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Abstract

Biomolecular screening research frequently searches for the chemical compounds that are most 

likely to make a biochemical or cell-based assay system produce a strong continuous response. 

Several doses are tested with each compound and it is assumed that, if there is a dose-response 

relationship, the relationship follows a monotonic curve, usually a version of the median-effect 

equation. However, the null hypothesis of no relationship cannot be statistically tested using this 

equation. We used a linearized version of this equation to define a measure of pharmacological 

effect size, and use this measure to rank the investigated compounds in order of their overall 

capability to produce strong responses. The null hypothesis that none of the examined doses of a 

particular compound produced a strong response can be tested with this approach. The proposed 

approach is based on a new statistical model of the important concept of response detection limit, 

a concept that is usually neglected in the analysis of dose-response data with continuous 

responses. The methodology is illustrated with data from a study searching for compounds that 

neutralize the infection by a human immunodeficiency virus of brain glioblastoma cells.
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1. Introduction

The goal of many biomolecular screenings in pharmaceutical research is to select from a set 

of chemical compounds a subset of compounds that modulate a biochemical or cell-based 

system. Compounds of interest will make the system produce a continuous response that 
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desirably will have a value higher than a prespecified minimum Rmin (or, in some cases, 

lower than a prespecified maximum Rmax), if the response were ideally measured without 

error. An example of response that desirably should be higher than a prespecified Rmin is the 

percent increase in the number of cancer cells that are killed after a certain time of exposure 

to a compound, relative to the number of cells that die after spending the same time in the 

absence of the compound; or the percent reduction in the amount of infection of a target cell 

by a virus which is observed after certain time of exposure to a compound, relative to the 

amount of infection after the same time in the absence of the compound. The value of Rmin 

is chosen so that responses higher than that value are considered pharmacologically or 

biologically important. An example of a response in which a maximum response Rmax is 

desirable is the percent increase in the number of non-cancerous cells that are killed after 

exposure to a potentially anti-cancer agent, relative to no exposure.

In the experiments modeled in this article, the effect of each of m compounds on a 

continuous bioassay response is investigated, and the same n compound doses D1 < D2 < … 

< Dn are tested with each of the m compounds. Here, Rij represents the observed response to 

dose Di of compound j, i = 1, …, n, j = 1, …, m, and the letter R will generically represent 

the response to a dose D if this response were ideally measured without error. That is, R is 

the "true" or "adjusted-for-error" response, as opposed to the observed response Rij which is 

obtained through an experimental procedure that usually involves error. In other words, Rij is 

a particular measure of a theoretical dimension R.

Here, we are interested in responses R that theoretically are numbers between 0 and 100 

inclusive. In practice, however, a particular measure Rij of R may be outside the interval [0, 

100]. For instance, suppose that R is the percent reduction of a virus infection of a cell 

system, produced by a chemical compound, and that the magnitude of a luminescent signal 

measures the extent of the virus infection. In this case, R can be measured by computing the 

percent reduction in luminescent signal with respect to the signal of a control bioassay. 

Because of unavoidable experimental errors, this percent reduction may be < 0 for some 

compounds, even under the theoretical assumption that none of the investigated compounds 

may increase the extent of the infection or the assumption that the assay may not detect an 

infection increase.

Ideally, a particular compound should be selected for future investigations if, after adjusting 

for experimental error, at least one of its investigated doses yields R > Rmin (or R < Rmax), 

where Rmin > 0 (or Rmax < 100). However, since many of the examined compounds may 

satisfy this condition, and only a few compounds can be used in future investigations to 

minimize project costs, researchers must rank the compounds in order of their overall 

capability to cause the cell system to produce R > Rmin (or R < Rmax) within the dose range 

tested. Once the compounds are ranked, the compounds with the highest capabilities would 

be selected for future investigations.

As described below, the non-linear regression methodology traditionally used in dose 

response analyses, which fits a parametric curve to the pairs (D1, R1j), …, (Dn, Rnj), is 

frequently not suitable for conducting this ranking, and never can be used for testing the null 

hypothesis that none of the n examined doses of a particular compound produced a true 
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response higher (or lower) than the reference response Rmin (or Rmax) (versus the alternative 

hypothesis that at least one of the examined doses produced a true response higher than the 

reference response). The objective of this article is to suggest methodology for conducting 

this ranking and testing.

The most popular approach to comparing the effects of two or more compounds on a 

continuous response R relies on estimating for each compound the dose D that makes R = 

50%, symbolized here as D(50). (Depending on the type of response, this dose is called IC50, 

ED50, LD50, etc.) This approach assumes that, for each compound and the dose range tested 

[D1, Dn], the relationship between a dose D and the true response R follows a monotonic 

dose-response curve. The most frequently used model for this curve is the median-effect 

equation

(1)

which includes as particular cases the well-known Michaelis-Menten and Hill (Goutelle 

2008) equations, as well as the Henderson-Hasselbalch and Scatchard equations (Chou 

2006). This equation has parameters w ∈ ℝ and D(50) > 0 that are frequently estimated for 

each compound from observed responses by using non-linear regression with additive errors 

and least squares estimation.

Admitting that the D(50) measure is widely used in both pharmacological and biological 

research, this measure has a number of limitations that hinder its applications to compound 

ranking and statistical testing in biomolecular screening (Diaz et al. 2013). The limitations 

essentially stem from the fact that the D(50) has to be computed under the assumption of the 

existence of a dose-response effect and, therefore, the D(50) cannot be used to statistically 

test the null hypothesis of no dose-response effect for the compound, or the more general 

null hypothesis that no investigated compound dose has an important effect on the response. 

Moreover, the D(50) measure cannot be reliably computed in many cases (Diaz et al. 2013). 

An elaboration of this and other limitations is provided in Section 2.

A central premise of this article is that the research question of interest in a biomolecular 

screening is not whether there is a monotonic relationship between response and dose for a 

particular chemical compound, or whether a parametric curve can be fitted to the 

compound’s dose-response pairs of points, but whether one of the investigated doses really 

produces a response of importance, where a response is considered important if it is > Rmin 

(or < Rmax) after adjusting for experimental error. The question of whether some dose 

outside the examined dose range [D1, Dn] can produce an important response cannot be 

answered with the types of experiment that are studied in this article, and answering this 

question is not an objective of this article.

