating DO

concentration were compared by Ehsan et al. The SVM provided the most accurate model for

DO estimation in comparison to other models [17]. An intelligent controller based on an

evolving fuzzy neural network was applied to the automatic and intelligent detection of break-

points in dissolved oxygen (DO) profiles [18]. However, the above studies are limited to one-

dimensional prediction for dissolved oxygen content, which cannot provide detailed guidance

for dissolved oxygen content in crab ponds. Compared to one-dimensional models, three-

dimensional models are a more powerful means of visualizing, analyzing and accurately pre-

dicting dissolved oxygen content in an aquaculture pond. Hence, this study proposes a three-

dimensional model for dissolved oxygen content.

Recent research on the construction of three-dimensional models has primarily focused the

inverse distance weighting and Kriging methods of spatial interpolation [19, 20]. However,

these methods have poor adaptive variation and require numerous assumptions, and the spa-

tial interpolation accuracy depends on the number of samples [21]. Consequently, RBFNNs

have been used in spatial interpolation problems due to its strong nonlinear fitting ability. RBF

networks, which can be viewed as a computer model, imitate the learning capabilities of the

human brain [22]. The Kriging interpolation method has become a favored interpolation rou-

tine and has been used by many environmental scientists for interpolation and mapping [20].

Artificial neural networks have demonstrated higher accuracy than Kriging for spatial map-

ping of complex patterns of arsenic contamination of groundwater because neural networks

are more suitable for nonlinear problems [23]. In this study, the time dimension was added to

A hybrid intelligent method for 3D prediction of dissolved oxygen content in aquaculture

PLOS ONE | https://doi.org/10.1371/journal.pone.0192456 February 21, 2018 2 / 17

scale Freshwater Fish Health Breeding”, No.

Z171100001517016.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0192456


the dissolved oxygen content prediction because aquaculture water is an open, nonlinear,

dynamic and complex system [3]. Therefore, RBF was selected as a three-dimensional model

for dissolved oxygen prediction. RBF-based spatial interpolation involves the optimal estima-

tion of parameters: numbers of hidden nodes, the hidden layer’s center value and width, and

the link weight. The number of hidden nodes and center value have typically been considered

difficult to determine in radial basis function neural networks [24]. To improve the accuracy,

Liu Sicong adapted the integrated RBF neural network for spatial data interpolation of lead

content [25]. I-Cheng Yeh et al. concluded that both MLP and RBF have advantages and disad-

vantages in spatial interpolation, and neither MLP nor RBF can easily construct a model with

sufficient accuracy to fit a plane-peak hybrid surface. Thus, they combined MLP and RBF and

proposed a hybrid neural network with both sigmoid and Gaussian functions as the hidden

layer. However, these previous studies have neglected the question of how to determine the

hidden layer nodes and center value in the RBF spatial interpolation method.

In this study, SC-K-means-RBF 3D spatial interpolation of dissolved oxygen content in

aquaculture ponds is presented. The fundamental process of the SC-K-means-RBF 3D spatial

interpolation is as follows: first, the initial cluster center CS and cluster number NS of the sam-

pling data are calculated with subtractive clustering; second, based on the initial cluster center

CS and cluster number NS, the ideal cluster center C is obtained by K-means clustering; and

finally, the dissolved oxygen content values of all points in the entire aquaculture pond can be

interpolated by using the obtained parameters to design the radial basis neural network and

then a 3D model of the dissolved oxygen content of the aquaculture pond.

The remainder of this paper is structured as follows. Section 2 describes the basic methodol-

ogy. Section 3 presents the parameter selection of RBF with the SC-K-means method and the

overall description of the three-dimensional prediction of dissolved oxygen content. Section 4

provides the prediction results of the hybrid method and the three-dimensional model perfor-

mance. Section 5 gives the conclusions from this research and suggests directions for future

research.

