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Abstract

Previously, we obtained the sweetpotato somatic hybrid KT1 from a cross between sweet-

potato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its drought-tolerant wild relative I.

triloba L. KT1 not only inherited the thick storage root characteristic of Kokei No. 14 but also

the drought-tolerance trait of I. triloba L. The aim of this study was to explore the molecular

mechanism of the drought tolerance of KT1. Four-week-old in vitro-grown plants of KT1,

Kokei No. 14, and I. triloba L. were subjected to a simulated drought stress treatment (30%

PEG6000) for 0, 6, 12 and 24 h. Total RNA was extracted from samples at each time point,

and then used for transcriptome sequencing. The gene transcript profiles of KT1 and its

parents were compared to identify differentially expressed genes, and drought-related mod-

ules were screened by a weighted gene co-expression network analysis. The functions of

ABI-like protein and Ca2+-ATPase, two proteins screened from the cyan and light yellow

modules, were analyzed in terms of their potential roles in drought tolerance in KT1 and its

parents. These analyses of the drought responses of KT1 and its somatic donors at the tran-

scriptional level provide new annotations for the molecular mechanism of drought tolerance

in the somatic hybrid KT1 and its parents.

Introduction

Sweetpotato (Ipomoea batatas (L.) Lam.) is an important food, fodder, industrial raw material,

and bio-energy resource crop, and plays important roles in food security and energy security

worldwide, especially in China [1]. In the context of the increasing world population and cli-

mate change, the global water shortage has become one of the major challenges in agricultural

production. Agricultural activities account for about 75% of global water consumption; there-

fore, the impact of drought stress on the productivity of field crops is an important issue.
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Drought has become a major threat to sustainable crop cultivation [2, 3], as it significantly

reduces the productivity of crops, including sweetpotato, causing huge economic losses [4, 5].

Selecting new, drought-tolerant sweetpotato varieties is one of the main strategies to cope

with drought. However, there are several difficulties in the genetic improvement of sweetpo-

tato, including the narrow genetic background, heterosis recession, and the lack of excellent

gene resources [6]. Compared with cultivated varieties of sweetpotato, their wild relatives have

accumulated and retained many unique and excellent genetic resources (such as drought toler-

ance) under harsh survival, competition, and natural selection conditions. Therefore, the wild

relatives of sweetpotato could serve as a source of desirable genes to improve cultivated sweet-

potato varieties and broaden their gene pool [7, 8]. However, the long history of reproductive

isolation limits the ability of sweetpotato cultivars to cross with their wild relatives. This

severely restricts the use of beneficial wild resources to generate new varieties by sexual hybrid-

ization. Somatic hybridization between sweetpotato and its wild relatives has opened a new

breeding pathway to overcome interspecific and intraspecific cross-incompatibility, and pro-

vides a method to utilize the excellent genes in the wild species [1, 9].

Previously, we obtained the somatic hybrid KT1 by somatic hybridization between the

sweetpotato cultivar Kokei No.14 and its drought-tolerant wild relative I. triloba L. Genomic

in situ hybridization (GISH) confirmed that the chromosomes of KT1 were derived from

Kokei No.14 and I. triloba L. [10]. KT1 not only inherited the thick storage root characteristic

of Kokei No.14 but also the drought-tolerance trait of I. triloba L. [9, 10]. Next-generation

sequencing technology has developed rapidly in recent years, and is now a fast, efficient, and

high through-put sequencing method. The continuous development and improvement of this

technology has provided new ideas and methods for research on functional genomics and

whole transcriptomes [11–13]. Transcriptome sequencing has been used to explore the molec-

ular mechanisms of various phenotypes, including the drought tolerance of sweetpotato and

its wild relatives [14–17].

In this study, the differential expression profiles of the somatic hybrid KT1 and its parents

were constructed by de novo transcriptome sequencing, and key genes related to drought toler-

ance were further enriched by a weighted gene co-expression network analysis (WGCNA), a

lately developed approach to find modules of highly correlated genes which are allowed to be

associated with phenotypic traits [18, 19]. The internal molecular mechanism of drought toler-

ance was systematically explored. The results of this study not only lay the foundation for clari-

fying the molecular mechanism of drought tolerance in KT1 and its parents, but also provide

new ideas and gene resources for further theoretical research and breeding programs.

Materials and methods

Plant materials

Three different materials were used: Kokei No. 14 (K14), KT1, and I. triloba L. (Tri). K14 is a

hexaploid sweetpotato cultivar (2n = 6x = 90) mainly grown in Japan and China. Tri is a dip-

loid wild relative (2n = 2x = 30) with remarkable drought tolerance, but no storage root. KT1

is the somatic hybrid of K14 and Tri, which has a storage root like K14 and drought tolerance

like Tri.

