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Abstract

Purpose—To develop and evaluate a model-based reconstruction framework for joint arterial 

input function (AIF) and kinetic parameter estimation from under-sampled brain tumor DCE-MRI 

data.

Methods—The proposed method poses the tracer-kinetic (TK) model as a model consistency 

constraint, enabling the flexible inclusion of different TK models and TK solvers, and the joint 

estimation of the AIF. The proposed method is evaluated using an anatomic realistic digital 

reference object (DRO), and nine retrospectively downsampled brain tumor DCE-MRI datasets. 

We also demonstrate application to 30-fold prospectively under-sampled brain tumor DCE-MRI.

Results—In DRO studies with up to 60-fold under-sampling, this method provided TK maps 

with low error that are comparable to fully sampled data, and is demonstrated to be compatible 

with a third-party TK solver. In retrospective under-sampling studies, this method provided 

patient-specific AIF with normalized root mean-squared-error (nRMSE, normalized by the 90%ile 

value) less than 8% at up to 100-fold under-sampling. In the 30-fold under-sampled prospective 

study, the proposed method provided high-resolution whole-brain TK maps and patient-specific 

AIF.

Conclusion—The proposed model-based DCE-MRI reconstruction enables the use of different 

TK solvers with a model consistency constraint, and enables joint estimation of patient-specific 

AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold 

under-sampling in k,t-space.

Introduction

Dynamic contrast enhanced (DCE) MRI is a powerful technique for probing sub-voxel 

vascular properties of tissue including fractional plasma volume, fractional extracellular-

extravascular volume, and clinically important transfer constants. DCE-MRI involves 
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capturing a series of images before, during, and after administration of a T1-shortening 

contrast agent. Tracer-kinetic (TK) parameter maps are then computed from the dynamic 

images, and provide information for diagnosis and monitoring treatment response (1–3). 

DCE-MRI is used throughout the body, most commonly in the prostate, breast, liver, and 

brain. In the brain, DCE-MRI has shown value in the assessment of brain tumor, multiple 

sclerosis, and Alzheimer disease (4–6).

With conventional Nyquist sampling, DCE-MRI is often unable to simultaneously provide 

adequate spatiotemporal resolution and spatial coverage. A typical brain DCE-MRI provides 

5 second temporal resolution, which is a minimum requirement for accurate TK modeling 

(7, 8). Using Cartesian sampling at the Nyquist rate, only 5-10 slices are achievable. This is 

typically inadequate in large Glioblastoma cases, and cases with scattered metastatic disease 

that may be spread throughout the brain (9). It is possible to coarsen spatial resolution in 

order to achieve greater spatial coverage, but this compromises the ability to evaluate the 

narrow (1-2mm) enhancing margin of glioblastomas and the ability to evaluate small lesions.

Thus, techniques involving under-sampling and constrained reconstruction have been 

proposed to simultaneously provide high spatial resolution and whole-brain coverage. Early 

work used compressed sensing and parallel imaging to reconstruct dynamic images from 

under-sampled k,t-space data (10–12). Standard TK modeling software was then used to 

generate high-resolution whole-brain TK maps based on the reconstructed images (9, 13). A 

more recent proposed approach was to enforce the TK model and directly estimate TK 

parameters from under-sampled k,t-space data (14). Similar model-based reconstruction 

approaches have been used for MRI relaxometry (15, 16), PET kinetic parameter estimation 

(17, 18), and recently, in DCE-MRI kinetic parameter estimation (14, 19–21). Compared to 

conventional compressed sensing techniques that reconstruct dynamic images first, the 

model-based approach provides superior results and allows higher under-sampling rates (14, 

21). Direct kinetic parameter estimation makes most efficient use of acquired information, 

however it is sensitive to inaccuracy of the forward model. Two major issues with this are 

variations in the arterial input function (22), and prior knowledge of the appropriate TK 

model (23–25).

In conventional DCE-MRI, images are reconstructed for each time point. Patient-specific 

arterial input functions (AIF) can be identified from vessel pixels using either manual region 

of interest (ROI) selection or automatic cluster-based ROI selection (26). Some centers use a 

fixed population-averaged AIF (27), an institutionally-derived population AIF, or a delay 

and dispersion corrected version of these (9). The use of a patient-specific AIF (pat-AIF) is 

generally preferred, as it is known to provide more accurate TK mapping (22). The 

estimation of pat-AIF from under-sampled data is extremely challenging due to under-

sampling artifacts. Current model-based TK reconstruction approaches rely on the use of a 

population-averaged AIF (pop-AIF) (14, 21). This is considered a major limitation of these 

approaches because the use of a pop-AIF can lead to significant errors in the resulting TK 

maps (22).