In this article, we show how some further elaborations of equation (1) provide an approach 

that can be used for compound ranking and compound-effect testing, which does not have 

the mentioned limitations of a direct application of this equation. This approach is based on 
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a logit transformation of this equation which has been used by other authors for theoretical 

purposes or for estimating w and D(50) with a limited number of doses (for instance, with 

only two doses) (Chou 2006), and on a new statistical model of the important concept of 

response detection limit, a concept that, unfortunately, is usually neglected in dose-response 

analyses with continuous responses.

The potential of the logit transformation of equation (1) for improving decision making in 

pharmacological and biological research does not seem to have been fully appreciated. As 

elaborated in Section 3, this potential stems from the fact that the logit transformation 

induces a family of dose-response curves that is much larger than the family of curves 

represented by equation (1). The logit transformation, however, has a limitation of its own: it 

cannot be applied to observed responses outside the interval (0, 100). To address this issue, 

this article posits that observed responses that are negative or close to 0 should be considered 

as mostly generated by a mechanism that is different from (and independent of) the 

mechanism producing the relationship represented by equation (1). This different 

mechanism occurs because negative, null or close-to-zero observations are likely measures 

of true responses that are below the response detection limit, and the experimental 

conditions cannot correctly quantify such responses. These observations, however, are not 

excluded from analyses because doing so would bias the decision against the null hypothesis 

of no compound effects. Instead, they are used to estimate the detection limit through the 

model proposed in Section 5. The estimated detection limit and the number of negative, null 

or close-tozero responses are then used to constraint the estimation of the parameters of the 

linear regression based on the logit-transformed data, as described in Section 9.

Section 2 describes limitations of nonlinear regression and the D(50) in the context of 

ranking and statistical testing of chemical compound effects. Section 3 gives a mathematical 

motivation for using a logit-linearized form of the median effect equation in statistical 

testing of compound effects. Sections 4, 5 and 6 introduce the proposed model. Sections 7 

and 8 introduce a measure of pharmacological importance of a compound and the null 

hypothesis of no importance. Section 9 explains a method to estimate the measure of 

pharmacological importance of a compound, and Section 10 a method to examine the 

statistical significance of the estimate. Sections 11 and 12 describe a method of estimating 

the detection limit for the pharmacological response. Section 13 and 14 present an 

application to the search for compounds that neutralize HIV infection. A discussion is in 

Section 15.

2. Limitations of nonlinear regression approaches and the D(50)

In equation (1), the theoretical response R is a strictly increasing function of D when w > 0, 

and strictly decreasing when w < 0. When w = 0, R = 50 regardless of the dose D and the 

value of D(50) (Figure 1); thus, D(50) is unambiguously defined only if w ≠ 0, that is, only 

when R is a strictly monotonic function of D. This fact imposes three major limitations. 

First, equation (1) by itself does not allow modeling data showing a nearly constant 

relationship between R and D that may be of pharmacological interest, even if such data is 

produced by a compound satisfying equation (1) for a dose range wider than the dose range 

tested. Such relationships may occur, for instance, when all tested doses produce 
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substantially strong responses but the examined dose range is not wide enough to detect an 

appreciable increase (or a decrease) in response with dose.

Figure 2 illustrates some problems arising in such situation. The solid line is a plot of 

equation (1) with D(50) = 3 and w = 0.7. The five points are dose-response pairs that were 

simulated with these parameter values and a normal random noise with mean 0 and variance 

4. The five points may give the impression of a nearly constant dose-response relationship.

When equation (1) was fitted to the five points in Figure 2 through nonlinear least squares, 

misleading parameter estimates were obtained, 0.05309 and 0.2077 for D(50) and w, 

respectively. The dashed line represents the fitted equation. Moreover, data points like the 

ones illustrated usually produce convergence problems in least squares algorithms when 

attempting to fit equation (1), because this equation does not include parameters accounting 

for constant responses other than R = 50 and the parameters of equation (1) are not 

identifiable for a constant response of R = 50. Thus, some important compounds may not be 

identified in a biomolecular screening if these algorithms are applied without additional 

visual inspection, and the D(50) measure cannot even be obtained for some compounds. 

Moreover, visual inspections may be impractical if the number of examined compounds is 

relatively large.

Analogous problems occur when small doses are tested. In this case, it is not unusual that 

the observed dose-response curve of a compound j does not reach a clear plateau, even if the 

compound has a dose-response effect; as a result, no reliable estimator for the D(50) of 

compound j can be obtained by fitting equation (1) to the pairs (D1, R1j), …, (Dn, Rnj), and 

there are even cases in which no D(50) measure can be obtained (Diaz et al. 2013).

Second, the D(50) measure, and indeed equation (1) alone, cannot be used to statistically test 

the null hypothesis that the investigated doses of the compound do not have a differential 

effect on the bioassay response, nor the null hypothesis that none of the investigated doses of 

the compound have an effect on the response (Diaz et al. 2013). The reason is that the 

parameter space of equation (1), namely {(w, D(50)) ∈ ℝ2; D(50) > 0}, does not include the 

case in which R = constant (or R ≈ constant) for all D. In other words, since equation (1) can 

be fitted to observed responses only under the assumption that there is a strictly monotonic 

relationship between dose and true response, the null hypothesis of no relationship cannot be 

tested.

Third, also because of the limitations of the parameter space of equation (1), this equation 

(and therefore the D(50)) cannot be used by itself to model the important case in which R 
takes on a nearly constant but high (or low) value within the dose range [D1, D2], which may 

occur if this range is not wide enough (Figure 2). In plain words, constant responses cannot 

be modeled with equation (1). This is a limitation because excluding from future analyses a 

compound that showed a constant response solely because its data does not conform with 

equation (1) may introduce a decision error. In fact, the constant response value to the 

compound may be substantially larger than Rmin (or lower than Rmax) and, therefore, the 

compound may be a good candidate for future analyses. Because of these limitations, 

automated decision rules that distinguish whether (and to what extent) a compound affects 
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the investigated response cannot be designed by using D(50) measurements (Diaz et al. 2013) 

and, in fact, cannot be designed by using nonlinear regression theory solely based on 

equation (1).

3. Rationale of the proposed approach to hypothesis testing

To motivate our proposed approach, note that equation (1) can be transformed into

(2)

provided that 0 < R < 100, where T is the logit transformation defined as T(x) = log(x/(100 − 

x)), 0 < x < 100 (Chou 2006). Assuming that equation (1) represents well the dose-response 

relationship for a compound j, equation (2) could be used to estimate the D(50) of compound 

j by fitting a simple linear regression model to the points (log (Di), T(Rij)), i = 1, …, n (Chou 

2006). However, this would work well only if the range [D1, Dn] of tested doses is 

sufficiently wide.