Methodology

Standard RBF neural network

The RBF neural network, which was presented by C. Darken and J. Moody in 1989, is one of

the most widely used neural network models [26]. This neural network has an uncomplicated

structure with three layers: the input layer, the hidden layer, and the output layer, as shown in

Fig 1. The input data X are an m-dimensional vector, where X = [x1, x2 . . . xm]T. The input

data are transmitted to the hidden unit by the input unit [27]. The hidden unit response for

the input data consists of local activation functions [25]. The response has the following form:

φiðxjÞ ¼ φðkxj � cikÞ i ¼ 1; 2; . . . ; n ð1Þ

where φi denotes the ith hidden unit’s response, xj is the jth input data, ci denotes the center

of the ith unit, φ(x) denotes the activation function, n denotes the hidden node’s number, and

||xj−ci|| denotes the Euclidean norm. There are different types of functions φ(x) that satisfy the

definition, and the Gaussian function has the following form:

φ Xð Þ ¼ expð�
kX � cjk

2

2s2
Þ ð2Þ
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where σ denotes the hidden layer’s width, which can be calculated by

s ¼
dmaxffiffiffiffiffi

2n
p ð3Þ

where dmax denotes the maximum distance between hidden nodes, and n denotes the number

of hidden nodes.

For the output layer, there is a linear relationship between the hidden layer and output

layer, which can be defined as follows:

y ¼
Xn

i ¼ 1
wiφiðXÞi ¼ 1; 2; . . . ; n ð4Þ

where wi denotes the connecting weight value of the ith hidden units and the output unit. The

training of RBF neural networks is a process of estimating the above parameters, namely the

number of hidden nodes n, the center value of the hidden nodes c, the width σ, and the link

weight wi [27]. Commonly, two-staged learning strategies are used to determine the parame-

ters. In the first stage, the widths and the correct values of the centers are calculated by using

the K-means clustering method, and in the second stage, the least squares method is used to

calculate the connection weights, which is a standard process [28].

K-means clustering

Clustering is a process in which sampling data can be divided into many different groups so

that each group has some common characteristics [29]. Clustering methods include the K-

means clustering algorithm, the multiple kernel K-means clustering algorithm, hierarchical

algorithms, and the combined cluster and discriminant analysis method. The K-means algo-

rithm is a practical and classic method of clustering [30]. Hierarchical algorithms are usually

Fig 1. Structure of RBF[22].

https://doi.org/10.1371/journal.pone.0192456.g001
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used as a baseline or to optimize the base clustering algorithm; these algorithms are computa-

tionally intensive and cannot be used for large-scale calculations [31]. The multiple kernel K-

means clustering algorithm is an optimized method of the basic K-means algorithm. The com-

bined cluster and discriminant analysis (CCDA) method can search for homogeneous groups

and show exactly whether further separation is needed with the difference values attributed to

each grouping [32]. Compared to the above methods, the K-means clustering algorithm is sim-

ple and effective. Hence, the K-means algorithm was chosen to calculate the hidden nodes of

the RBF.

The aim of K-means is to obtain K cluster centers in the sampling data to minimize the

sum of the square distance between every datum point Xi and its nearest center [33]. A ran-

domly selected initial K-center and the value of K are required for the K-means clustering algo-

rithm. Let X = {xi|i = 1, . . ., n} be a sampling data set, C = {ci|i = 1, . . ., k} be a set of K centers

selected from X, and Mk = {mi|i = 1, . . . m} be a set of samples that belong to the Kth cluster

[34].

The sampling data are assigned to one of the K clusters based on the minimum value of the

distance d(xi, ci) between the clusters and the sampling datum point. The distance d(xi, ci) is

given by the following:

dðxi; cjÞ ¼ kxi � cjk ð5Þ

where ||.|| denotes the Euclidean distance between a sampling data xi and its cluster center cj.

Then, the new cluster centers are calculated according to the following:

cj ¼

P
xi2Mj

xi

m
ð6Þ

where m denotes the number of data items belonging to the jth cluster. This process is repeated

until there is no change in the cluster centers. Obviously, a fundamental disadvantage of K-

means is that the result of clustering depends on the choice of the initial cluster centers. If the

number of cluster centers is over-forecast, fictitious classes will be generated. If a low number

of cluster centers is chosen, the quality of the resulting clustering will decrease for different

merged classes [31]. Thus, the subtractive clustering method was selected to optimize the K-

means algorithm in this study.

