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The rate of water exchange across cell membranes is a parameter of biological interest and can be
measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic
model for the diffusion-and-exchange of water molecules. This model provides a general solution for
the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing
the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant
expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier
studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for
the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences.
Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE
sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange
at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical
analysis is also validated using Monte Carlo simulations on synthetic structures. Published by AIP
Publishing. https://doi.org/10.1063/1.5014044

I. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is widely
used to probe microstructure of cells and permeability of
porous media via the diffusive motion of water molecules.1–4

A common approach for measuring water exchange using
dMRI is to apply Kärger’s model5 to fit the dMRI signal mea-
sured by the standard Stejskal-Tanner sequence,6 here referred
to as the single diffusion encoding (SDE) sequence.7 In the
Kärger model, molecular motion in different tissue compart-
ments is modeled by free diffusion with different diffusion
coefficients. Molecules are assumed to have a stationary prob-
ability to jump between compartments. This oversimplified
assumption ignores the dependence of location on exchange
of molecules but can be justified when the exchange is “barrier
limited.”8,9 This means that molecules within each compart-
ment are well mixed, as diffusion is faster than the exchange
so that the dependence of exchange on location can be
neglected.

Exchange measurements using the Kärger model were
originally proposed only for SDE sequences,5 but later stud-
ies suggested benefits of double diffusion encoding (DDE)
sequences.10,11 Recently, the DDE-based filter exchange imag-
ing (FEXI) technique was proposed to enable in vivo imag-
ing of exchange rates on clinical MRI scanners.12 The FEXI
approach provides an apparent exchange rate (AXR) sen-
sitive to tissue permeability and has been applied to study
human brain tissue,13 brain tumors,14 breast cancer,15 and kid-
ney.16 However, the AXR can be sensitive to deviations from
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the idealised DDE experiment arising due to, for example,
imaging gradients.17 Moreover, there are no theoretical guide-
lines available for selecting the optimal experimental parame-
ters, although some work has been done using numerical opti-
mization techniques.14 Furthermore, the difference between
FEXI and standard SDE and DDE sequences has not been
thoroughly analyzed.

To overcome these limitations, we propose a general
approach for modeling the dMRI signal in a diffusion-and-
exchange system. Our method accepts any type of gradient
waveform and is developed based on a stochastic differen-
tial equation that provides a probability distribution of the
diffusion-and-exchange process of molecules. As a result of
this stochastic model, we derive a generalized model to char-
acterize the temporal evolution of dMRI signal under any type
of gradient waveform. This general model reduces to the stan-
dard Kärger’s model in the special case of SDE sequences. We
also derive the cumulant expansion of the dMRI signal for any
type of sequence accounting for water exchange. Based on
the cumulant expansion, we compare the dMRI signal from
SDE and DDE sequences and design the optimal parame-
ters for different sequences under constraints on the maximal
b-value and diffusion time. We also derive an explicit expres-
sion for the special case of the FEXI sequence. Monte Carlo
simulations show excellent agreement with our theoretical
results.

II. THEORY
A. Modeling of diffusion-and-exchange processes

Our approach for modeling the dMRI signal due to dif-
fusion and exchange of molecules in a multi-compartment
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system uses the following stochastic differential equation:

dxt = σ(xt)dwt , (1)

where xt ∈ R3 denotes the location of a water molecule and
wt represents the standard Wiener process with dwt1 and dwt2
being independent Gaussian random variables if t1 , t2 with
covariance given by

E(dwtdw
′
t ) = Idt,

where a′ denotes the transpose of a vector a, I denotes the
identity matrix of size 3 × 3, and σ(xt) represents the vari-
ance of dxt . Throughout this paper, boldface small letters,
e.g., w, a, represent vector-valued variables. We assume that
the variance is isotropic, i.e., σ(xt) ∈ R, to simplify nota-
tions, though the results of this paper can be extended in
a straightforward manner to a more general setting when
σ(xt) is matrix-valued. Thus, the covariance of the incre-
ment dxt is given by E(dxtdx′t ) = σ2(xt)Idt. Moreover, the
location xt of a molecule is also characterized by a state
s(xt) ∈ {1, 2}, which determines the value of σ(x). To sim-
plify notations, we denote s(xt) by s(t). Moreover, we assume
that

σ(xt)
2 =




2D1, if s(t) = 1,

2D2, if s(t) = 2,

where D1 , D2 and they represent the scalar-valued diffusion
coefficients for the two compartments, respectively.

An important assumption we have made in all our deriva-
tions above is that the diffusivity is constant (time-invariant) at
the experimental time scale being used in this work. Such an
assumption is well-founded as the apparent diffusion coef-
ficient (ADC) has very pronounced time-dependence only
at short time scales and converges to the “bulk” diffusion
coefficient D∞ at long time scales.18 Recent studies19 also
show very slowly varying or constant diffusivity at long time
scale in biological tissue. Since exchange occurs at long time
scale, the diffusion coefficient can be assumed to be con-
stant. The two diffusion coefficients, D1 and D2, represent
the long-time diffusive motion of water molecules in two
structures, e.g., intra- and extra-cellular spaces. In situations
where the time scale for the exchange is short, restrictions
and hindrances induced time-varying diffusivity needs to be
considered.20–22 In this case, a more realistic model, such as
the Ornstein-Uhlenbeck model,23,24 can be used for modeling
the two types of diffusive motions. But, we will only focus
on Eq. (1) in this paper. Alternatively, a Langevin equation
with fluctuating diffusivity was assumed to switch between
two constant states.25,26 Here, we propose a different approach
from Refs. 25 and 26 for modeling the switch between states
so that the signal expression is consistent with Kärger’s
model.