Drought treatment

KT1 and its two parents were cultured on Murashige and Skoog (MS) solid medium under the

following conditions: 27 + 1˚C, 13-h light/11-h dark photoperiod, with a light intensity of

54 μmol m-2 s-1. After being subcultured for 4 weeks, the plants were transferred into

½-strength Hoagland’s solution containing 30% PEG6000 and treated for 6 h, 12 h and 24 h
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under the conditions described above. Untreated samples (0 h) served as the control. Samples

were collected at each time point, quickly frozen in liquid nitrogen, and then stored at -80˚C

until use. Two biological replicates were established.

RNA extraction and Illumina sequencing

Total RNA was extracted from whole plants using a Quick RNA Isolation Kit (Huayueyang

Biotech Co., Ltd., Beijing, China) according to the manufacturer’s instructions. Residual DNA

was removed by RNase-free Dnase I (TaKaRa Biotech Co., Ltd., Dalian, China), and RNA

integrity was checked by electrophoresis on a 1.2% agarose gel. The RNA concentration was

quantified by an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA).

High-quality RNA samples were sent to the Biomarker Technologies Corporation (Beijing,

China) for cDNA library construction and sequencing, which was performed using the Illu-

mina HiSeq 2500 platform with 125-bp paired-end reads.

Data filtering and de novo assembly

High-quality clean reads were obtained after quality control by removing adaptor sequences,

duplicated sequences, ambiguous reads (‘N’), and low-quality reads (that had N bases of more

than 10% and that bears more than 50% of bases that have a Q-value<10). Trinity (version:

r20131110; http://trinityrnaseq.sourceforge.net/) was used for transcriptome de novo assembly

after data normalization of the clean reads. Clean reads with a certain overlap length were ini-

tially combined to form long fragments without N (contigs). Related contigs were clustered

using TGICL (2.1) software [20] to yield unigenes (without N) that could not be extended at

either end. Redundancies were removed to acquire non-redundant unigenes. It should be

noted that the unigene mentioned in this article is based on Trinity assembly, not equvalent to

that based on EST sequences.

Unigene functional annotation and expression calculation

The unigene sequences were compared with NR (Sep-21-2011), Swiss-Prot (Jan-07-2015), GO

(Dec-12-2014), COG (Feb-08-2009), KOG (Feb-08-2009), and KEGG (Sep-21-2011), using

BLAST (2.2.31) software [21], and KEGG orthologies were obtained using KOBAS (2.0) [22].

Unigene annotation information was obtained using HMMER (v3.0) software [23], the Pfam

(27.0) database [24] and Araport11 database (Release_201606) after prediction of the unigene

amino acid sequences.

For each sample, the reads were compared with those in the unigene library using Bowtie

(1.1.1) [25], and transcript abundance was estimated according to the results of the compari-

son with RSEM (r2013-02-25) [26]. The counts were further transformed to FPKM (fragments

per kilobase per million sequenced reads) values to compare transcript abundance among

samples [27].

Screening of differentially expressed genes

The transcript levels of unigenes in KT1 and its parents under drought stress for 6, 12 and 24 h

were compared with those in the control (0 h). Gene expression data were filtered by removing

genes with low transcript levels in all 24 samples. The standard for screening was that the

FPKM value in at least one group of two biological replicates was� 5. A total of 22,412 uni-

genes remained after screening. The remaining genes were used to identify the differentially

expressed genes (DEGs), which were then analyzed by a weighted gene co-expression network

analysis (WGCNA). The EBSeq (1.6.0) package was used to obtain the “base mean” value to
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identify DEGs. The absolute value of log2 (FPKM+1) ratio� 1 and p value< 0.05 were set as

the thresholds for a significant difference in gene expression between two biological repeats.

Weighted gene co-expression network analysis

The FPKM values of the 22,412 unigenes filtered from the above FPKM screening were added

by 0.001 and then normalized by a Log10 transformation (Lg (FPKM+0.001)). The WGCNA R

software package (v1.41.1) was used to identify modules containing genes that were co-

expressed and correlated with drought tolerance. Unsigned, weighted correlation network

construction and module detection were performed using the automatic one-step function

(for blockwise modules). The resulting Pearson correlation matrix was transformed into a

matrix of connection strengths using a power of 10.

The resulting gene modules were assigned colors by R software and Module-Trait relation-

ships were calculated by Pearson’s correlation analyses. Each module was represented by mod-

ule Eigengenes, which were calculated from the first principal component capturing the

maximum amount of variation of the module. Then, the topological overlap was calculated to

measure network interconnectedness.