Subtractive clustering

Subtractive clustering was developed to overcome the limitations of the momentum method

[35]. The basic idea of subtractive clustering is to determine the center of the cluster according

to the data density of each sampling point. Each of the sampling points is assumed to be a

potential cluster center, and for input vectors (X1, X2, � � �, Xm) belonging to the n dimension,

the data density of each vector has the following form[36]:

Di ¼
Xm

j¼ 1
exp �

kXi � Xjk
2

a

2

� �2

" #

ð7Þ

where Di denotes the density, m denotes the amount of sampling data, α denotes the adjacent

field next to this point and is a positive constant, and ||.|| denotes the Euclidean distance. Com-

monly, the value of Di will be higher if a datum point Xi has more data around it than other

datum points. The datum point X�
1

that has the highest value of D�
1

is chosen as the first cluster

center after the density of each point is calculated. The first cluster’s effect should be subtracted
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to calculate the new density values of the second cluster center as follows:

Di ¼ Di � D�
1
exp �

kXi � X�
1
k

2

b

2

� �2

 !

ð8Þ

b ¼ m � a ð9Þ

To avoiding closely clustered centers, β often equals 1.5 � α. Therefore, when X�
1

is closer to

the first cluster center of the points, its density value is lower. After revising the density of each

datum point, the second cluster center can be determined, and the density of each datum

point can be revised again. The above process is repeated until a condition δ is satisfied, which

is defined as follows:

D�k
D�

1

< d ð10Þ

where δ is a significance factor for the results of clustering; if the value of δ is too small, there

will be many cluster centers, and if the value of δ is too large, the cluster centers will be too

numerous.

Software

All algorithms used in this study for dissolved oxygen content 3D prediction were pro-

grammed in MATLAB 9.0. The method package included the Kriging tool box. The experi-

ment was conducted on a 2.50 GHz Core 5 CPU personal computer with 4.0G memory using

Microsoft Windows Sever 2007 edition.

Parameter selection for RBF with the SC-K-means method

In the RBF interpolation problem, four parameters of the RBF neural network must be deter-

mined. Researchers have proposed many training methods to calculate the proper parameters

of the RBF neural network. However, most available methods do not provide any rational

means of calculating the hidden nodes n. The number of hidden nodes determines the accu-

racy and generalizability of the RBF interpolation[37]. When the RBF network has a large

number of hidden units, it can attain zero errors. However, when the applications have exces-

sive sampling data, the size of the network will become impractically large and have poor gen-

eralizability. By contrast, when the RBF neural network is small, the errors will increase

despite better generalizability. Therefore, the calculation of n is an important factor for the

design of RBF interpolation. The trial-and-error method is commonly used to determine the

proper number of hidden units, but it cannot guarantee the best results and may also be a

waste of time.

In the radial basis function neural network, the numbers of hidden nodes and center value

are normally considered difficult tasks to design. To achieve the best result for selecting the

proper number of hidden nodes for the RBF interpolation model, an integrated RBF interpola-

tion method that combines subtractive clustering, K-means, and RBF is proposed and named

SC-K-means-RBF. The detailed explanation of the process is as follows (Fig 2):

Step 1. Initialize the RBF neural networks, and then calculate the density of each datum point.

Step 2. The initial cluster center CS and cluster number NS of the sampling data can be calcu-

lated with the subtractive clustering method.
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Step 3. Based on the initial cluster center CS and the number of clusters NS, the ideal cluster

center C can be obtained by K-means clustering (e.g., let the parameter K of K-means clus-

tering equal NS and CS be the initial cluster center Cc of the K-means cluster).

Step 4. Then, the value of σ can be obtained from the value of wi using least squares.

s ¼
dmaxffiffiffiffiffi

2n
p ð11Þ

Step 5. Let n equal K, and c equal Cc; then, the four parameters of RBF can be obtained.