In this work, we develop a DCE-MRI reconstruction approach that allows for integration of 

different TK models and/or different TK solvers, and allows for joint estimation of the 
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patient-specific AIF and TK parameter maps. We evaluate the performance of the proposed 

method using simulated DCE-MRI data from a physiologically-realistic digital reference 

object (DRO) and in-vivo DCE-MRI data from brain tumor patients. We also demonstrate its 

application to prospectively under-sampled high-resolution whole-brain DCE-MRI data.

We propose simultaneous reconstruction of TK maps and dynamic images, where TK model 

consistency is applied as a penalized reconstruction constraint, and the patient-specific AIF 

can be iteratively estimated from the dynamic images. This approach is inspired by recent 

works in accelerated quantitative MR relaxometry (28, 29), where physical or physiological 

model consistency was applied as a penalized reconstruction constraint (not strictly 

enforced). This consistency constraint allowed for the data fit to deviate from the model, 

which made the scheme robust to scenarios with model inconsistencies (e.g. motion). For 

DCE-MRI, TK model is applied as a consistency constraint with a regularization parameter 

that balances the tradeoff between data consistency and model consistency. We will show 

that this approach provides a much more flexible framework for direct model-based 

reconstruction of accelerated DCE-MRI.

Theory

Model consistency constraint

This method jointly estimates contrast concentration vs time images (C) and TK parameter 

maps (θ) from the under-sampled data (y) by solving a least-squares problem:

[1]

The first l2 norm represents data consistency, where C should be consistent with the 

measured data y by Ψ (signal equation), U (under-sampling mask), F (Fourier transform), 

and E (sensitivity encoding). The second l2 norm represents model consistency, where C is 

consistent to the forward modeling (P) of TK parameter maps (Patlak, eTofts etc.). This 

formulation can be simplified to:

[2]

where A=UFEΨ represents data consistency modeling, b=(y+UFES0) is the known data, S−0 

is the first temporal frame images that are fully sampled.

To solve the least-square optimization problem in Eqn [2], we alternatively solve for each 

variable while keeping others constant. For each iteration n:

[3]
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[4]

Note that Eqn [3] is regularized SENSE reconstruction with an l2 norm constraint that can be 

solved efficiently using conjugate gradients (CG) (30). Eqn [4] is backward TK modeling 

that can be solved using any DCE-MRI modeling toolbox. Because forward modeling (P) 

and backward modeling (P−1) are used iteratively, the modeling solver should not utilize 

linearization or other forms of approximation. For example, Rocketship (31) and TOPPCAT 

(32) are two suitable solvers. Detailed sub-steps and variants of Eqn [3] and [4] can be found 

in Appendix I.

Joint AIF and TK parameter estimation

The proposed formulation allows for joint estimation of the patient-specific AIF. Eqn [2] can 

be modified to estimate C, θ and AIF from under-sampled data by solving the following 

least-squares problem:

[5]

Similar to the above, we solve each variable alternatively as follows (nth iteration):

[6]

[7]

Eqn [7] is backward TK modeling from contrast concentration including pat-AIF estimation. 

This can be performed by identifying an arterial ROI once, using the time-averaged image or 

post-contrast image. Within each iteration, it is then possible to: 1) apply this ROI to C to 

estimate the AIF (averaging the pixels), and 2) use the updated AIF during TK modeling. 

This is a common procedure in TK modeling for DCE-MRI. The only difference is 

identification of the arterial ROI prior to the reconstruction of the dynamic images.

Theoretical Benefits

The proposed method formulates model consistency as a constraint with a penalty β, and 

decouples it from data consistency. There are multiple benefits of this formulation: 1. 

algorithm complexity is reduced compared to recently proposed direct reconstruction 

techniques that require complex cost function gradient evaluations (14, 20, 33); 2. different 

TK models can easily be included in this formulation, as described above; 3. patient-specific 

AIFs can be estimated jointly with TK maps, as described above; and 4. the penalty β can 

allow for TK model deviation, reducing errors that may be caused by strict model 

enforcement (29). This work specifically demonstrates #2 and #3.
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Methods

Data Sources

Digital Reference Object—Anatomically-realistic brain tumor DCE-MRI digital 

reference object (DRO) was generated based on the method and data provided by Bosca and 

Jackson (34). The Extended-Tofts (eTofts) model was used to generate contrast 

concentration curves with known TK parameter maps and pop-AIF (27). Coil sensitivity 

maps measured on our MRI scanner (3T, 8-channel head coil) were co-registered to the 

DRO and used to generate realistic MRI k-space data (35). Gaussian noise were added to the 

image space to simulate noise levels typical of DCE-MRI at 3T and 1.5T.