Homologous cloning of candidate genes and evolutionary analysis

Two candidate genes screened from the WGCNA modules were further analyzed by Sanger

sequencing. Primers were designed using Primer Premier 6 (http://www.premierbiosoft.com/)

software, and homologous genes were cloned from K14, KT1 and Tri. Protein sequences of the

cloned genes were compared with their homologs from other plant species to build a phyloge-

netic tree with MEGA 6.0 software using the neighbor-joining method [28].

Accession numbers

The accession numbers for phylogenetic analysis in this article from the GenBank/EMBL data-

bases are as follows: Physcomitrella patens (XP_001783354.1), Selaginella moellendorffii (XP_00

2981240.1), Ananas comosus (XP_020098808.1), Brachypodium distachyon (KQK08797.1),

Oryza sativa (XP_015650826.1), Setaria italica (XP_004961070.1), Zea mays (XP_008656

080.1), Solanum lycopersicum (NP_001333966.1), Solanum tuberosum (XP_006339648.1), Vitis
vinifera (XP_002279419.1), Manihot esculenta (OAY62223.1), Populus trichocarpa (XP_00230

1384.2), Gossypium raimondii (XP_012475123.1), Cucumis sativus (XP_004133838.1), Glycine
max (XP_003548613.1), Malus domestica (XP_008375925.1), AtABIL1 (NP_566067.1), AtA-

BIL2 (NP_190498.1), AtABIL3 (NP_001318635.1), AtABIL4 (NP_001330354.1), AtABI1

(NP_194338.1), AtABI2 (NP_200515.1), Ca2+-ATPase 1 (NP_849716.1), Ca2+-ATPase 2

(NP_195479.1), Ca2+-ATPase 3 (ABU53680.1), Ca2+-ATPase 4 (Q9XES1.2),_Ca2+-ATPase 7

(O64806.2), Ca2+-ATPase 8 (Q9LF79.1), Ca2+-ATPase 9 (Q9LU41.2), Ca2+-ATPase 10

(Q9SZR1.2), Ca2+-ATPase 11 (Q9M2L4.1), Ca2+-ATPase 12 (Q9LY77.1), and Ca2+-ATPase 13

(Q9LIK7.1).

Results

Summary of transcriptome sequencing data

After quality control, 677,222,430 clean reads were obtained. The average clean reads per sam-

ple were 28,217,601.25, and the lowest was 24,146,171. The average Q30 base percentage was

90.91% and the lowest was 88.22% (S1 Table). A “total gene number vs total read number plot”

was made to assess the quality of assembly and the depth of sequencing, which showed that

sequencing volume was already saturated (S3 Appendix). All clean data were uploaded in the
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NCBI Sequence Read Archive database under the BioProject PRJNA413661 with SRA acces-

sion number SRR6169925-SRR6169948. After de novo assembly, 322,803 transcripts and

105,959 unigenes were gained. The sequence lengths were mainly distributed in the size range

of 200–2000 bp (Table 1). The transcript and unigene N50 lengths were 1,965 bp and 1,403 bp,

respectively, with 148,263 (83,496 + 64,767) transcripts and 23,083 (13,328 + 9,755) unigenes

longer than 1 kb, respectively (Table 1).

Functional annotation of unigenes

The BLAST parameter E-value was set to< 1e-5 and the HMMER parameter E-value was set

to< 1e-10, resulting in 36,767 unigenes with annotated information. The statistical results of

gene annotations are listed in S2 Table.

Gene expression analysis

The gene expression data were screened to remove unigenes with low transcript levels in all 24

samples (12 groups). Finally, a total of 22, 412 unigenes were retained and used to construct

the heatmap. The heatmap clustering indicated that the gene expression profiles were similar

in the two biological repeats in each group, confirming high consistency between the two bio-

logical replicates (Fig 1A). At 0 h, the gene expression profiles of K14, KT1 and Tri were simi-

lar. After drought stress (6 h, 12 h, 24 h), the expression profiles differed among the three lines,

with the greatest differences between K14 and Tri (Fig 1A). In KT1, the expression profiles of

some unigene clusters were similar to those in K14, and the expression profiles of other uni-

gene clusters were similar to those in Tri (Fig 1A).