Experimental results and analysis

Data acquisition and preprocessing

The data used in this study were collected from an aquaculture pond located in Gao Cheng

(119.79˚ E, 31.48˚ N), Jiangsu Province, China. The pond is located in the south of Gehulake

and has a relatively good spatial environment. The aquaculture pond is 45 meters wide and

130 meters long. The pond is rectangular. The aquaculture pond is open-air. In this area,

ponds are close together in a row. In this study, we collected data in two ways: a digital wireless

monitoring system and a handheld device. The digital wireless monitoring system comprises

three major parts: the water sensors and weather sensors, the transport devices and the applica-

tion terminal devices (Fig 3). All gathered sensor data are transported to the application layer

for data acquisition, intelligent information processing, and logical operation by the transport

device.

The details of the device types and accuracy are shown in Table 1. Forty-one positions regu-

larly distributed in the aquaculture pond were selected as the sampling points. The black points

Fig 2. The process of parameter selection for the RBF neural network.

https://doi.org/10.1371/journal.pone.0192456.g002
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represent the aquaculture dissolved oxygen content data collected using the handheld device.

The white points represent the aquaculture dissolved oxygen content as measured by the digi-

tal wireless monitoring system (Fig 4A).

The four monitoring devices were regularly placed in the aquaculture pond one meter

below the water surface, and the dissolved oxygen content and temperature data were collected

every 10 minutes. The handheld instrument was used to collect the dissolved oxygen content

data for sampling points 1 to 9 at three different depths (0.4 m, 1.0 m, and 1.6 m) in the water,

but a depth of only 0.2 m was used to collect data for sampling points 10 to 19 (Fig 4B). The

sampling of dissolved oxygen content using the handheld device was completed within 40

minutes. The data files included the sampling time, the three-dimensional coordinates of the

sampling point in the aquaculture pond, and the dissolved oxygen content value. The auto-

matic Meteorological Station was placed beside the aquaculture pond and used to sample the

Fig 3. Topology structure diagram of the digital wireless system.

https://doi.org/10.1371/journal.pone.0192456.g003

Table 1. Details of the test devices.

Device name Type Range Accuracy

Rainfall collector Remote transmission weather station Uni-ws-G9 (China) 0.0~9999.0 (mm) ±4%

Wind speed and direction collector 0~67 (m/s)

0~360˚)

±5 m/s

Solar radiation collector 0~1800 (W/m2) ±5%

Air temperature collector 40~123.8 (˚C) ±0.4˚C 25˚C

Air humidity collector 0~100% (RH) ±3.0% RH

Atmospheric pressure collector 0~1100 (hPa) ±0.3 hPa

Monitoring devices Hach LDo 0~20 (mg/L) ±0.5%

Handheld device Hq40d ±0.02˚C

https://doi.org/10.1371/journal.pone.0192456.t001
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meteorological data. The file for the meteorological data included the sampling time, rainfall,

wind speed, wind direction, solar radiation, air temperature, air humidity, and atmospheric

pressure.

For this study, data samples were collected from June 23, 2015, to July 13, 2015. A total of

21 days of aquaculture dissolved oxygen content data were collected using the four monitoring

devices and the one handheld instrument. To ensure the integrity of the experiment, dissolved

oxygen content data were collected during different types of weather (sunny, cloudy, rain,

etc.). Sixty-one samples were selected within one hour between 7:00 and 8:00 on July 6, 2015,

to build the three-dimensional model of dissolved oxygen content in the aquaculture pond.

Fifty-one samples were used to design and train the model; the remaining ten samples were

used to compare the performance of the existing RBF interpolation model and the proposed

SC-K-means-RBF interpolation model.

Description of the overall three-dimensional prediction model

In the RBF neural network, the input data X are a 4-dimensional vector, X = [x1, x2, x3, x4]T.

For the RBF spatial interpolation of the dissolved oxygen content of the aquaculture pond, x1

denotes the sampling time, and x2, x3, x4 denote the three-dimensional coordinates of the sam-

pling points in the aquaculture pond. The output data y denote the dissolved oxygen content.

To generate the horizontal and vertical dissolved oxygen content distributions, the breeding

ponds were evenly divided between the horizontal and vertical planes. The details of the hori-

zontal level dissolved oxygen content distribution are as follows (Fig 5). First, the water depth

z and time t were set, and then 50 � 50 (t, x, y, z) coordinates position were generated at time t

and the z-depth. Second, 250 coordinates were selected, and the SC-K-means-RBF model was

used to predict the dissolved oxygen content value. Finally, the MATLAB toolbox was used to

complete the horizontal prediction display.