We model the exchange of molecules between the two
compartments by a probabilistic change in s(t). In particular,
the state of a molecule is to be described by a probability vec-
tor p(t) B [p1(t), p2(t)]′ with pi(t) being the probability of
s(t) = i. For a molecule with s(0) = 1, the probability vec-
tor is given by p(0) = [1, 0]′ C e1. Similarly, p(0) = [0, 1]′

C e2 corresponds to a molecule with s(0) = 2. Due to exchange,
the probability distribution evolves according to the following

differential equation:

d
dt

p(t) = Kp(t), (2)

where the matrix K is given by

K B


−k12 k21

k12 −k21


.

The total mass, i.e., p1(t) + p2(t), is assumed to be time-
invariant. The probability distribution for molecules with ini-
tial states e1 and e2 is given by the two columns of the following
matrix:

exp(Kt) =


p11(t) p21(t)

p12(t) p22(t)



=



p∞1 + p∞2 e−kt p∞1 (1 − e−kt)

p∞2 (1 − e−kt) p∞2 + p∞1 e−kt


,

where p∞1 =
k21

k12+k21
, p∞2 =

k12
k12+k21

, and k = k12 + k21 with k12, k21

≥ 0 being the exchange rate between the two compartments.
The probability vector p∞ = [p∞1 , p∞2 ]′ is the stationary value
of (2), which implies that the stationary fractions of molecules
in the two compartments are p∞1 and p∞2 , respectively.

B. The diffusion-exchange model

Let g(t) with t ∈ [0, T ] denote the vectorial gradient
sequence. Then the phase change of a diffusing molecule due
to the gradient sequence is given by

φ(T ) =
∫ T

0
γg(t)′xtdt = −

∫ T

0
q(t)′σ(xt)dwt ,

where γ denotes the gyromagnetic ratio, q(t) = ∫
t

0 γg(t1)dt1,
which is assumed to satisfy the spin-echo condition, i.e., q(T )
= 0. Moreover, we decompose q(t) = q(t)n(t) with q(t) being
a scalar and n(t) being a unit vector. Then,

φ(T ) = −
∫ T

0
q(t)σ(xt)dwt , (3)

where wt =n(t)′wt is a scalar-valued Wiener process. The dif-
fusion MRI signal at time T is given by the expected value
S(q, T ) B E(eiφ(T )), where i =

√
−1, with respect to the

probability distribution of φ(T ) from all molecules.
Let Si(q, t) for i ∈ {1, 2} denote the fraction of dMRI

signal from all molecules with state s(t) = i at time t, i.e.,

Si(q, t) =
2∑

j=1

pjpji(t)E(eiφ(t) | s(t) = i, s(0) = j).

Then, the dMRI signal from all molecules is given by

S(q, t) = S1(q, t) + S2(q, t). (4)

As a generalization of the signal expression for the standard
Kärger’s model, we show that the temporal evolution of Si(q,
t) for t ∈ [0, T ] that is consistent with Eqs. (1) and (2) is given
by the following equation:



∂S1(q, t)
∂t

∂S2(q, t)
∂t


=



−q2(t)D1 − k12 k21

k12 −q2(t)D2 − k21





S1(q, t)

S2(q, t)


.

(5)
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FIG. 1. An illustration of three types of gradient sequences: (a) A standard
SDE sequence with variable diffusion time and magnitude; (b) a symmet-
ric DDE sequence with two symmetric pairs of pulses, where the diffusion
time ∆1, ∆2 and the magnitude of the two pairs of pulses are identical, i.e.,
∆1 = ∆2, q1 = q2, and the mixing time tm and qa are variable parameters; (c)
an asymmetric DDE sequence, similar to the FEXI sequence in Ref. 12, where
the magnitude for the first pair of pulses is fixed (indicated by solid lines), the
diffusion time ∆1 = ∆2, and the mixing time and the magnitude of the second
pair of pulses are variable.

The proof of Eq. (5) is provided in Appendix A. We note
that in the special case of SDE experiment with narrow pulse,
q2(t) is constant, in which case Eq. (5) becomes the standard
Kärger’s model.5 The derivation leading to Eq. (5) is one of
the contributions of the present work.

The dMRI signal in Eq. (4) can be obtained from the
solution to Eq. (5). In the special case of SDE or DDE exper-
iment with narrow pulse, q2(t) is either constant or piecewise
constant, which leads to a closed-form solution to Eq. (5).

Specifically, let K B

[
−k12 k21

k12 −k21

]
, and M(q)B K �Dq2 with

D =

[
D1 0
0 D2

]
. Then the dMRI signal obtained using a SDE

sequence with narrow pulse, as shown in Fig. 1(a), is given
by

SSDE(q, T ) = 1′ exp (M(q)T ) p∞, (6)

which is also the solution by Kärger,5 where q denotes the con-
stant q-value, exp (A) denotes the matrix exponential function
of a matrix A, 1 denotes a vector whose entries are all equal
to one. For a DDE sequence with narrow pulse, as shown in
Fig. 1(b), we denote the q-value between the first and second
pair of pulses as q1 and q2, respectively, i.e., q(t) = q1 for
t ∈ [0, ∆1] and q(t) = q2 for t ∈ [T � T2, T ], where T = ∆1

+∆2 + tm, with tm being the mixing time between the two pairs
of pulses. Then the dMRI signal obtained for a DDE sequence
is given by

SDDE(q1, q2,∆1,∆2, tm) = 1′ exp (M(q2)∆2) exp (Ktm)

× exp (M(q1)∆1) p∞. (7)

For completeness, we provide the closed-form expression for
the matrix exponential exp(M(q)T ) in Appendix B. In the more
general case when q(t) is a continuous function of t, there is
in general no closed-form solution for Eq. (5).