The KT1 had the largest number of DEGs (1,724+4,263+4466), followed by K14 (1,618+

1,611+2,039) and the wild relative Tri (1,570+1,459+2,044) (Table 2). At each time point (6 h,

12 h, and 24 h) during drought stress, there were more down-regulated DEGs than up-regu-

lated DEGs in KT1 and in Tri (Table 2). In K14, there were more down-regulated (829) DEGs

than up-regulated (789) DEGs only at 6 h (Table 2), and the ratio of down-regulated DEGs

constantly decreased from 51.24% (6 h) to 41.22% (12 h) and 39.53% (24 h). As shown in the

Venn diagrams, most up-regulated DEGs appeared at 24 h in each line (484, 1,021, and 478,

respectively) (Fig 1B–1D, left). Most down-regulated DEGs appeared at 6 h in K14, 12 h in

KT1, and 24 h in Tri (Fig 1B–1D, right). At 6 h, KT1 and Tri shared a total of 162 up-regulated

and 68 down-regulated genes that were not found in K14 (Fig 1E). At 12 h, KT1 and Tri shared

134 up-regulated and 290 down-regulated genes that were not detected in K14 (Fig 1F). While

at 24 h, there were 275 up-regulated and 487 down-regulated genes shared by KT1 and Tri,

which were absent in K14 (Fig 1G). These differentially expressed genes were functionally

Table 1. Statistics of splicing results of transcriptome sequencing data.

Length range Contig Transcript Unigene

200–300 (bp) 4,246,309(97.87%) 52,286(16.20%) 36,300(34.26%)

300–500 (bp) 39,049(0.90%) 51,427(15.93%) 26,075(24.61%)

500–1000 (bp) 29,683(0.68%) 70,827(21.94%) 20,501(19.35%)

1000–2000 (bp) 15,206(0.35%) 83,496(25.87%) 13,328(12.58%)

2000+ (bp) 8,427(0.19%) 64,767(20.06%) 9,755(9.21%)

Total number 4,338,675 322,803 105,959

Total length (bp) 298,071,025 402,763,792 82,261,193

N50 length (bp) 64 1,965 1,403

Average length (bp) 68.70 1247.71 776.35

https://doi.org/10.1371/journal.pone.0193193.t001
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annotated, showing that many genes were related to ABA signaling and calcium ion signaling

(S1 Appendix). For example, ABA signaling related genes include “response to abscisic acid”

(c92088_graph_c0), “abscisic acid-activated signaling pathway”(c50841_graph_c0), “abscisic

acid 8’-hydroxylase” (c80653_graph_c0), “abscisic acid receptor” (c64345_graph_c0), “abscisic

acid-activated signaling pathway “(c91458_graph_c0), and “negative regulation of abscisic

acid-activated signaling pathway” (c87925_graph_c0), etc (S1 Appendix). Calcium ion signal-

ing related genes include “calcium channel protein” (c85605_graph_c0), “calcium ion binding”

(c85877_graph_c0), “calcium-transporting ATPase” (c95423_graph_c0), “calcium uniporter

protein” (c80943_graph_c0), and “response to calcium ion” (c68908_graph_c0), etc (S1

Appendix).

Drought-related modules obtained by WGCNA

The 22,412 unigenes filtered from the above FPKM screening were further analyzed by

WGCNA. When constructing the modules, the β parameter was adjusted to 10, yielding a total

of 30 modules (Figs 2 and 3, Table 3). Since Tri and KT1 are more drought tolerant than K14,

we first screened the modules from Tri with correlation coefficients higher than 0.6. Seven

modules were obtained after filtering (Table 4). We further screened the seven modules

according to the criterion that the correlation coefficient of a module in KT1 had the same pos-

itive or negative property as the same module in Tri, but opposite to that of the same module

in K14. In addition, the absolute value of correlation coefficients should not be small. On the

Fig 1. Heatmap clustering of unigenes and Venn diagram of differentially expressed genes (DEGs) in 24 samples. (A) Heatmap clustering of unigenes in

24 samples. (B-D) Venn diagrams of up-regulated and down-regulated DEGs under drought stress at 6 h, 12 h and 24 h in K14 (B), KT1 (C) and Tri (D). (E-G)

Venn diagrams of up-regulated and down-regulated DEGs under drought stress in K14, KT1 and Tri at 6 h (E), 12 h (F) and 24 h (G). Left, up-regulated DEGs;

right, down-regulated DEGs.

https://doi.org/10.1371/journal.pone.0193193.g001

Table 2. Statistics of differentially expressed genes (DEGs).