Nonetheless, even when D(50) cannot be reliably estimated, the slope and intercept of the 

estimated linear relationship between T(R) and log(D) have information about the 

magnitude of the responses to the doses in the dose range tested. Thus, if we focus only on 

the slope and intercept, we see that equation (2) can be rewritten as

(3)

with a, b ∈ ℝ.

Note that, although equation (1) can be algebraically transformed into equation (3), these 

two equations are not algebraically equivalent, unless both w, a ≠ 0, because there are no 

restrictions on the values of a and b in equation (3). Specifically, by letting a = w and b = −w 
log (D(50)), we see that any non-constant dose-response relationship satisfied by equation (1) 

is also satisfied by equation (3). However, whereas equation (3) is satisfied by all possible 

constant relationships of the form R ≡ r for all D and some r ∈ (0, 100) [use a = 0 and b = 

T(r)], the only constant relationship satisfied by equation (1) is the relationship R ≡ 50 

which occurs when w = 0 (although, in this case, D(50) is not identifiable).

In summary, the family of relationships between D and R that is represented by equation (3) 

is larger than the family represented by equation (1). In addition to strictly monotonic 

relationships, equation (3) includes essentially all constant relationships, which makes 

equation (3) useful to model relationships that may be pharmacologically or biologically 

important but are empirically nearly-constant or constant within the investigated dose range 

(like that suggested by the five points represented in Figure 2). Even more, in contrast to 

equation (1), the parameter space of equation (3) contains a null subspace representing the 

null hypothesis of no important pharmacological effects (see Section 8).
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4. The concept of detection limit and other preliminary concepts

Our model of the dose-response pairs (Di, Rij), i = 1, …, n, j = 1, …, m, essentially assumes 

that equation (3) is satisfied by all m examined compounds and doses within the dose-range 
tested, and that each compound has its own values of a and b. But, the model also postulates 

the existence of a constant number θ, 0 < θ < 100, such that, if R < θ, then R is unreliably 

measured. The parameter θ is called the detection limit for R. If the dose Di of compound j 
produced a true response R < θ, then the measure Rij of R is not considered informative 

about the parameters of equation (3). These ideas are formally stated in Section 5.

Note that the detection limit θ is postulated to be a constant of the entire set of experiments, 

that is, θ does not depend on i or j. The detection limit θ is interpreted as a response value 

below which the biologist accepts that the available experimental setup and instrumentation 

does not allow measuring the response R with confidence. Thus, the particular value of θ is 

a consequence of the technology and knowledge used to measure R, and it is not an intrinsic 

property of any of the examined chemical compounds or of the biological system to which 

they are applied.

The proposed model is applicable only if it can be reliably assumed either that a ≥ 0 for all 

compounds tested, or a ≤ 0 for all compounds tested. We stress that the situation a = 0 is 

included in these two cases, that is, constant responses are accepted as possible in our 

formulation. For convenience, the methodology will be described only for the case a ≥ 0. In 

this case, we do not expect that any of the tested compounds will exhibit a strictly decreasing 

monotonic relationship between response and dose within the investigated dose range, nor 

an umbrella-shape or other non-monotonic relationship, and we search for compounds 

producing R > Rmin. The assumption that a ≥ 0 for all compounds is reasonably fulfilled by 

the data used to illustrate the proposed methodology (Section 13).

The case a ≤ 0 can be handled analogously to the case a ≥ 0 by transforming the response R 
into 100 − R. Since the usual goal of a biomolecular screening under the case a ≤ 0 is to find 

compounds producing R < Rmax, the transformation Rmin = T (100 − Rmax) is also needed 

and, using these two transformations, all that will be described for the case a ≥ 0 applies 

verbatim to the case a ≤ 0.

In what follows, we say that a random variable X has a scaled beta distribution with 

parameters α > 0, β > 0 and θ > 0, if the probability density function (pdf) of X is

(4)

That is, fX is the pdf of a beta random variable with parameters α and β that has been 

multiplied by θ. If X has pdf (4), then we say that the distribution of X is Sbeta(α, β, θ).
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5. Model assumptions

Let θ be the detection limit for R. The model postulates that, for the entire set of 

experiments, there exist constant numbers α > 0, β > 0 and γ > 0 in addition to θ, and that 

for each compound j, with j = 1, …, m, there exist numbers aj ≥ 0 and bj ∈ ℝ, such that

• Model Assumption 1: For all i = 1, …, n and j = 1, …, m, if aj log (Di)+bj ≥ Tθ, 

then P (Rij ≤ 0) = 0 and E[T(Rij)] = aj log (Di) + bj, where Tθ denotes T(θ).

• Model Assumption 2: If I is the set of all pairs (i, j) in the Cartesian product {1, 

…, n} × {1, …, m} satisfying aj log (Di) + bj < Tθ, and if (i, j) ∈ I, there exists 

an unobserved random variable  producing values in the interval (0, θ) such 

that the conditional distribution of  given the event {0 < Rij < 100} is Sbeta(α, 
β, θ).

• Model Assumption 3: If (i, j) ∈ I, the conditional distribution of T(Rij) given both 

 and the event {0 < Rij < 100} is normal with mean T(r) and variance γ2.

• Model Assumption 4: If (i, j) ∈ I, then all observed responses Rij with (i, j) ∈ I 
are mutually independent and identically distributed.

• Model Assumption 5: P (Rij ≥ 100) = 0 for all i = 1, …, n and j = 1, …, m.

• Model Assumption 6: For a particular compound j, all observations T(Rij) with 

(i, j) ∉ I are normally distributed with variance , and are mutually independent.

6. Explanation of model assumptions

As mentioned in Section 4, the detection limit θ is not a characteristic of a particular 

compound but a parameter of the entire set of experiments which depends on the 

experimental and analytical methods used to measure R. In contrast, aj and bj are parameters 

whose values reflect the effect of compound j on the response R. The assumption aj ≥ 0 for 

all j is applicable when strictly monotonically decreasing relationships are not considered 

possible for the compounds examined.