C. On the cumulant expansion with water exchange

Although the expressions in Eqs. (6) and (7) can be
directly used to model SDE and DDE signals with given

experimental parameters, the complex expression of matrix
exponentials is a major limitation to gain insights about
choosing the optimal experimental parameters, especially
for DDE sequences, which are characterized by multiple
parameters such as diffusion time, mixing time, and gradient
strength. A common approach to simplify the dMRI signal
model and to gain insights about the role of experimental
parameters is to use the cumulant expansion27 expressed as
follows:

ln S(q, T ) = i〈φ(T )〉c −
1
2
〈φ(T )2〉c −

i
6
〈φ(T )3〉c

+
1

24
〈φ(T )4〉c + · · · ,

where the cumulant moments 〈φ(T )n〉c can be expressed in
terms of ordinary momentsE(φ(T )n). Typically, the probability
distribution function of φ(T ) is assumed to be symmetric. As
a result, all the odd order moments E(φ(T )2n−1) are equal to
zero. The second and fourth order cumulant moments are given
by

〈φ(T )2〉c = E(φ(T )2), (8)

〈φ(T )4〉c = E(φ(T )4) − 3E(φ(T )2)2, (9)

respectively. Since the expression for the dMRI signal in
SDE and DDE experiments is known, a general approach
for computing the cumulant moments is to compute the
Taylor-series expansion of S or ln S. But the complex expres-
sion for the dMRI signal, especially for DDE experiments,
makes the derivation of the cumulant expansion extremely
tedious. Consequently, we propose a different approach to
derive the cumulant expansion by taking advantage of the
proposed stochastic diffusion-and-exchange model in Eqs. (1)
and (2).

1. On the second-order moment

From Eq. (3), the second order cumulant moment of φ(T )
is given by

E(φ2(T )) =
∫ T

0

∫ T

0
q(t1)q(t2)E

(
σ(xt1 )σ(xt2 )dwt1 dwt2

)
=

∫ T

0

∫ T

0
q(t)2E

(
σ(xt)

2
)

dt. (10)

We note that

E(σ(xt)
2) = 2

2∑
i=1

Prob(s(t) = i)Di

= 2(p1D1 + p2D2) =: 2D̄.

Thus, Eq. (10) is equal to

E(φ2(T )) = 2D̄
∫ T

0
q(t)2dt = 2D̄b, (11)

where the b-value b B ∫
T

0 q(t)2dt, which is equal to q2T
in SDE experiments and q2

1∆1 + q2
2∆2 in DDE experiments

(under narrow pulse assumption). We remark that Eq. (11)
implies that the second order moment does not contain infor-
mation about the water exchange rate. Moreover, Eq. (11) also
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implies that the apparent diffusion coefficient (ADC) is given
by

ADC B
∂E(φ2(T ))

2∂b
|b=0= D̄, (12)

which is independent of the type of gradient waveform used.
Similarly, one can show that Eq. (12) holds even if there are
more than two components in the diffusion-exchange model,
as long as the diffusion-exchange processes can be modeled
by Eq. (1).

2. On the fourth-order moment

Due to the independence between dwt1 and dwt2 for
t1 , t2, the fourth-order moment E(dwt1 dwt2 dwt3 dwt4 ) is
nonzero only if the set of indices {t1, t2, t3, t4} consists of
two pairs of equal values, e.g., t1 = t2 and t3 = t4. Thus, we
obtain

E(φ4(T )) = 3
∫ T

0

∫ T

0
q(t1)2q(t2)2E(σ(xt1 )2σ(xt2 )2)dt1dt2.

(13)
To compute the correlation E(σ(xt1 )2σ(xt2 )2), we assume that
t1 ≤ t2. Then,

E(σ(xt1 )2σ(xt2 )2)

= p∞1

(
p11(t1)p11(t2 − t1)4D2

1 + p11(t1)p12(t2 − t1)4D1D2

+ p12(t1)p21(t2 − t1)4D1D2 + p12(t1)p22(t2 − t1)4D2
2

)
+ p∞2

(
p21(t1)p11(t2 − t1)4D2

1 + p21(t1)p12(t2 − t1)4D1D2

+ p22(t1)p21(t2 − t1)4D1D2 + p22(t1)p22(t2 − t1)4D2
2

)
= 4(p∞1 D1 + p∞2 D2)2 + 4p∞1 p∞2 (D1 − D2)2e−k(t2−t1).