Fig 4. Point distribution of collected samples. Top view of the aquaculture pond (A); sectional view of the

aquaculture pond (B).

https://doi.org/10.1371/journal.pone.0192456.g004
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Three-dimensional prediction of dissolved oxygen content

Interpolation accuracy evaluation. To verify the interpolation performance of the pro-

posed SC-K-means-RBF model, 61 datum points from the sampling data set taken between

7:00 and 8:00 on July 6 were selected to train and test the interpolation model. The first 51 data

values were used for model training, and the remaining 10 data sets were used for model test-

ing. The forecasting results showed that the proposed SC-K-means-RBF had good forecasting

performance (Fig 6). The SC-K-means-RBF model had a very small root mean square error

Fig 5. The process of the three-dimensional model for dissolved oxygen content.

https://doi.org/10.1371/journal.pone.0192456.g005

Fig 6. Training results for dissolved oxygen content prediction using the SC-K-means-RBF model.

https://doi.org/10.1371/journal.pone.0192456.g006
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(RMSE) and MAE during the training and testing stage. In addition, the results showed consis-

tently good correlation throughout training (>0.93) and testing (>0.81), as shown in Table 2.

Comparing the three figures, the standard RBF interpolation method with ten hidden units

had nearly the same interpolation effect as the proposed method. The importance of the num-

ber of hidden units in the RBF interpolation method is illustrated in Fig 7. Although the proper

number of hidden units in the RBF interpolation can be obtained with trial-and-error, which

has a smaller RMSE value and almost the same forecasting accuracy as the proposed interpola-

tion method, it is not a practical interpolation method for 3D modeling of dissolved oxygen

content in an aquaculture pond. The standard RBF interpolation method would be a waste of

time and would not guarantee the accuracy of the 3D model due to the abundance of data. The

validity, stability, and accuracy of the proposed 3D interpolation modeling method are thus

clearly demonstrated. Therefore, the SC-K-means-RBF interpolation was chosen as the

method for constructing a 3D model of dissolved oxygen content in the aquaculture pond.

To analyze the forecasting capacity of the hybrid model based on SC-K-means-RBF, the

standard RBF, inverse distance weighted (IDW) and Kriging with variography methods were

selected for comparison. The variogram is a basic tool for the Kriging method to describe the

spatial autocorrelation structure of the explored variable and obtain the weights. The spherical

function was selected as the Kriging variogram function in this study. The variogram analysis

had a basic lag distance of 100 m and lag distance number of 20 units. To analyze and evaluate

the prediction performance of the presented model for dissolved oxygen content, the testing

samples were used for validation. The RMSE, mean absolute error (MAE), coefficient of corre-

lation (R) and Willmott index of agreement (D) of the training and testing results were used

to evaluate the forecasting capacity of the four models shown in Table 2. The performance

Table 2. Error statistics of the four forecasting models.

Method SC-K-means-RBF (training) SC-K-means-RBF (testing) Standard RBF IDW Kriging

Hidden units 21 21 10 15 20 21 22 - -

RMSE 0.3072 0.4929 0.7022 0.6165 0.5646 0.6482 0.5344 0.6447 0.3800

MAE 0.2000 0.3484 0.4841 0.4152 0.3628 0.3932 0.3579 0.4442 0.3376

R 0.9309 0.8098 0.5568 0.6541 0.7311 0.6903 0.7525 0.6077 0.9175

D 0.9998 0.9879 0.9725 0.9711 0.9993 0.9521 0.9265 0.9993 0.9650

https://doi.org/10.1371/journal.pone.0192456.t002

Fig 7. Comparison of the dissolved oxygen content forecasting values obtained by SC-K-means-RBF and other

methods.

https://doi.org/10.1371/journal.pone.0192456.g007
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indexes were calculated from the following equations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

1
ðX�i � XiÞ

2

N

s

ð12Þ
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N

XN
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where Xi is a real value, X�i is the forecast value of the interpolation method, and N denotes the

number of test data. The model with the smallest values of RMSE and MAE is the best. In addi-

tion, a value of the coefficient of correlation R to one indicates a better fit.