K14 KT1 Tri

6 h 12 h 24 h 6 h 12 h 24 h 6 h 12 h 24 h

Up 789(48.76%) 947(58.78%) 1,233(60.47%) 827(47.97%) 1,318(30.92%) 1,946(43.57%) 658(41.91%) 629(43.11%) 815(39.87%)

Down 829(51.24%) 664(41.22%) 806(39.53%) 897(52.03%) 2,945(69.08%) 2,520(56.43%) 912(58.09%) 830(56.89%) 1,229(60.13%)

Total 1,618 1,611 2,039 1,724 4,263 4,466 1,570 1,459 2,044

https://doi.org/10.1371/journal.pone.0193193.t002
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basis of these criteria, we chose the cyan and light yellow modules for candidate gene selection

(Table 4). The Hubgenes heatmap clustering (Fig 2C and 2D) and the Eigengene expression

patterns (Fig 2E and 2F) showed that the expression levels of genes in the cyan module were

relatively high in K14, but relatively low in KT1 and Tri. Thus, these drought-associated candi-

date genes screened from the cyan module might be involved in the negative regulation of

drought tolerance. In the light yellow module, gene expression was relatively low in K14 and

relatively high in KT1 and Tri. Therefore, the drought-associated candidate genes screened

from the light yellow module may be involved in the positive regulation of drought tolerance.

The candidate genes enriched in each module were then ranked according to the level of

gene-gene connectivity. The top 20 genes in the cyan and light yellow modules are listed in

Tables 5 and 6, respectively. The top 20 genes enriched in the cyan module included those

encoding ABA signaling-related (c73612.graph_c0), flowering-related (c71165.graph_c0), dis-

ease-related (c60381.graph_c0), and light signal-responsive proteins (c94723.graph_c0,

c95174.graph_c0), etc. (Table 5). Among them, c73612.graph_c0 encodes an ABI-like protein

involved in reverse regulation of ABA signaling [29–33], and c71165.graph_c0 encodes

EMBRYONIC FLOWER 2 (EMF2), which is homologous to the polycomb proteins PRC1 and

PRC2. The PRC1 and PRC2 proteins are essential for long-term epigenetic chromatin silenc-

ing and for stem cell differentiation and early embryonic development [34, 35].

The screening also identified genes encoding DNA binding (c89097.graph_c1) or DNA

replication (c92048.graph_c0, c92696.graph_c0, c78358.graph_c0, c87332.graph_c0) proteins.

The transcript levels of these genes decreased under drought stress (S1 Fig), indicating that

Fig 2. WGCNA module building, Hubgenes cluster analysis, and EigenGene expression statistics. (A, B) Hierarchical clustering of co-expression data. (C) Heatmap

cluster of Hubgenes from cyan module. (D) Heatmap cluster of Hubgenes from light yellow module. (E) Eigengenes expression pattern in cyan module. (F) Eigengenes

expression pattern in light yellow module.

https://doi.org/10.1371/journal.pone.0193193.g002
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Fig 3. Module correlation coefficients from weighted gene co-expression network analysis. Variables shown on x-axis are

genotype (KT1, K14, Tri), time, duration of drought stress treatment (0, 6, 12, 24 h), and difference between two treatment times (0,

6 h; 6, 12 h; 12, 24 h).

https://doi.org/10.1371/journal.pone.0193193.g003
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DNA replication and cell proliferation decelerated in K14, KT1, and Tri during the response

to drought stress (S1 Fig). The top 20 genes enriched in the light yellow module included those

encoding a ribonuclease-like storage protein (c33446.graph_c0), a calcium-transporting

ATPase (Ca2+-ATPase, c91322.graph_c0), a zinc finger CCCH domain-containing protein

(c49442.graph_c0), a pentatricopeptide repeat-containing (PPR) protein (c88488.graph_c0),

and ROOT PRIMORDIUM DEFECTIVE 1 (c91258.graph_c0), etc (Table 6, S2 Fig).

Cloning of candidate genes and evolutionary analysis

Two candidate genes identified in the WGCNA, ABI-like protein (c73612.graph_c0) and Ca2

+-ATPase (c91322.graph_c0), were further analyzed. The open reading frame (ORF) of these

two genes were amplified and their sequences could be found in S2 Appendix. Both the ABI-

like protein and Ca2+-ATPase belong to gene families and previous studies have demonstrated

they were major players in drought tolerance [29–33, 36, 37]. The high ranking of these two

genes in the gene-gene connectivity analysis also indicated that they might play important

roles in drought tolerance. Their evolutionary relationships with homologous genes from dif-

ferent plant species are shown in Fig 4, which showed that ABI-like genes of K14, KT1 and Tri

had higher homology with AtABIL1. Moreover, they are more closely related to homologs

Table 3. Number of genes enriched in each module.