(14)

To further simplify Eq. (13), we define Var(D) B p∞1 p∞2
(D1 −D2)2, which is equal to the variance of the diffusivities.
Then, we introduce the following function:

c(t) B D̄2 + Var(D)e−kt (15)

for t ∈ [�T, T ], which is the autocorrelation function forσ(xt)2

in Eq. (14) scaled by 1
4 . Thus, Eq. (13) can be written as

E(φ4(T )) = 12
∫ T

0

∫ T

0
q(t1)2q(t2)2c(|t1 − t2 |)dt1dt2. (16)

Using a similar methodology as in our earlier work,22,28 we
can further simplify the above equation to

E(φ4(T )) = 24
∫ T

0
c(t)q4(t)dt, (17)

where q4(t) is defined as

q4(t) :=
∫ T

0
q2(t1)q2(t1 + t)dt1,

where we assume q(t) = 0 for t ≥ T. We note that the fourth-
order moment is a function of the exchange rate and the fourth-
order autocorrelation function of q(t). For completeness, we
provide a general expression for other higher order moments

in Appendix C. By applying Eqs. (17) and (11) to Eq. (9), we
obtain

〈φ(T )4〉c = 24Var(D)
∫ T

0
e−ktq4(t)dt, (18)

which shows the dependence of the fourth-order cumulant on
the exchange rate and the gradient sequence.

D. General signal expression

At this point, we can define a signal expression that
generalizes across all gradient waveforms

ln S = −D̄b +
1
2

Var(D)h(·)b2 + O(b3), (19)

where h(·) denotes an exchange-sensitivity function of the
gradient sequence which is defined by

h(·) = 2
∫ T

0
e−kt q̃4(t)dt (20)

and

q̃4(t) =
q4(t)

b2
. (21)

The expansion in Eq. (19) is based on the assumption of low b-
values so that the third or higher order terms of b are negligible
compared to b2. The term q̃4(t) contains the timing informa-
tion of the gradient waveform. Note that the ability to observe
exchange relies on the presence of intra-voxel variance in dif-
fusivity, i.e., Var(D) > 0. Finally, in the absence of exchange,
or for very slow exchange where kT � 1, we get e�kt ≈ 1 for
0 ≤ t ≤ T and thus h(·) = 1. In the presence of exchange, h(·)
< 1, and in the case of exchange much faster than the gradi-
ent waveform, we get h(·) → 0 meaning that the system will
appear as a single system without any observable diffusional
variance.

Note the similarity of Eq. (19) to the diffusional kurtosis
model29

ln S ≈ −Dappb +
1
6

D2
appKappb2, (22)

where Dapp = D̄ in our notation and Kapp = 6Var(D)/D̄2 in
the absence of exchange. However, the presence of exchange
reduces the apparent kurtosis according to

Kapp(·) = 3
Var(D)

D̄2
h(·), (23)

which depends on the gradient sequences and diffusion
time.

1. Defining a generalized exchange weighting time

To further analyze the effect of water-exchange in dMRI
signals, we consider the situation when e�kt ≈ 1 � kt for t ∈ [0,
T ]. Then we get

h(·) ≈ 2
∫ T

0
(1 − kt)q̃4(t)dt,

= 1 − kΓ, (24)

where we define the exchange weighting time Γ as

Γ B 2
∫ T

0
tq̃4(t)dt. (25)

Accordingly, we have an approximation of Eq. (19) as

ln S ≈ −D̄b +
1
2

Var(D)(1 − kΓ)b2. (26)
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In the following, we will compute the function h(·) and
the signal model in Eq. (26) for three types of sequences
shown in Fig. 1, which includes a standard SDE sequence in
Fig. 1(a), a DDE sequence with two identical pairs of pulses
in Fig. 1(b) where ∆1 = ∆2, and a FEXI type of DDE sequence
in Fig. 1(c) where the magnitude of the first pair of pulses
is fixed (indicated by solid lines). Although the signal model
for SDE experiments has been well studied in Refs. 1 and
30, comparing the different Γ’s will highlight the sensitiv-
ity of dMRI signal to water exchange rate for these gradient
waveforms.

2. Signal expression for SDE sequences

For the SDE sequence shown in Fig. 1(a), if the pulse
width δ is negligibly small, then h(·) is given by

hSDE(τ) =
2
τ
−

2

τ2
+

2

τ2
e−τ , (27)

where τ B k∆. The corresponding exchange-weighted time is
equal to

ΓSDE =
1
3
∆. (28)

In the case of finite pulse width, the exchange-weighted time
is equal to

ΓSDE =
1
3

f (δ,∆), (29)

where

f (δ,∆) = (∆ −
1
3
δ)−2(∆3 − ∆2δ +

2
3
δ2
∆ −

4
21
δ3).

If ∆ � δ, f (δ,∆) ≈ (∆ − 1
3 δ) which is equal to the equivalent

diffusion time.

3. Signal expression for DDE sequences

First, we consider the narrow-pulse situation when the
diffusion time ∆1 = ∆2 = ∆, T = 2∆ + tm, and the b-values
corresponding to the two pairs of pulses are given by b1 and
b2, respectively. Following Eq. (18), we obtain

hDDEA (·) =
b2

1 + b2
2

b2
hSDE(τ1) +

2b1b2

b2
hDDE(τ1, τ), (30)

where we define

hDDE(τ1, τ) B
1

τ2
1

(e−τ+2τ1 + e−τ − 2e−τ+τ1 ),

τ1 = k∆1, τ = kT, b = b1 + b2, and the subindex DDEA denotes
the asymmetric DDE sequence. The corresponding exchange-
weighted time is equal to

ΓDDEA =
b2

1 + b2
2

3b2
∆1 +

2b1b2

b2
(∆1 + tm).

In the special case when b1 = b2, the corresponding exchange
weighting time is

ΓDDES =
2
3
∆1 +

1
2

tm.