The RMSE and MAE of the proposed SC-K-means-RBF interpolation method were 0.4929

and 0.3484, respectively, and this method had the lowest RMSE and MAE values compared

with the other three methods in Table 2. The proposed SC-K-means-RBF interpolation

method chose 21 hidden nodes by combining the subtractive clustering and K-means cluster-

ing methods, and five values of hidden nodes (e.g., 10, 15, 20, 21, and 22) were selected to

design the standard RBF interpolation model using trial and error. The coefficient of correla-

tion (R) of the SC-K-means-RBF method was 0.8098, closest to 1. Thus, this prediction was the

most accurate. All index values of IDW are larger than those of the presented method and the

Kriging method. The Kriging with variogram function yielded good interpolation results but

was inferior to the SC-K-means-RBF method. The values of RMSE and MAE of the standard

RBF interpolation method were greater than those of the proposed method. The RMSE and

MAE values of the standard RBF interpolation method were also larger than the proposed

method when 21 hidden numbers were selected. The mean of the five RMSE values was

0.6132, and the proposed SC-K-means-RBF interpolation method yielded an average RMSE

reduction of 19.62% compared to the standard RBF interpolation method. The RMSE and

MAE values of IDW were 0.6447 and 0.4442, respectively, also larger than those of the pro-

posed method. By contrast, the Willmott index of agreement (D) values of IDW and standard

RBF with 21 hidden units were both 0.9993, better than that of the presented model. The Will-

mott index of agreement (D) value of the SC-K-means-RBF was 0.9879, illustrating the rela-

tively good generalizability of the presented model.

Three-dimensional model of dissolved oxygen content. The proposed 3D spatial inter-

polation method was applied to establish the 3D model of the dissolved oxygen content in the

aquaculture pond. The meteorological data from the corresponding time were selected to test

the model’s accuracy and analyze the 3D model of the dissolved oxygen content of the aquacul-

ture pond. The training and test data for the RBF network and the meteorological data for the

corresponding time are shown in Tables 3 and 4.

The proposed SC-K-means-RBF network was trained using the sampling data in Table 3.

Interpolation values of all points in the space of the aquaculture pond were generated using

the trained model. Then, the 3D model of the dissolved oxygen content in the aquaculture

pond was built. Additionally, the introduction of the time parameter revealed changes in the

dissolved oxygen content in the aquaculture pond over time in the 3D model.
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Horizontal forecast presentation. In the aquaculture pond, the dissolved oxygen content

distribution is uneven. At the same level, the distribution of dissolved oxygen is affected by

wind speed, pond boundaries, and other factors. The data were taken from one meter below

the surface of the water at 7:20 on July 6, 2015. The color change from yellow to blue denotes

that the concentration of dissolved oxygen content changed from high to low. Dissolved oxy-

gen was low at the uptake and high at the downcomer. Dissolved oxygen was relatively high at

the leeward edge of the pond. Therefore, point B had a low level of dissolved oxygen content,

and point A had a high level of dissolved oxygen content (Fig 8).

Table 3. Training and test data.

Time X (m) Y (m) Z (m) Dissolved oxygen (mg/L)

7:07 15 25 0.4 2.22

7:07 15 25 1 1.95

7:07 15 25 1.6 1.7

7:10 22.5 25 0.4 2.26

. . .

https://doi.org/10.1371/journal.pone.0192456.t003

Table 4. Meteorological data.

Time Rainfall

(mm)

Wind speed

(m/s)

Wind direction

(˚)

Solar radiation

(w/m2)

Air temperature

(˚C)

Relative humidity

(%)

Atmos. Pressure

(KPa)

2015-07-06 07:00:04 0.0 2.19 262.06 77.85 19.92 88.54 100.96

2015-07-06 07:10:06 0.0 1.94 263.76 81.32 19.93 88.05 100.96

2015-07-06 07:20:08 0.0 1.9 260.12 95.67 20.01 88.44 100.96

2015-07-06 07:30:08 0.0 1.94 271.56 100.99 20.11 87.77 100.96

2015-07-06 07:40:06 0.0 1.23 270.87 89.23 20.14 87.08 100.96

2015-07-06 07:50:01 0.0 1.23 268.65 116.01 20.32 86.56 100.96

2015-07-06 08:00:02 0.0 1.61 271.59 134.87 20.38 83.64 100.96

https://doi.org/10.1371/journal.pone.0192456.t004

Fig 8. Cross-section of the spatial distribution of dissolved oxygen in the aquaculture pond.