Module Gene numbers Module Gene numbers

Black 1,271 Light yellow 309

Blue 2,610 Magenta 504

Brown 2,451 Midnight blue 387

Cyan 420 Orange 111

Dark green 154 Pink 741

Dark grey 140 Purple 489

Dark orange 101 Red 1,499

Dark red 192 Royal blue 229

Dark turquoise 152 Saddle brown 84

Green 2,262 Salmon 434

Green yellow 457 Sky blue 89

Grey 143 Tan 450

Grey60 318 Turquoise 3,267

Light cyan 321 White 89

Light green 312 Yellow 2,305

https://doi.org/10.1371/journal.pone.0193193.t003

Table 4. Modules with a high correlation coefficient with Tri.

K14 KT1 Tri

Cyan 0.91 (9e-10) -0.25 (0.2) -0.65 (5e-04)

Light yellow -0.94 (1e-11) 0.22 (0.3) 0.72 (7e-05)

Red -0.38 (0.07) -0.36 (0.09) 0.74 (3e-05)

Saddle brown -0.076 (0.7) -0.53 (0.008) 0.6 (0.002)

Sky blue 0.75 (2e-05) -0.065 (0.8) -0.69 (2e-04)

Turquoise -0.32 (0.1) -0.59(0.002) 0.92 (2e-10)

Yellow 0.48 (0.02) 0.5 (0.01) -0.99 (7e-19)

Note: P values are shown in parentheses.

https://doi.org/10.1371/journal.pone.0193193.t004
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from dicots rather than to homologs from monocots (Fig 4A). In addition, Ca2+-ATPase genes

of K14, KT1 and Tri were more homologous to Ca2+-ATPase 12 and 13 from Arabidopsis (Fig

4B).

Table 5. Top 20 genes enriched in cyan module.

Unigene ID Predicted function Rank Connection

c92000.graph_c1 Glycogen phosphorylase 1-like 1 29.87649

c73612.graph_c0 Protein ABIL1 2 28.92155

c92048.graph_c0 Putative ribonuclease H protein At1g65750 GN = At1g65750 3 28.88248

c80354.graph_c0 Uncharacterized protein LOC102614759 4 28.7481

c89097.graph_c1 Molecular Function: DNA binding 5 28.21814

c71165.graph_c0 Polycomb group protein EMBRYONIC FLOWER 2 isoform X2 6 28.17468

c92696.graph_c0 Gag-protease-integrase-RT-RNaseH polyprotein 7 27.42639

c71577.graph_c0 Uncharacterized protein LOC104224935 8 26.02592

c60381.graph_c0 Putative late blight resistance protein homolog R1B-16 9 25.62843

c92560.graph_c1 Integrase core domain containing protein 10 25.31057

c93523.graph_c0 Uncharacterized protein LOC104243519 isoform X4 11 25.2015

c78358.graph_c0 Putative ribonuclease H protein At1g65750 GN = At1g65750 12 25.04837

c73211.graph_c0 Probable beta-1,3-galactosyltransferase 2 13 25.01559

c94723.graph_c0 Protein FAR1-RELATED SEQUENCE 5-like 14 24.95755

c95174.graph_c0 Protein FAR1-RELATED SEQUENCE 6-like 15 24.74544

c86903.graph_c0 Phosphatidate cytidylyltransferase, mitochondrial isoform X1 16 24.56781

c83818.graph_c0 Zinc finger BED domain-containing protein RICESLEEPER 1-like 17 24.19857

c92017.graph_c0 Serrate RNA effector molecule-like isoform X2 18 24.14518

c77241.graph_c0 Equilibrative nucleotide transporter 3 19 23.37428

c87332.graph_c0 Replication, recombination and repair 20 23.05712

https://doi.org/10.1371/journal.pone.0193193.t005

Table 6. Top 20 genes enriched in light yellow module.

Unigene ID Predicted function Rank Connection

c33446.graph_c0 Ribonuclease-like storage protein (Precursor) 1 30.16488

c67920.graph_c0 Putative transposase 2 27.96056

c78937.graph_c0 Peptidyl-prolyl cis-trans isomerase FKBP15-1 3 27.94231

c85090.graph_c0 Male gamete fusion factor 4 27.71013

c91322.graph_c0 Putative calcium-transporting ATPase 13, plasma membrane-type GN = ACA13 5 27.56307

c87349.graph_c0 Biological Process: regulation of nucleobase-containing compound metabolic process 6 27.26889

c49442.graph_c0 Zinc finger CCCH domain-containing protein 20-like 7 26.93657

c67402.graph_c0 Uncharacterized protein LOC104236329, partial 8 26.78864

c88488.graph_c0 Pentatricopeptide repeat-containing protein At3g26782, mitochondrial 9 26.59128