The exchange weighting time can be generalized to the
situation when the pulse width is finite as follows:

ΓDDEA =
b2

1 + b2
2

b2
f (δ,∆1) +

2b1b2

b2
(∆1 + tm)

≈
b2

1 + b2
2 + 6b1b2

3b2
∆1 +

2b1b2

b2
tm −

b2
1 + b2

2

9b2
δ,

when ∆ � δ. For symmetric DDE sequences, i.e., when
b1 = b2, the corresponding exchange-weighted time is

ΓDDES =
2
3
∆1 +

1
2

tm −
1

18
δ.

4. On the relation with FEXI-signal model

If the first pair of pulses of the asymmetric DDE sequence
is fixed, then the dMRI signal can be normalized with respect
to signal from the first SDE sequence as

ln SDDEA (·) − ln SSDE(b1, k∆1)

≈ (−D̄ + 2Var(D)hDDE(k∆1, kT )b1)b2

≈ (−D̄ + 2Var(D)(1 − k(∆1 + tm))b1)b2, (31)

where the last equation is obtained by using hDDE(k∆1, kT )
≈ 1 � k(∆1 + tm).

A similar model was proposed in Ref. 12, which is given
by

ln SFEXI(·) − ln SSDE(b1, k∆1)

≈ −D̄(1 − σf exp(−AXR × tm))b2

≈ (−D̄ + D̄σf − D̄σf tmAXR)b2. (32)

Since ∆1 is fixed and tm is changing in the experiment, the
coefficients of tm in Eqs. (31) and (32) should match with each
other. Consequently we obtain

D̄σf = 2Var(D)(1 − k∆1)b1,

D̄σf AXR = 2Var(D)kb1.

Thus, the following holds

AXR =
k

1 − k∆1
, (33)

which is approximately equal to k if k∆1 � 1. In the more
general case, Eq. (33) can be applied to compute k using the
estimated AXR and ∆1.

E. Optimal sequence parameters

For the three sequences above, we will design the opti-
mal acquisition parameters to maximize the sensitivity to
water exchange. This will also allow for comparison of these
sequences for practical applications. Optimality in this case is
defined as the set of parameters that provide maximal signal
decay due to water exchange. To obtain a fair comparison, we
impose the following constraints on all the sequences: first,
the diffusion time T is only allowed to change in the interval
[Tmin, Tmax]; second, the maximal b-value has an upper bound
bmax. Thus, a natural constraint on ∆1 in DDE experiments is
∆1 ≤

1
2 Tmin. We assume Tmin is small so that the exchange

sensitivity function hSDE(kTmin) ≈ 1 − 1
3 kTmin. The attenua-

tion due to exchange will be the objective function by which
these sequences will be compared.

1. SDE sequences

From Eqs. (19) and (27), the dMRI signal for a SDE
sequence is given by

ln SSDE(b, kT ) ≈ −D̄b +
1
2

Var(D)hSDE(kT )b2. (34)
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Thus, the maximal signal difference under the given con-
straints is approximately given by

eSDE =
1
2

Var(D)(hSDE(kTmin) − hSDE(kTmax))b2
max. (35)

If kTmax � 1, i.e., if the exchange-sensitivity function
hSDE(kTmax) ≈ 0, then

eSDE ≈
1
2

Var(D)hSDE(kTmin)b2
max

≈
1
2

Var(D)(1 −
1
3

kTmin)b2
max. (36)

On the other hand, if kTmax� 1, i.e., if the exchange-sensitivity
function hSDE(kTmax) ≈ 1 − 1

2 kTmax, then

eSDE ≈
1
6

Var(D)k(Tmax − Tmin)b2
max. (37)

2. DDE sequences

From Eqs. (19) and (30), the dMRI signal for asymmetric
DDE sequence is given by

ln SDDEA ≈ −D̄b +
1
2

Var(D)
(
hSDE(k∆1)(b2

1 + b2
2)

+ 2b1b2hDDE(k∆1, kT )
)
.

Thus, the signal difference for asymmetric DDE sequences is
given by

eDDEA ≈ Var(D)(hDDE(k∆1, kTmin) − hDDE(k∆1, kTmax))b1b2.

Moreover, the maximum value of the product b1b2 is equal to
1
4 b2

max, when b1 = b2 =
1
2 bmax. In this case, the signal differ-

ence eDDEA is equal to the corresponding result with symmetric
DDE sequences. Thus, we denote the signal difference for both
types of DDE sequences as

eDDE =
1
4

Var(D)(hDDE(k∆1, kTmin) − hDDE(k∆1, kTmax))b2
max.

(38)
If kTmax � 1, i.e., hDDE(k∆1, kTmax) ≈ 0, then

eDDE ≈
1
4

Var(D)hDDE(k∆1, kTmin)b2
max

≈
1
4

Var(D)(1 − k(Tmin − ∆1))b2
max.

Thus, the optimal value of ∆1 that maximizes eDDE is obtained
when ∆1 =

1
2 Tmin. In this case,

eDDE ≈
1
4

Var(D)(1 −
1
2

kTmin)b2
max. (39)

On the other hand, if kTmax � 1, then

eDDE(·) ≈
1
4

Var(D)k(Tmax − Tmin)b2
max. (40)

3. Comparing SDE and DDE sequences

If kTmax� 1, then the maximum attenuation for SDE and
DDE sequence is given by Eqs. (36) and (39), respectively. In
this case,

eSDE > eDDE.

If kTmax� 1, by comparing Eqs. (37) and (40), we obtain that

eSDE < eDDE.