Retrospective—Nine anonymized fully sampled brain tumor DCE-MRI raw data sets 

were obtained from patients who had received routine brain MRI with contrast (including 

DCE-MRI) at our Institution. The study protocol was approved by our Institutional Review 

Board. The acquisition was based on a 3D Cartesian fast spoiled gradient echo sequence 

(SPGR) with FOV: 22×22×4.2cm3, spatial resolution: 0.9×1.3×7.0mm3, temporal resolution: 

5s, 50 time frames, and 8 receiver coils. The flip angle was 15°, and TE was 1.3ms, TR was 

6ms. DESPOT1 was performed prior DCE-MRI, with flip angle of 2°, 5°, 10° to estimate 

pre-contrast T1 and M0 maps. The contrast agent, Gadobenate dimeglumine (MultiHance 

Bracco Inc., relaxivity r1=4.39 s-1mM-1 at 37°C at 3 Tesla (36)) was administered with a 

dose of 0.05 mMol/kg, followed by a 20 ml saline flush in the left arm by intravenous 

injection.

Prospective—Prospectively under-sampled data were acquired in one brain tumor patient 

(65 M, Glioblastoma) with Cartesian golden-angle radial k-space sampling (9, 37). 3D 

SPGR data was acquired continuously for 5 minutes. Whole-brain coverage was achieved 

with a FOV of 22*22*20 cm3 and spatial resolution of 0.9*0.9*1.9 mm3. The prospective 

study protocol was approved by our Institutional Review Board. Written informed consent 

was provided by the participant.

Demonstration of TK Solver Flexibility

To demonstrate TK solver flexibility, DRO data was retrospectively under-sampled using a 

randomized golden-angle sampling pattern at R=60x (37). Gaussian noise were added to the 

image space, creating SNR levels of 20 and 10 (white matter based) for simulation of DCE-

MRI image quality at 3T and 1.5T. The proposed method with eTofts modeling was used to 

reconstruct TK parameter maps at R=60x and SNR=20 and 10 respectively. An in-house 

gradient-based algorithm and an open-source TK modeling toolbox, Rocketship (31), were 

used for the eTofts solver in the proposed algorithm (Eqn [4]). Tumor ROI Ktrans correlation 

coefficient, R2 and normalized root mean-squared-error (nRMSE, normalized by the 90%ile 

value within the tumor ROI) between the estimated and true values were calculated and 

compared. Note that tumor ROI 90%ile Ktrans value has been found to be a sensitive and 

clinically valuable DCE-MRI biomarker (38, 39), hence normalization of RMSE(root mean-

squared-error) by this value. TK maps estimated from the noisy fully sampled images 

(SNR=20, R=1x) were also compared to the true TK maps to evaluate the performance of 

the proposed method with respect to errors found in conventional DCE-MRI.

Guo et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Demonstration of TK Model Flexibility

The nine fully sampled patient data were fitted to both Patlak and eTofts model to calculate 

model fitting error, and F-test was performed in the tumor ROI to determine whether Patlak 

or eTofts model is an appropriate fit (23–25). In the F-test (40, 41), the null hypothesis is 

that the two samples of sum-of-squared modeling errors were drawn from the same pool. 

The failure of this hypothesis leads to acceptance of the higher-order model. Thus for each 

pixel F-test will show whether a higher-order model (eTofts model) should be used (23–25). 

If more than 50% of the tumor pixels were appropriately fitted for certain model, this model 

was selected for the data set. We reconstructed the corresponding TK parameter maps for 

fully sampled data (used as reference) and at under-sampling rates of 20x, 60x and 100x for 

all 9 cases. A randomized golden-angle sampling pattern (37) was used in the kx-ky plane, 

simulating ky-kz phase encoding in a 3D whole-brain acquisition. Images were reconstructed 

using a pop-AIF (27) with patient-specific delay corrected by the delay estimated from k-

space center (42). ROI-based Ktrans nRMSE and Ktrans histograms were calculated based on 

the reference Ktrans maps. Ktrans histogram skewness and 90%ile Ktrans values were also 

measured for evaluation, as they have been shown to be valuable in the clinical assessment 

of brain tumors by DCE-MRI (38, 39, 43).

Demonstration of Joint AIF and TK estimation

The cases following Patlak model were reviewed with special attention to vessel signal. 