c91258.graph_c1 Protein ROOT PRIMORDIUM DEFECTIVE 1 10 26.46877

c83529.graph_c0 Uncharacterized protein LOC104114770 isoform X1 11 26.0098

c40924.graph_c0 TMV resistance protein N-like 12 25.973

c80605.graph_c0 DDE superfamily endonuclease 13 25.26208

c89536.graph_c0 Putative transposase 14 24.78359

c69356.graph_c0 Hypothetical protein MIMGU_mgv1a008090mg 15 24.66299

c67379.graph_c0 Unnamed protein product 16 24.66229

c94924.graph_c0 ATP-dependent RNA helicase DHX36 isoform X2 17 24.62971

c90067.graph_c0 Cysteine synthase 18 24.35074

c58570.graph_c0 Hypothetical protein CISIN_1g0242011mg, partial 19 24.31653

c70217.graph_c0 Pyridoxamine 5’-phosphate oxidase 20 23.29847

https://doi.org/10.1371/journal.pone.0193193.t006
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Discussion

High-quality transcriptome data lay a foundation for further research

The lack of a reference genome for sweetpotato seriously restricts research on the molecular

mechanisms of this species and its close relatives. Although previous studies have reported

transcriptome sequencing of sweetpotato, the numbers of transcripts and unigenes were rela-

tively small due to the small size of sequencing samples. In addition, the splicing length was

relatively short [38, 39]. In this study, RNA from 24 whole plants was sequenced, with high-

quality sequence splicing and many more genes obtained than in previous studies (Table 1).

Finally, 322,803 transcripts and 105,959 unigenes were assembled (N50 of 1,965 and 1,403,

respectively). Of the transcripts and unigenes, 148,263 (83,496 + 64,767) transcripts and

23,083 (13,328 + 9,755) unigenes were longer than 1 kb (Table 1). These sequencing results lay

the foundation for further research on the molecular mechanisms of sweetpotato and its close

relatives.

Cyan and light yellow modules are most related to drought tolerance

Several studies have demonstrated that WGCNA is a powerful tool to screen transcriptome

sequencing and chip detection data for key candidate genes [18, 40, 41]. Firstly, WGCNA pro-

vides various modules, which are groups of genes possibly related to phenotypic differences.

Modules can then be further screened to find candidate genes. Reasonable selection combined

with phenotypic trait data can identify the most closely related modules. Our previous work

showed that Tri and KT1 (which inherited some genetic material from Tri) are strongly

drought tolerant, whereas K14 is not [9, 10]. Based on these phenotypic characteristics, we first

chose the modules with a high correlation coefficient in Tri. There were seven modules with

absolute values of� 0.6. Secondly, we compared the correlation coefficients of these modules

in K14 and KT1 with those in Tri. We expected that the correlation coefficients related to KT1

and Tri would be both positive or negative, and the correlation coefficient related to K14

should be the opposite. In addition, the absolute value of the correlation coefficients should

not be small. The cyan and light yellow modules met these requirements (Table 4).

ABI-like protein is an important negative regulator responsible for

drought tolerance in KT1 and Tri

The Hubgenes heatmap clustering and the Eigengenes expression patterns showed that, in the

cyan module, the overall gene expression level was high in K14 but low in KT1 and Tri (Fig 2C

and 2E). This suggests that negative regulators associated with drought tolerance could be

screened from this module. Genes encoding proteins related to ABA signaling (c73612.

graph_c0), flowering (c71165.graph_c0), disease (c60381.graph_c0), and light signal respon-

siveness (c94723.graph_c0, c95174.graph_c0) were enriched in the top 20 candidate genes in

this module (Table 5).

Several studies have shown that ABA signaling is related to drought tolerance [42–45]. In

plants, ABA is an endogenous hormone that plays important roles in growth and develop-

ment, and in the responses to abiotic stresses such as high salinity, drought, and low tempera-

ture. Under stress conditions, plants increase ABA content by regulating its biosynthesis and

Fig 4. Phylogenetic analysis of ABI-like and Ca2+ ATPase genes. (A) Evolutionary analysis of ABI-like genes in K14,

KT1, and Tri with their homologs from different plant species and with ABI proteins from Arabidopsis. (B)

Evolutionary analysis of Ca2+-ATPase genes in K14, KT1, and Tri with Arabidopsis homologs. Length of branch lines

indicates the extent of divergence.