FIG. 2. A comparison of eSDE and eDDE from Eqs. (35) and (38), respectively,
with τmin = 0.2 and arbitrary values for Var(D) and bmax. The plots show that
eDDE > eSDE for small τmax, and eDDE < eSDE for large τmax.

Thus, eSDE is less sensitive to k than eDDE at short-time scale
but has a stronger attenuation at long-time scale.

As an illustration of the above results, we plot eSDE, eDDE

from Eqs. (35) and (38) for different values of τmax in Fig. 2
with a fixed value for τmin at τmin = 0.2. The result shows that
the DDE sequence has higher sensitivity than SDE sequence
at short-time scales but has lower sensitivity at long-time
scale.

III. EXPERIMENTS

We validated the proposed results using Monte Carlo sim-
ulations performed on a synthetic structure using a method
similar to the approach described in Ref. 8. Figure 3 shows
a partial field of view of the synthetic axonal packing struc-
ture used in our simulation, inset with illustration of the pulse
sequences for simulating the dMRI signal. The axon diameter
was fixed to 2.5 µm, and the intra- and extra-axonal volume

FIG. 3. Illustration of the synthetic tissue structure with permeable bound-
aries along with schematic for the SDE, DDES, and DDES gradient sequences
used for encoding the dMRI signals.
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fractions were 0.7 and 0.3, respectively. The membrane per-
meability was chosen such that the effective intra-to-extra and
extra-to-intra cellular exchange time was t12 =

1
k12
= 322 ms

(i.e., k12 = 0.0031 ms�1) and t21 =
1

k21
= 139 ms (i.e., k21

= 0.0072 ms�1), respectively. These values fit in the range of
exchange rates estimated from biological tissue.31–33 The dif-
fusivity of the spins was set to 3 µm2/ms. Both SDE and DDE
modulated signals were computed using the simulated diffu-
sion trajectories. The pulse width for both sequences was fixed
to 0.45 ms, and the diffusion or mixing time was changed for
measuring the exchange rate. In the SDE experiments, the dif-
fusion time was chosen in the interval T ∈ [120, 240] ms, i.e.,
Tmin = 120 ms and Tmax = 240 ms, and bmax = 10 ms/µm2.

We also examined the signal due to symmetric and asym-
metric DDE sequences, as shown in Fig. 3. For the sym-
metric DDE sequence, we applied the proposed result to set
∆1 =

Tmin
2 = 60 ms. For comparison, we also applied a non-

optimal value for ∆1 with ∆1 = 30 ms. For the asymmetric
SDE sequence, we used the following optimal parameters: ∆1

= 60 ms and b1 = 5 ms/µm2. For comparison, we also used a
non-optimal sequence with b1 = 2.5 ms/µm2.

The purpose of this experiment is (1) to examine the per-
formance of the models in Eqs. (6) and (7) in fitting simulated
signals and in estimating the water exchange rate, (2) to exam-
ine the cumulant expansion of SDE and DDE signals and
compare them with the complete signal models, (3) to validate
the optimality of the proposed experimental parameters, (4) to
compare the signal differences, i.e., eSDE and eDDE, between
SDE and DDE sequences under the same constraints.

IV. RESULTS

The dMRI signal for the SDE sequence is illustrated
in Fig. 4, where the markers show the Monte Carlo sim-
ulated data, the dashed lines in Fig. 4(a) are the estimated
signal using the complete signal model from (6), and Fig. 4(b)
shows the signal using the cumulant expansion (19) with hSDE

given by (27). The closed-form expression for the matrix
exponential exp(M(q)∆) in (6) is provided in Appendix A.
The model parameters were estimated using the lsqnonlin
algorithm implemented in MATLAB®. We note that the esti-
mated signal in Fig. 4(a) fits nicely to the simulated data. The
cumulant expansion in Fig. 4(b) has a slight fitting error at high
b-values due to the truncation of higher order terms. The esti-
mated model parameters in Fig. 4(a) were D1 = 0 µm2/ms, D2

= 0.2819 µm2/ms, k12 = 0.0034 ms�1, and k21 = 0.0080 ms�1.
The estimated parameters for the cumulant expansion were D1

= 0.001 µm2/ms, D2 = 0.2067 µm2/ms, k12 = 0.0040 ms�1, and
k21 = 0.0064 ms�1. Both are close to the true exchange rates.
The estimated apparent diffusivity is much lower than the set
value of intrinsic diffusivity, due to restrictions and hindrances
from the tissue boundaries. We remark that these signals all
have similar slopes near b = 0, which indicates that the appar-
ent diffusivity is nearly constant at this time scale as shown in
(12). Therefore, the assumption of constant diffusivity is valid
in this experiment.

Figures 5(a) and 5(b) illustrate the simulated signal for
symmetric DDE sequences with∆1 = 60 ms using the complete

FIG. 4. The markers show the simulated SDE signal. The dashed lines in (a)
show the estimated signals (SSDE) using the complete signal model (6). (b)
shows the estimated signals (SSDE) using the cumulant expansion (19) with
hSDE given by (27).

signal model (7) and the cumulant expansion (19), respec-
tively. We note that the cumulant expansion has slightly higher
fitting error at high b-values. The estimated model param-
eters corresponding to Fig. 5(a) are D1 = 0.0130 µm2/ms,
D2 = 0.3149 µm2/ms, k12 = 0.0022 ms�1, and k21 = 0.0064
ms�1. The estimated parameters for Fig. 5(a) are D1 = 0.0037
µm2/ms, D2 = 0.1955 µm2/ms, k12 = 0.0028 ms�1, and k21

= 0.0040 ms�1. The estimated exchange rates are slightly lower
than the underlying true values.