Model Assumptions 2–4 are informally interpreted as follows: attempting to measure R 
when R is below the detection limit produces an unwanted artifact R* generated by an Sbeta 

(α, β, θ) distribution (Model Assumption 2). In that situation, Rij is measuring the artifact 

R*, not R (Model Assumption 3). As a consequence, when R < θ, Rij does not have any 

information about aj or bj (Model Assumption 4).

Define , i = 1, …, n, and . By Model Assumption 1, if 

, then

(5)
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As described in Section 8,  contains all the information we need to statistically test the 

effect of compound j on the response R in the dose range examined; thus, the statistical test 

proposed in this article focuses on this parameter. However, both aj and  are needed to 

measure the size of this effect, as described in Section 7.

According to Model Assumption 4, if  for some i and j, then the 

observed response Rij to dose Di of compound j has little or unreliable information on aj and 

 because, in that case, even if aj ≠ 0 or , the distribution of Rij does not depend on aj 

or . In other words, true responses lower than the detection limit are unreliably measured.

For a particular compound j, we say that the true response produced by a dose Di is below 

the detection limit θ, or that Di produced a true response below the detection limit, if and 

only if . In this case, Assumption 4 implies that Rij is uninformative, and 

therefore, that Rij should not be used to estimate aj or . In practice, Model Assumption 5 

means that no observed response is ≥ 100, which is the case in many applications searching 

for compounds that increase the value of a response, and usually occurs when relatively 

small compound doses are tested in a biomolecular screening.

7. A measure of the effect size of a chemical compound on a bioassay 

response

In the following, we assume that Rmin > θ and denote Tmin = T (Rmin). Suppose that we are 

investigating whether at least one of the n tested doses of compound j can produce, after 

adjusting for response measurement errors, an important response (i.e. a "true" response 

higher than Rmin). More precisely, we want to know if  for some i, and 

therefore, if the true response to Di is pharmacologically important (that is, by Model 

Assumption 1, if E [T(Rij)] > Tmin).

To measure the pharmacological importance of the effect of compound j on the response R, 

we propose computing the effect size

(6)

where [z]+ = max{z, 0}. Note that . Therefore, the integration region in formula 

(6), the closed interval  is the same as the interval . As a 

consequence, this integration region covers the entire range of tested doses, and only this 

range. Thus, since Ej is dependent on the particular dose range tested, that is, on the interval 

[D1, Dn], a comparison of the Ej values of two different compounds is appropriate only if the 

same dose range was used for examining the two compounds. The higher Ej is, the stronger 

are the responses to compound j. A convenient computational formula for Ej is presented in 

Appendix 1.
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When Ej > 0, Ej can be geometrically represented in an xy-coordinate system as that portion 

of the area between the lines  and y = Tmin that is relevant to the dose range 

tested. This interpretation of Ej is illustrated in Figure 3 (A–E), in which the subscript j is 

dropped for clarity. Also, Ej = 0 essentially means that no true response R to compound j is 

higher than Rmin within the dose range tested (Figure 3, F–H).

8. The null hypothesis of no important effect of a compound

Since, in general, Ej ≥ 0, the null hypothesis of no important effects of compound j on the 

response R within the dose range tested can be stated as H0: Ej = 0, and we should test this 

hypothesis against the alternative H1: Ej > 0. But, since we are assuming that aj ≥ 0 for all j, 

the null hypothesis H0: Ej = 0 is equivalent to , and the alternative H1: Ej > 0 is 

equivalent to . (See Appendix 2 for a proof.)

Provided that at least one true response to compound j is above the detection limit, the 

maximum possible E [T(Rij)] in the investigated dose range is . Therefore, H0 may be 

paraphrased as "After adjusting for measurement errors, no response to compound j is above 

Rmin", and H1 as "At least one dose of compound j produces a response above Rmin".

9. Estimation of the effect size Ej

To estimate Ej for a particular compound j, aj and  need to be estimated first. This section 

describes an approach to estimating aj,  and Ej. When there are reasons to believe that 

some of the true responses R produced by compound j are below the detection limit θ, the 

value of θ needs to be known or estimated before using this approach. Section 12 describes 

an approach to estimating θ.

Denote yij = T(Rij) and . Let 1 ≤ k < n and assume that the lowest k doses of 

compound j produced true responses below the detection limit θ but the remaining doses do 

not. That is, assume  for i ≤ k, and  for i > k.

As estimators of aj and , we propose using the values of aj and  that minimize the sum of 

squares function

(7)

subject to the k constraints , i = 1, …, k. Since xh < xi for all h < i, and we are 

assuming aj ≥ 0, these k constraints are equivalent to the unique constraint

(8)
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Thus, only one constraint is needed to perform the minimization of the sum of squares in 

(7). The obtained estimators of aj and  are denoted âj and .

If no i is assumed to satisfy  for compound j, we define k = 0 and estimate aj 

and  by minimizing (7) without any constraint. In this case, the obtained estimators are just 

ordinary least squares estimators that can be produced with any linear regression software, 

and are still denoted by âj and . When k ≥ 1, nonlinear regression software can be used to 

compute âj and  as explained in Appendix 3.

In any case, Ej is estimated with . Although we are assuming that aj ≥ 0, 

we do not impose the additional constraint aj ≥ 0 when minimizing (7). This is not a 

problem, and it is even advantageous, for three reasons. First, a goal of computing âj and 

is to compute Êj, which is well defined for any âj, even a negative one. Second, minimizing 

 with respect to  under constraint (8) is equivalent to minimizing 

 with respect to , where A = {(a, b*) ∈ ℝ2; axk + b* < Tθ}. Since A is 

open and convex, standard theory of least squares estimation guarantees that, when aj ≥ 0 

and under very general conditions on the distribution of yij for i ≥ k + 1, âj and  are 

consistent estimators of aj and  as n − k → ∞ (Shao 2003). As a consequence, Êj is a 

consistent estimator of Ej under aj ≥ 0.

Third, an advantage of not enforcing the additional constraint aj ≥ 0 in the minimization of 

(7) is that the adequacy of the assumption aj ≥ 0 can be examined by testing the null 

hypothesis that aj ≥ 0 versus the alternative aj < 0 by using a standard Wald test based on âj 

and its standard error. This would not be possible if the additional constraint aj ≥ 0 were 

imposed because in such case âj would never be negative.