https://doi.org/10.1371/journal.pone.0192456.g008

A hybrid intelligent method for 3D prediction of dissolved oxygen content in aquaculture

PLOS ONE | https://doi.org/10.1371/journal.pone.0192456 February 21, 2018 13 / 17

https://doi.org/10.1371/journal.pone.0192456.t003
https://doi.org/10.1371/journal.pone.0192456.t004
https://doi.org/10.1371/journal.pone.0192456.g008
https://doi.org/10.1371/journal.pone.0192456


Three-dimensional prediction. In the vertical direction, the color change from yellow to

blue denotes that the depth of dissolved oxygen content of 2 mg/L changed from deep to shal-

low. At point C of the aquaculture pond, the dissolved oxygen content reached 2 mg/L at a low

depth; however, at point D of the aquaculture pond, the dissolved oxygen content reached 2

mg/L at a relatively shallow depth, close to the water surface (Fig 9). These observations indi-

cate that there was more dissolved oxygen content in the C direction of the aquaculture pond

and less dissolved oxygen content in the D direction of the aquaculture pond. The dissolved

oxygen content gradually decreased as the depth increased.

We analyzed the distribution of dissolved oxygen content in the aquaculture pond in con-

nection with the meteorological data in Table 3. The wind direction was 260.12˚, as shown in

Table 4, indicating that the wind was blowing from the southwest to the northeast at 7:20 on

July 6, 2015. The general direction of the wind is marked in Figs 8 and 9. The general direction

from point B to point A in Fig 8 and point D to point C in Fig 9 is similar direction to the

wind direction, as shown in the two figures. Therefore, it can be concluded that the 3D and 2D

distributions of dissolved oxygen content in the aquaculture pond are correlated with the wind

direction.

Conclusion

The SC-K-means-RBF model is a three-dimensional spatial interpolation method based on

RBF incorporating subtractive clustering and K-means for dissolved oxygen content predic-

tion and display. The method can identify changing trends and provide guidance for aquacul-

ture. The SC-K-means-RBF interpolation method, which has a clear principle and simple

structure, provides a simple method for 3D modeling the spatial distribution of dissolved oxy-

gen content in an aquaculture pond. Combining the subtractive clustering method and K-

means clustering method increases the accuracy of obtaining the number of hidden units for

the RBF neural network. The results illustrate the validity of the proposed SC-K-means-RBF

interpolation method by comparing the RMSE and MAE values of the proposed method

with the standard RBF interpolation method. For example, the standard RBF interpolation

achieves RMSE values from 0.5344 to 0.7022 with different hidden units, and the proposed

SC-K-means-RBF interpolation method achieves lower RMSE values. The comparison of the

Fig 9. Curved surface of dissolved oxygen of 2 mg/L.

https://doi.org/10.1371/journal.pone.0192456.g009
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prediction results of different traditional models validated the effectiveness and accuracy of the

proposed hybrid SC-K-means-RBF model for the three-dimensional prediction of dissolved

oxygen content.

The proposed SC-K-means-RBF interpolation was then applied to analyze the distribution

of dissolved oxygen content in the aquaculture pond in connection with meteorological data.

The analysis showed that the 3D and 2D distributions of dissolved oxygen content in the aqua-

culture pond were correlated with wind direction. Therefore, the proposed SC-K-means-RBF

interpolation method is an effective alternative to the existing method. The general direction

of point B to point A and point D to point C is not identical to the wind direction, as indicated

in Figs 8 and 9. This observation may be due to a lack of meteorological parameters in the

input layer of the proposed RBF spatial interpolation method. In future studies, other essential

parameters could be added to improve the accuracy of the model. Additionally, the three-

dimensional distribution of dissolved oxygen can provide a reference for feeding strategies, as

the oxygen solubility can affect feeding.
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