Figure 5(c) illustrates the simulated and estimated signal
using (7) with ∆1 = 30 ms, which is suboptimal according to
the theoretical analysis in Sec. II E 2. The estimated model
parameters were D1 = 0.0220 µm2/ms, D2 = 0.3369 µm2/ms,
k12 = 0.0012 ms�1, and k21 = 0.0040 ms�1. We note that the
signal variance is much smaller in Fig. 5(c) for the suboptimal
condition compared to the optimal parameters in Fig. 5(a). This
demonstrates the advantage of using optimized parameters for
more sensitivity to exchange.

Figures 6(a) and 6(b) illustrate the simulated signal for
asymmetric DDE sequences versus b2 with b1 fixed at b1 = 5,
and 2.5 ms/µm2, respectively. The maximal b-value in both
cases is equal to 10 ms/µm2. Similar to the case of sym-
metric DDE sequences, the dashed lines are the estimated
results from Eq. (7), which all fit nicely with the simulated
data shown by the markers. The estimated model parame-
ters corresponding to Fig. 6(a) are D1 = 0.0158 µm2/ms, D2

= 0.3675 µm2/ms, k12 = 0.0028 ms�1, and k21 = 0.0115 ms�1.
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FIG. 5. The markers in (a) and (b) show the simulated signals using symmetric
DDE sequences with the theoretically optimal ∆1 = 60 ms and the markers
in (c) are the simulated signal with ∆1 = 30 ms. The dashed lines in (a) and
(c) illustrate the estimated signals using the complete signal model (7). The
dashed lines in (b) are estimated signals using the cumulant expansion (19)
with h(·) given by (30).

The estimated model parameters for Fig. 6(b) are equal to D1

= 0 µm2/ms, D2 = 0.2494 µm2/ms, k12 = 0.0043 ms�1, and k21

= 0.0085 ms�1.
We note that the difference between signals, i.e., eDDE,

with tm = 120 ms and tm = 0 ms at b2 = 5 ms/µm2 in Fig. 6(a)
is equal to 0.0417, whereas the corresponding value from

FIG. 6. The dashed lines in (a) show the estimated signal using sym-
metric DDE sequences with the theoretically optimal b1 = 10 ms/µm2,
which fit nicely to the signal from simulated data shown by the
markers. Similarly, (b) shows the signals with a non-optimal value b1 =
5 ms/µm2, which leads to a slightly weaker signal difference, i.e., eDDE,
compared to (a).

Fig. 6(b) at b2 = 7.5 ms/µm2 has a smaller value at 0.0373,
which supports the optimality of b1 = 5 ms/µm2 in maximizing
signal difference.

Figure 7 illustrates the comparison between eSDE and
eDDE with the optimal parameters and the maximal diffu-
sion time chosen in the interval Tmax ∈ [120, 240] ms. It

FIG. 7. A comparison of the signal differences eSDE and eDDE with Tmin
= 120 ms, bmax = 20 ms/µm2, and Tmax ∈ [120, 240] ms. This provides an
experimental validation of the results from Fig. 2.



074109-9 Ning et al. J. Chem. Phys. 148, 074109 (2018)

shows a very similar feature as in Fig. 2, though the theo-
retical analysis in Fig. 2 did not consider the third or higher
order terms. More specifically, Fig. 7 shows that the sig-
nal change in a DDE sequence is more sensitive to water
exchange than a SDE sequence when ∆max is small. But the
SDE sequence provides larger signal changes at long time
scale.

V. DISCUSSION AND CONCLUSIONS

In this paper, we investigated a model for the diffusion-
and-exchange stochastic processes of water molecules. We
derived a generalized expression of Kärger’s model for the
temporal evolution of the dMRI signal using any type of gradi-
ent sequence. We also derived analytical solutions for special
case of SDE and DDE sequences. Moreover, we also pro-
posed a novel solution for computing the cumulant expansion
of dMRI signal using the stochastic evolution process without
taking Taylor’s series expansion from the complex signal mod-
els. Based on this general solution, we derived the cumulant
expansion for the dMRI signal for SDE as well as symmetric
and asymmetric DDE sequences. The cumulant expansions
show that the water exchange rate is related to the linear coef-
ficient of the b-value for asymmetric DDE sequences, whereas
it involves the quadratic terms for SDE and symmetric DDE
sequences. Moreover, the cumulant expansions also provide
the exact relation between the AXR from the FEXI approach
and the true water exchange rate.

From the cumulant expansions, we also computed the
optimal parameters for the DDE sequences under realistic con-
straints on the b-values and diffusion time, in order to provide
maximal signal difference for increased sensitivity to water
exchange. For the symmetric DDE sequence, we showed that
the optimal diffusion time ∆1 should be set to its upper bound
at 1

2 Tmin. For the asymmetric DDE sequences, the optimal
value of b1 is equal to 1

2 bmax. Moreover, we also showed that
the signal from a DDE sequence with optimal parameters is
more sensitive to water exchange than the signal from the SDE
sequence.