10. Testing the null hypothesis of no important effect for a particular 

compound

To test H0: Ej = 0 versus H1: Ej > 0 we use Model Assumptions 1 and 6. Under these 

assumptions, the theory of least squares estimation allows showing that an approximate 

estimate of the standard error of  denoted by , can be computed as the square root of 

the first diagonal element of the estimated variance-covariance matrix

(9)

and  (Shao 2003). Now define k = n if all n doses of compound j 
produced true responses below the detection limit θ. To test H0 at a significance level α, we 
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follow the following decision rule: if n − k − 2 ≥ 1, use the t statistic 

and reject H0 in favor of H1 if τj > tp,α, where tp,α is a right-tail critical value of a central t 

distribution with p = n − k − 2 degrees of freedom; and if n − k − 2 < 1, do not reject H0. If 

desired, a p-value can be computed and corrected for multiple comparisons when n − k − 2 ≥ 

1.

11. Practical considerations in the estimation of aj and 

In some practical situations, the biologist who conducted the experiments can provide a 

working value for the detection limit θ, which may be suggested by his/her experience and 

knowledge. With this provided value, aj and  can be estimated for a particular compound j 
by using the methodology described in Section 9.

If a value for θ is not available from previous experience, θ can be estimated by using the 

model and approach proposed in Section 12. In any case, a question that needs to be 

answered before estimating aj and  is how to decide whether or not a particular observed 

response Rij was produced under the inequality , that is, whether the 

measured response is unreliable.

Biologists usually assume that an observed response less than or equal to 0 reflects the fact 

that the true response lies below the detection limit, because experimental setup and 

instrumentation frequently do not allow measuring very small responses with acceptable 

precision. Guided by practical considerations, we incorporate this biologist’s assumption 

into our approach by assuming the following:

• Working Assumption: Rij ≤ 0 implies  for all h ≤ i, even if 

Rhj > 0 for some h < i.

In other words, since aj ≥ 0 for all j, we also assume that, if Rij ≤ 0, then dose Dh of 

compound j has produced a true response below the detection limit for all h ≤ i. Thus, if Rij 

≤ 0, Rhj is not used directly to estimate the parameters in equation (5) when h ≤ i, although 

the information that  is incorporated into the estimation approach 

described in Section 9 and Appendix 3.

Our approach, however, does not exclude other possible rules that the biologist or 

researchers may agree on to incorporate in an automated algorithm that decides whether or 

not a particular compound dose has produced a true response below the detection limit. Note 

that the Working Assumption can be viewed as a consequence of Model Assumption 1, 

because, by the latter, P (Rij ≤ 0) > 0 implies .

12. Estimation of the detection limit

If previous experience or knowledge does not provide a reasonable value for the detection 

limit θ, Model Assumptions 2–4 can be used to estimate θ, as described in this Section.
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Model Assumptions 2 and 3 imply that if dose Di of compound j produced a true response 

below the detection limit and 0 < Rij < 100, then the unconditional distribution of the 

observed transformed response T(Rij) is a mixture of normal distributions with a scaled beta 

as the mixing distribution, where the scaled beta is defined in Section 4. Specifically, it can 

be shown that the unconditional pdf of T(Rij), is

(10)

where −∞ < z < ∞, with parameters α > 0, β > 0, γ2 > 0 and 0 < θ < 100. Note that, 

consistent with Model Assumption 4, the pdf fT does not depend on particular aj or 

parameters and depends only on global parameters α, β, θ and γ2.

Although the parameter of interest is θ, we estimate α, β, θ and γ2 simultaneously through 

maximum likelihood methodology by using the transformed observations T(Rij) satisfying 

both (i, j) ∈ I and 0 < Rij <100, which, by Model Assumptions 2, 3 and 4, constitute a 

random sample from fT.

For practical purposes, the parameters in the pdf in (10) will be estimated by using the 

transformed observations T(Rhj) that satisfy both Rhj > 0 and Rij ≤ 0 for some i > h. By the 

Working Assumption in Section 11 and Model Assumptions 1–4, the collection of logit-

transformed observations satisfying these two conditions can be treated as a random sample 

from the pdf fT in (10). Once parameter estimates for α, β, θ and γ2 are obtained, the 

goodness of the fit of pdf (10) is examined by using a quantile-quantile (Q-Q) plot (Coles 

2001).

The above approach to estimating the parameters in (10) additionally assumes that the 

detection limit θ is not substantially greater than 0, because we are not including 

transformed observations T(Rhj) such that Rij > 0 for all i ≥ h in the random sample from fT. 

This approach, however, will not bias the maximum likelihood estimator of θ towards 0 if 

this additional assumption about θ is not correct. The reason is that, by Model Assumption 

4, even if θ is substantially large and other observed responses Rij with (i, j) ∈ I are not 

included in the sample, the observations T(Rhj) satisfying both Rhj > 0 and Rij ≤ 0 for some i 
> h still can be considered as independent observations from the pdf in (10); therefore, the 

maximum likelihood estimator of θ will still enjoy its good usual properties.

If θ is relatively large, however, the proposed approach has two limitations: 1) the number of 

observations T(Rhj) satisfying both Rhj > 0 and Rij ≤ 0 for some i > h may not be large 

enough to produce a reliable maximum likelihood estimator of θ; and 2) some observations 

T(Rhj) such that Rij > 0 for all i ≥ h may be rightfully considered as observations from the 

pdf in (10), but we do not know how to identify them and, more importantly, these 

unidentified observations may adversely affect the estimation of aj and  because they will 

be wrongfully treated as informative about aj and  when implementing the least squares 

estimation approach described in Section 9.
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We stress that the support of fT is the set (−∞, ∞), not the set (0, θ). Thus, in principle, if R 
< θ, it is possible that Rij > θ and, therefore, that the estimated value of θ be smaller than 

some of the observations used to estimate θ.

As an additional justification of the proposed approach to estimating θ, observe that a 

consequence of the Working Assumption in Section 11 is that if Rhj>0 but Rij ≤ 0 for some i 
> h, then Rhj must contain information about the detection limit θ. For instance, if Rhj were 

too high, say 70%, since Dh < Di and aj ≥ 0, we would suspect that the experimental setup 

does not allow measuring strong responses with confidence, and therefore, that the detection 

limit is far from zero. Our approach extracts this information in order to produce an estimate 

of θ.

In summary, transformed observations T(Rhj) that satisfy both Rhj> 0 and Rij ≤ 0 for some i 
> h are viewed as constituting a random sample from a probability distribution that has θ as 

one of its parameters. A maximum likelihood estimate of θ is thus obtained with these 

observations.