https://doi.org/10.1371/journal.pone.0193193.g004
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transport. The changes in ABA content induce stomatal closure, promote the accumulation of

certain substances, and regulate the expression of stress-related genes [29–33]. The ABA con-

tent in plants is also associated with ABA insensitive (ABI) factors. In Arabidopsis, ABI1-5 and

other PP2C proteins are accessory proteins that diminish ABA signaling by inhibiting down-

stream protein kinases. ABA binds to its receptor protein PYR/PYL/RCAR to inhibit PP2Cs

protein activity, thereby activating ABA signaling [46–52]. Evolutionally, ABI-like proteins

diverged from ABIs. However, Arabidopsis ABI1-like 1 (ABIL1) appears to mediate similar

interactions as ABI1 that assembles DIS3/SCAR2 into a SCAR/WAVE complex [53–54]. Com-

ponents of SCAR/WAVE complex are revealed to mediate epidermal cell morphogenesis [55],

stomatal response [56] and water loss [57]. In the cyan module, c73612.graph_c0, encoding an

ABI-like protein, was highly ranked in the gene-gene connection analysis (Table 5). The

c73612.graph_c0 transcript levels were low in Tri and KT1 but high in K14, consistent with

the differences in their drought-tolerance phenotypes (S1 Fig). We speculate that the low

expression level may contribute to drought tolerance in Tri and KT1 by releasing the inhibi-

tion of ABA signaling. Therefore, we suggest that the ABI-like protein acts as an important

negative regulator in the drought tolerance of Tri and KT1.

Ca2+-ATPase is an important positive regulator of drought tolerance in

KT1 and Tri

The Hubgenes heatmap clustering and the Eigengenes expression patterns showed that in the

light yellow module, the overall gene expression level was low in K14 but high in KT1 and Tri

(Fig 2D and 2F). This result indicated that positive regulators of drought tolerance could be

screened from this module. Among the top 20 genes enriched in the light yellow module,

CCCH-type zinc finger proteins are associated with mRNA destabilization [58]. PPR is a

35-amino acid motif and some proteins containing PPR locate in organelles such as mitochon-

dria and express in guard cells and seeds [59, 60]. Arabidopsis CRR4 containing PPR partici-

pates in RNA editing [61]. ROOT PRIMORDIUM DEFECTIVE 1 (RPD1) is a plant-specific

gene that is required for the proliferation of active cells. It has been shown to play a role in gen-

erating adventitious roots in response to exogenous auxins in Arabidopsis hypocotyls. Arabi-

dopsis rpd1mutants are susceptible to temperature variations, and high temperature (28˚C)

was shown to hinder root primordium development [62].

While Ca2+-ATPase is involved in transporting Ca2+, which is an important second messenger

in plants and an important component of plants’ responses to various stresses. The Ca2+ signaling

pathway plays an important role in responses to biotic and abiotic stresses including pathogen and

pest attacks, salt, drought, and low or high temperatures [63]. An increase in the cytoplasmic Ca2+

concentration is an important step in early ABA signaling [48]. Silencing of the Ca2+-binding pro-

tein SCaBP5 and its interacting protein PKS3 in Arabidopsis rendered seed germination, seedling

growth, stomatal closure, and gene expression sensitive to ABA [64]. Ca2+-ATPases participate in

Ca2+ signal regulation. For example, the plasma membrane Ca2+-ATPase (PMCA) is a cytoplasmic

membrane transporter that removes Ca2+ from cells [65]. Therefore, proteins in the Ca2+-ATPase

family play an important role in plants’ environmental stress responses. Overexpression ofGsACA1
inGlycine soja significantly improved its tolerance to carbonic acid and alkaline salt stresses [36, 37].

In the light yellow module, the Ca2+-ATPase gene c91322.graph_c0 ranked highly (fifth) in

the gene-gene connection analysis (Table 6). Its transcript abundance was highest in Tri, fol-

lowed by KT1, but was very low in K14. In addition, the changes in the transcript abundance

of c91322.graph_c0 during drought stress were very similar in Tri and KT1 (significant

decrease at 6h, followed by a slow increase; S2 Fig). Based on the above analyses, we speculate

that Ca2+-ATPase is an important positive regulator of drought tolerance in Tri and KT1.
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Conclusions

The drought-stress responses of the sweetpotato somatic hybrid KT1 and its parents K14 and

Tri were compared by transcriptome sequencing analyses. Gene transcript levels were ana-

lyzed and DEGs were screened. A total of 22,412 unigenes were analyzed by WGCNA to select

negatively or positively regulatory modules, and key candidate genes were identified. Further

research should focus on functional analyses of these candidate genes during the drought

response.
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