Finally, we note that a limitation of the present work
is the assumption of constant diffusion coefficients for each
compartment in the diffusion-exchange model. An important
future direction is to explore the application of more realistic
models that take into account restrictions or hindrances in the
diffusion processes in situations with fast exchange rate. More-
over, generalizations to multiple components, anisotropic

diffusivities, and vector-valued gradient waveforms, which are
important for estimation of microscopic anisotropy,34,35 will
also be explored in our future work.
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APPENDIX A: PROOF OF THE GENERALIZED
KÄRGER MODEL IN SEC. II B

Without loss of generality, we will only derive the
derivative ∂S1(q,t)

∂t . By definition,

S1(q, t+δt) =
2∑

j=1

p∞j pj1(t+δt)E(eiφ(t+δt ) | s(t+δt) = 1, s(0) = j).

We denote φ(t, t + δt) B ∫
t+δt

t q(τ)σ(x(τ))η(τ)dτ. Then, it
holds that φ(t + δt) = φ(t) + φ(t, t + δt) and φ(t) is independent
of φ(t, t + δt). Thus, it holds that

S1(q, t + δt)

=

2∑
j=1

2∑
k=1

p∞j pjk(t)pk1(δt)E(eiφ(t) | s(t) = k, s(t + δt) = j)

× E(eiφ(t,t+δt) | s(t + δt) = 1, s(t) = k)

= S1(q, t)p11(δt)E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 1)

+ S2(q, t)p21(δt)E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 2).

(A1)

By discretizing Eq. (2), we obtain that

p11(δt) = p11(0)(1 − k12δt) + p12(0)k21δt + o(δt)

= 1 − k12δt + o(δt).

To derive E(eiφ(t,t+δt ) | s(t + δt) = 1, s(0) = 1), we define
the event A(t, δt) B {∃t1 ∈ [t, t + δt] s.t. s(t1) , s(t)}, i.e.,
A(t, δt) denotes the event that water exchange happens during
the interval [t, t + δt] with given boundary conditions s(t) = 1,
s(t + δ) = 1. Let Ac(t, δt) denote the complementary event to
A(t, δt). Using Bayes’ rule, we obtain that

E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 1)

= Prob(A(t, δt) | s(t) = 1, s(t + δt) = 1)E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 1,A(t, δt))

+ Prob(Ac(t, δt) | s(t) = 1, s(t + δt) = 1) × E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 1,Ac(t, δt)).

We note that, for short δt , the probability of exchange during the interval [t, t + δt] with the boundary condition that
s(t + δt) = 1, s(t) = 1 is about zeros, i.e.,

Prob(A(t, δt) | s(t) = 1, s(t + δt) = 1) =
Prob(s(t + δt) = 1 | s(t) = 1) − Prob(Ac(t, δt) | s(t) = 1)

Prob(s(t + δt) = 1 | s(t) = 1)
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is of order o(δt). Moreover,

E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 1,Ac(t, δt))

= exp(−
∫ t+δt

t
q(τ)2dsD1) = 1 − q(t)2D1δt + o(δt).

Thus,

p11(δt)E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 1)

= 1 − (k12 + q(t)2D1)δt + o(δt). (A2)

Similarly, we can show that

p21(δt)E(eiφ(t,t+δt ) | s(t + δt) = 1, s(t) = 2) = k21δt + o(δt).
(A3)

By substituting Eqs. (A2) and (A3) into Eq. (A1), we can prove
Eq. (5).

APPENDIX B: THE CLOSED-FORM EXPRESSION
FOR SDE SIGNAL

For completeness, we provide the closed-form expression
for the matrix-exponential function used for computing the
SDE and DDE signals, which is given by

exp(M(q)t) =


S11(q, t) S21(q, t)

S12(q, t) S22(q, t)


,

where

S11(q, t) = −
−q2D1 − k12 + q2DB

q2(DA − DB)
e−q2DAt +

−q2D1 − k12 + q2DA

q2(DA − DB)
e−q2DBt ,

S12(q, t) =
(−q2D1 − k12 + q2DA)(−q2D1 − k12 + q2DB)

k21q2(DA − DB)
× (e−q2DAt − e−q2DBt),

S21(q, t) =
−k21

q2(DA − DB)
(e−q2DAt − e−q2DBt),

S22(q, t) =
−q2D1 − k12 + q2DA

q2(DA − DB)
e−q2DAt −

−q2D1 − k12 + q2DB

q2(DA − DB)
e−q2DBt ,

DA,B =
1
2

(
D1 + D2 +

k12 + k21

q2
∓

√[
D1 + D2 +

k12 − k21

q2

]2

+
4k12k21

q4

)
.

These equations are essentially Kärger’s signal models in
Ref. 1, which can also be used to derive the closed-form solu-
tion for DDE signals. The closed-form models were used in
the experiments to fit the simulated signals.

APPENDIX C: ON THE HIGHER-ORDER MOMENTS

Following a similar computational approach as used in the
fourth order moment, we provide a general expression for the
higher order moments E(φ2n(T )) for n ≥ 2 as follows:

E(φ2n(T )) = (2n − 1)!!
∫ T

0
. . .

∫ T

0

*
,

n∏
i=1

q2
ti
+
-

× E(
n∏

i=1

σ(xti )
2)dt1 . . . dtn.

Assuming t1 ≤ t2 · · · ≤ tn,

2−nE(
n∏

i=1

σ(xti )
2) =

2∑
k,i1,...,in=1

p∞k

(
pki1 (t1)pi1i2 (t2 − t1)

. . . pin−1in (tn − tn−1) ×
n∏
`=1

Di`

)
,

which provides the high-order autocorrelations of the diffusiv-
ities.
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