13. Application: Neutralization of virus infection

Here, the proposed methodology is applied to data from experiments whose goal was to 

quantify the extent to which each of 62 compounds neutralizes the infection of the sensitive 

human brain glioblastoma cell line U87+T4+CCR5 by the JR-FL strain of human 

immunodeficiency virus, described in Krachmarov et al. (2001). Each compound was tested 

at 7 doses, namely 0.2382, 0.4763, 0.9527, 1.9053, 3.6916, 7.5023 and 15.0045 µM. The 62 

compounds were selected from a library of 5,152 small-molecule compounds that were 

previously screened for their effect on virus infection at a single compound dose of 10 µM 

each.

The extent of the infection neutralization was indicated by a decrease in luminescent signal 

from a luciferase cell-based assay system, the magnitude of the luminescent signal reflecting 

the strength of the infection. The response R to a particular dose is a percent neutralization 

of virus infection that was defined as the percentage of luminescence that was decreased 

after the system was exposed to the compound for 72 hours relative to a control. The higher 

the percent neutralization, the greater the inhibition of virus infection of the U87+T4+CCR5 

cells by the compound. Doses of added compounds that neutralized 50–100% of baseline 

luminescence were searched for. Compounds exhibiting such doses would be considered of 

pharmacological interest for future studies. Thus, we will use Rmin = 50%.

Here, the effect size Ej will be used as a measure of the overall ability of compound j to 

neutralize the viral infection, j = 1, …, 62; this measure combines the information produced 

by the 7 tested doses and treats any error-adjusted neutralization lower than 50% as 

unimportant. Biochemical methods are described in Appendix 4.

Some negative or zero percent neutralizations occurred when the final luminescent signal in 

the presence of the compound was equal to or greater than that produced by virus infection 

in the absence of compound. None of the 62 compounds produced a neutralization of Rij ≥ 

100% at the tested doses.
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To estimate the detection limit θ through maximum likelihood estimation of the parameters 

of pdf (10), the commands NIntegrate and NMaximize of the software Mathematica were 

used (Wolfram Research, Inc.). Table 1 shows the observations Rkj used to estimate these 

parameters, which satisfied both Rkj>0 and Rij ≤ 0 for some i > k. Parameter estimates for 

the pdf (10) were α̂ = 35.5616, β̂ = 4.34595, γ̂ = 0.899033 and γ̂ = 4.42281. Figure 4 shows 

a Q-Q plot built with these estimates, which suggests the adequacy of the proposed detection 

limit model for the neutralization data in Table 1. Thus, a detection limit of about 4.42% 

seems to be appropriate for the neutralization response.

The approach described in Sections 9–10 was applied to the neutralization data, using θ = 

4.42%. Compound effect sizes (the Ej’s) and their significances were computed by using 

Rmin = 50%. A Stata program was written to implement the model (Baum 2009). (The 

program is available from the corresponding author on request.) Stata’s nonlinear regression 

command (nl) was used for those compounds with k ≥ 1 (Appendix 3). Table 2 shows 

compound effect sizes Ej and the estimates of aj and  for each compound for which these 

parameters could be estimated (that is, compounds with n − k ≥ 3). In Table 2, compounds 

were ranked according to estimated effect size. The six compounds with the largest 

pharmacological effect sizes were KU0104459 (Ej = 11.858), KU0101338 (11.592), 

KU0102728 (11.155), KU0104328 (10.562), KU0104458 (10.250) and KU0102846 (8.235); 

these effect sizes were significantly larger than 0. Out of those compounds for which n − k ≥ 

3, three had an Ej = 0 (KU0102611, KU0044662 and KU0101694), and 8 had a 

nonsignificant Ej > 0.

A total of 32 compounds had a significant effect size (Table 2). This apparently large 

number should not come as a surprise, since the 62 compounds examined in these analyses 

had been previously selected as the most promising compounds from an initial high 

throughput screening that explored 5,152 compounds. That is, 32 compounds constitute just 

0.62% of the initially explored library of compounds. Also, observing 32 “significant” 

compounds out of 62 should not be interpreted as an indication of an inflated Type I error 

for an individual statistical test. In fact, for k = 0, standard theory of least squares guarantees 

that the probability of Type I error of the test proposed in Section 10 is always ≤ α when the 

observations T(Rij) are normally distributed.

For the case k > 0, we performed a simulation study using a nominal α = 0.05, which 

showed that the probability of Type I error for an individual test was not larger than α for 

fixed k = 1, 2, 3, 4. Observe that, strictly speaking, for a particular compound, k is a random 

variable. Thus, the conditional probability of Type I error given k was ≤ α for all k = 0, 1, 2, 

3, 4. But, a compound was not concluded to be an effective compound when k = 5, 6, 7, 

where k = 7 if R7,j = 0; that is, for each of these other k’s, the conditional probability of Type 

I error given k was 0. All this implies that the unconditional probability of Type I error was 

≤ α, as desired. The methods and results of this simulation study are available from the 

corresponding author on request.

All âj’s in Table 2 are non-negative, which suggests that our key assumption that aj ≥ 0 for 

all j may be valid for these particular infection neutralization experiments. Should one 

compound exhibit an âj < 0, a Wald test of the null hypothesis H0: aj ≥ 0 versus the 
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alternative H1: aj < 0 could be conducted in order to examine the adequacy of this 

assumption for the compound.

Observe from Table 2 that there is a trend for high values of k to be associated with small 

effect sizes Ej. This was expected because Rmin > θ, and therefore, if a large number of 

tested doses of a particular compound produced true responses below the detection limit 

then we can infer that the compound did not have important pharmacological effects in the 

dose range tested (i.e., did not produce R > Rmin for those doses). The effect size Ej just 

captures this lack of important effects.

14. Further comments about the estimation of the detection limit for 

infection neutralization response

Table 3 illustrates responses from some compounds. The compounds in Rows 1 and 2 of 

Table 3 did not produce any non-positive response, so simple linear regression was used to 

estimate their parameters aj and  after logit-transforming their responses. Rows 3–14 of 

Table 3 show the data from some compounds that produced some true responses below the 

detection limit according to the Working Assumption in Section 11.

The compound in Row 3 of Table 3 produced a non-positive response at dose D1. One may 

be tempted to estimate aj and  for this compound by using simple linear regression without 

constraints with only the information from doses Di, i ≥ 2. However, such approach 

disregards the knowledge that D1 is producing a response below the detection limit, 

information that may be useful to improve our estimates of aj and . Besides, ignoring this 

information may bias our conclusions about this compound against the null hypothesis H0: 

Ej = 0, as explained in the Discussion. Rows 4–6 of Table 3 also show compounds for which 

some of the smallest doses produced responses below the detection limit. However, no 

compound in rows 3–6 provided positive responses usable for estimating the detection limit 

θ.

Row 7 in Table 3 shows an extreme case that helps to motivate the Working Assumption in 

Section 11. For the compound in this row, R1,j > 0%. However, Rij ≤ 0 for all i ≥ 2. Since we 

are assuming that aj ≥ 0, there is not doubt that R1,j = 7.13% contains no information about 

aj and  and that the true response produced by D1 should be below the detection limit θ. 

However, R1,j is valuable in that, if Model Assumptions 2–4 in Section 5 are correct, R1,j 

carries information about the true value of θ, and therefore, can be used to estimate θ. 

Similar comments about the observed response R3,j = 6.33% to dose D3 of the compound in 

Row 8 can be made. In this case, the idea that R3,j carries information about the detection 

limit is suggested by the fact that all doses higher than D3 produced non-positive observed 

responses.

To further illustrate, by the Working Assumption, the following observations were used to 

estimate θ : R1,j = 4.45% for the compound in Row 9 of Table 3; R2,j = 3.81% (Row 10); 

R1,j = 17.66 and R2,j = 9.58% (Row 11); R1,j = 0.70, R2,j = 17.34 and R3,j = 1.88% (Row 

12); and R1,j = 7.84 and R3,j = 2.37% (Row 13).
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The compound in Row 14 produced non-positive observed responses at all tested doses. This 

strongly suggests that, for this compound, the investigated doses did not have any influence 

on the investigated neutralization response and always produced true responses below the 

detection limit. Moreover, no observations provided by this compound can be used to 

estimate θ nor to estimate aj and .

15. Discussion

From a practical point of view, the most important product of this research is that we are 

able to produce tables like Table 2 that include measures of effect sizes that allow comparing 

the pharmacological importance of chemical compounds, and p-values that allow testing the 

significance of these effect sizes.

A major disadvantage of a direct application of the median effect equation in (1) is that this 

equation does not allow statistically testing the null hypothesis of no effect of the chemical 

compound on the pharmacological response. Nonlinear regression approaches based on 

equation (1) alone cannot be used to examine this hypothesis, because equation (1) 

implicitly assumes that there is a dose-response efffect. In other words, the problem is that 

the parameter space of equation (1) does not include the possibility of no dose-response 

effect. In fact, any statistical test procedure based on a parametric model requires that the 

parameter space contains a null space representing the null hypothesis (Shao 2003). In 

contrast, in addition to essentially containing all dose-response relationships represented by 

equation (1), equation (3) allows testing a null hypothesis of no effect.

An added advantage of equation (3) is that dose response relationships that are nearly 

constant within the investigated dose range can be easily handled with this equation, and a 

measure of pharmacological effect size (Ej) based on equation (3) can be defined for (and 

used to compare) many types of relationships. In particular, Ej allows comparing the effect 

of a compound producing a nearly constant relationship with the effect of a compound 

producing a relationship represented by the median effect equation. In contrast, a direct use 

of equation (1) creates problems when analyzing nearly constant relationships, as illustrated 

in Figure 2, because equation (1) does not include parameters representing constant 

relationships. As mentioned in the introduction, in a biomolecular screening, non-negligible 

almost-constant relationships can be found which are produced by compounds with 

pharmacologically important dose-response effects. This may occur, for instance, if the 

investigated dose range was not wide enough for those compounds.

Our approach also introduces a formal and precise way of incorporating the important 

concept of response detection limit in the analysis of dose-response data with continuous 

responses, a concept that is usually neglected in these types of analysis. A criterion is also 

suggested for the identification of responses that have taken on values below the detection 

limit. As described in Section 12, although this criterion will generally produce a reliable 

estimator of θ, the criterion may not be entirely adequate for estimating Ej when θ is 

considerably larger than 0. The proposed approach is in general adequate only if θ can be 

reasonably assumed to be relatively small.
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The assumption that the detection limit θ is not large may be reasonable in many 

biomolecular screenings, and this assumption seems to be reasonably satisfied by the data 

analyzed in Section 13. However, further research is needed in order to refine the approach 

proposed in Section 12, and/or propose more approaches amenable to automation. The 

experience and knowledge of the biologists and pharmacologists involved in measuring 

continuous responses in cell-based assays are undoubtedly crucial to developing, in future 

research, further criteria for the identification of data that can be used to estimate the 

detection limit, especially in situations in which the detection limit is suspected to be large.

Observed null or negative responses cannot be ignored when estimating the parameters of 

the linearized form (3), which involves a logit transformation T that is undefined for non-

positive responses. In fact, when k ≥ 1, minimizing the sum of squares (7) subject to 

constraint (8) produces a larger estimate of the error variance σ2 than without the constraint. 

This can be seen by noting that if âu,j and  are the unconstrained least squares estimators 

of aj and , then

But, . Thus, excluding from the analysis responses below the 

detection limit such as those corresponding to observed null or negative responses, and 

fitting a simple linear regression model to the remaining (Di, T(Rij)) pairs, underestimates 

the standard error of the least squares estimate of  and, therefore, biases conclusions 

against the null hypothesis H0: Ej = 0 and increases type II error (because the standard error 

of  is in the denominator of the statistic τj defined in Section 10).

In particular, simply put, since observed non-positive responses are evidence in favor of the 

null hypothesis of no effects, these responses should not be excluded from the data when 

fitting the linearized form (3) of the median effect equation. An approach that appropriately 

handles these responses, such as the one proposed in this paper, should be followed instead.

Moreover, by Model Assumption 4, observed responses obtained when the true response is 

below the detection limit are independent across (and within) compounds. As a 

consequence, the presence of many ineffective compounds in the compound sample that is 

used to estimate θ will not bias θ̂. In fact, the presence of such compounds may even be 

beneficial to the estimation of θ because the more ineffective compounds are there, the 

higher the chance of obtaining true responses with low values, including true responses 

below the detection limit.

It should be noted that, although the transformation T(R) = log(R/(100 − R)) assumes that 0 

and 100 are low and upper bounds of R, respectively, the use of equation (3) and the 

methodology proposed in this article do not require that the scatterplot of the actual dose-

response data of a particular compound exhibits a plateau of height 100 at its right side or a 

plain of height 0 at its left side. Even if the observed maximum response of a particular 

compound is farther down from 100 or its observed minimum is farther up from 0, the 
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transformation T(R) and the proposed effect size measure and statistical test are still 

applicable, provided that at least three different doses producing true responses above the 

detection limit are tested and at least three different observed responses are obtained, and 

provided equation (3) is valid.

Alternatively, if there are reasons to believe that the dose response curve follows a sigmoidal 

shape with a minimum response λ1 > 0 and a maximum λ2 < 100, say, where λ1 and λ2 are 

known values, the transformation R’ = {(R − λ1) / (λ2 − λ1)}×100 should be applied before 

using the proposed methodology. That is, R’ and T(R’) should be used instead of R and 

T(R), respectively. However, the effect sizes from a set of compounds can be compared only 

if the values of both λ1 and λ2 are the same across all compounds.
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Appendix 1

A computational formula for Ej

The effect size Ej can be computed with the formula

(11)

(12)

(13)

Figure 3 shows graphical representations of Ej made with formulas (11)–(13).
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Appendix 2

Appendix 2. Proof of the equivalence of H0: Ej = 0 and  when aj ≥ 0

Suppose Ej = 0. Then,  for all x in the closed interval , 

because  is a continuous function of x. Thus,  for all x 

in . In particular, using x = 0, we obtain .

Now suppose . For all x in , we have that x ≤ 0 and, therefore, 

 because aj ≥ 0. Thus, for all x in ; 

this implies Ej = 0.

Appendix 3

Computation of âj and b̂
j

The minimization of (7) subject to constraint (8) can be carried out with any nonlinear 

regression software. In this computational approach, we use the fact that if εij is a random 

error, then the linear regression model , i = k + 1, …, n, accompanied with 

constraint (8), is algebraically equivalent to the nonlinear regression model

(14)

where aj and γj are unknown parameters that need to be estimated and satisfy 

. The reason the two models are equivalent is that the constraint 

 is equivalent to eγj > 0, which is always true. When n − k ≥ 3, estimates âj and 

γ̂
j for aj and γj can be obtained by fitting model (14) to the pairs (xi, yij), i = k + 1, …, n, 

using least squares. Then, the constrained least squares estimate of  is computed as 

. We recommend using this approach for computing the point 

constrained estimates âj and , as well as , but  should 

be computed separately and  should be obtained from matrix (9).

Alternative methods for constrained minimizations are also available in statistical and non-

statistical software. For instance, the command NMinimize of the package Mathematica 
allows implementing constrained minimizations through global optimization algorithms 

(Wolfram Research, Inc.), although more programming effort is needed to implement this 

command for the dose-response analyses proposed here than if using standard nonlinear 

regression software.
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Appendix 4

Biochemical methods

The percent neutralization response R was measured through a single-cycle infectivity assay 

using virions generated from the Env-defective luciferase-expressing HIVNL4-3 genome, 

pseudotyped with molecularly cloned HIV Env, as previously described (Pinter et al. 2004). 

Pseudotyped virions in culture supernatants from transfected 293T cells were incubated with 

serial dilutions of MAbs or polyclonal sera from HIV-infected subjects for 1 h at 37°C, and 

were then added in the presence of Polybrene (10 g/ml) to U87-T4-CCR5 target cells plated 

out in 384-well plates. Luciferase activity was determined 72 hours postinfection using 

assay reagents from Promega (SteadyGlo) and a microtiter plate luminometer (Tecan 

Safire2).
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Figure 1. 
Plot of the median effect equation (1) for different values of w and D(50).
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Figure 2. 
Illustration of a problem that may occur when the range of investigated doses includes doses 

that produce strong responses but is not wide enough to represent the overall dose-response 

relationship.
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Figure 3. 
Illustration of five situations producing a compound effect size E > 0 (A–E), and three 

producing E = 0 (F–H) (continued). In A through E, the area of the region highlighted with 

vertical lines is equal to E. Referring to formulas (11)–(13), plot (A) corresponds to the case 

a > 0, b* > Tmin and ; in plot (B), a > 0, b* > 

Tmin, but ; (C) a = 0, yielding E > 0 because b* > 

Tmin; (D) a < 0,  and min {(Tmin − b*)/a, 0} = 0; (E) a < 0, 

 and min {(Tmin − b*)/ a, 0} = (Tmin − b*)/ a ; (F) a = 0, yielding E = 0 

because b* < Tmin ; (G) a > 0, b* < Tmin; (H) a < 0 and .
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Figure 4. 
Quantile-quantile (Q-Q) plot for model of detection limit estimated with virus-infection 

neutralization data. The points tend to align along a straight line with slope 1 and intercept 0, 

suggesting that pdf (10) is a reasonable model of the detection limit for percent 

neutralization responses, and therefore, that an estimated detection limit of 4.42% is 

reasonable for these responses. The Q-Q plot was made with 1 the points (F̂−1(i/m), T(i)), i = 

1, …, 21 − 1, where T(1) ≤ … ≤ T(21) are the order statistics of the 21 transformed responses 

in Table 1 which were used to estimate the parameters α, β, θ and γ2 of pdf (10), and F̂ is an 

estimate of the cumulative distribution function corresponding to this pdf, which was 

computed with the maximum-likelihood estimates of these parameters.
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Table 1

Observed percent neutralization responses used to estimate the detection limit θ. The compound concentration 

(dose) variable was not used in the estimation of the detection limit and is shown here only for reference. The 

estimated detection limit for the neutralization response was θ = 4.42%.

Compound Dose (µM) Percent neutralization (%)

KU0103598 0.2382 0.70

KU0103183 0.2382 1.22

KU0102611 0.2382 1.34

KU0103182 3.6916 1.49

KU0103495 3.6916 1.59

KU0103598 0.9527 1.88

KU0102882 0.9527 2.37

KU0103495 1.9053 2.37

KU0101694 0.4763 3.81

KU0103495 0.4763 4.26

KU0103488 0.4763 4.33

KU0103560 0.2382 4.45

KU0102569 0.2382 5.32

KU0102532 0.2382 5.91

KU0102620 0.9527 6.33

KU0102460 0.2382 7.13

KU0101289 3.6916 7.55

KU0102882 0.2382 7.84

KU0103575 0.4763 9.58

KU0103598 0.4763 17.34

KU0103575 0.2382 17.66
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