Cases that showed significant pre-contrast inflow enhancement were identified and 

subsequently excluded. With the remaining cases, we performed joint estimation of AIF and 

Patlak parameter maps from under-sampled data across sampling rates of 20x, 60x, and 

100x. For each under-sampling rate, 15 realizations were generated by varying the initial 

angle of the golden-angle radial sampling pattern (37). The golden-angle radial sampling 

with different initial angle will create mostly non-overlapped k-space coverage, effectively 

providing different noise realizations with the same noise level (white matter SNR=20). 

Reconstructed patient-specific AIFs were compared to the fully sampled reference using 

nRMSE (normalized to the 90%ile AIF value over time) and bolus peak difference. ROI-

based Ktrans nRMSE (normalized to the 90%ile Ktrans value over the tumor ROI) were also 

calculated for evaluation.

Demonstration with Prospectively Under-sampled Data

We demonstrate application of the proposed method for joint AIF and TK parameter 

estimation on prospectively 30x under-sampled high-resolution whole-brain DCE-MRI data. 

Five second temporal resolution was achieved by grouping raw (k,t)-space data acquired 

within consecutive 5 sec intervals, effectively 30x under-sampling compared to Nyquist 

sampling (44). Patient-specific AIF and TK maps were jointly reconstructed using the 

proposed model consistency constraint approach. Pat-AIF ROI was selected based on time-

averaged images. Three-plane of Ktrans and vp maps and pat-AIF are presented for visual 

assessment.
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Results

Figure 1 shows the DRO reconstruction results at R=60x for SNR=20 and 10. E-tofts model 

was used to generate the simulated DCE-MRI data, and also for model-based reconstruction. 

TK maps estimated from fully sampled (R=1x) noisy images are also shown to evaluate the 

performance in the context of normal DCE-MRI modeling with noise. β=0.1 and 

iteration=100 were chosen based on prior experiments. Computation time for the conversion 

from concentration vs time to TK maps, was 3.44s for the in-house gradient-based method, 

and 31.62s for Rocketship with parallel computing turned on (4 workers). Pixel-wise 

correlation plots between the true and estimated Ktrans values are shown at the bottom row, 

with calculated R2 at upper left corner, and correlation coefficient at lower right corner. Both 

methods were able to restore Ktrans maps with less than 50% error, and the in-house solver is 

able to restore the TK maps at the quality close to fully sampled noisy results. Rocketship 

solver is more sensitive to increased noise level, especially for Kep and vp maps. These 

results show that the proposed method can restore TK maps from highly under-sampled data 

(R=60x) with quality close to modeling results from fully sampled noisy images. It also 

shows that this method is compatible with a third-party TK solver.

Figure 2 and Figure 3 illustrate the impact of regularization parameter β for one 

representative in-vivo brain tumor dataset, using the Patlak model, at R=20x. The cost 

function values as a function of iteration number, l-curve, and the final reconstructed TK 

maps are plotted for different β values. A large β resulted in slow convergence, while a 

smaller β provided fast convergence. This behavior is expected as ill-conditioning of the 

problem in Eqn [3] increases with β (45). TK maps obtained with a large β show poor 

fidelity as data consistency is violated, while the maps with a small β is equivalent to a 

SENSE reconstruction without constraints, and demonstrated g-factor related artifacts at 

R=20x. The L-curve shows the balance between the data consistency and model consistency, 

based on which the β values in the range of 0.1 to 1 (green highlighted) show similar 

performance. We then tune the β value in this range for different cases. We found the 

acceptable range to be roughly 1 order of magnitude, and consistent among the 4 cases that 

we carefully examined.

Based on the tumor ROI F-test, the Patlak model was appropriate for 6 in-vivo cases, while 

the e-Tofts model was appropriate for 3 in-vivo cases. Figure 4 and Figure 5 show 

representative cases of Patlak and eTofts model, respectively, at R=60x and R=100x. Ktrans 

and vp maps on the zoomed-in tumor region are shown (Kep for eTofts is not shown). 

Histograms of the Ktrans values within the tumor ROI are plotted for respective case at the 

bottom row. Figure 6 shows quantitative evaluation of all the in-vivo reconstruction results 

focusing on Ktrans values. For Patlak model reconstruction, the 90%ile Ktrans values matched 

well with the reference values across all cases, the histogram skewness were also reasonably 

matched. Across all cases and under-sampling rates, nRMSE was less than 32%. For the 

eTofts model, the 90%ile Ktrans matched well with reference for one case, and had larger 

deviation for the other cases at R=100x. The nRMSE also increased considerably as the 

under-sampling rate is increased.
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Figure 7 shows the selection of AIF ROI from under-sampled data, and the comparison of 

pop-AIF and pat-AIF, and the resulting TK maps in one representative in-vivo data set. This 

figure shows that the ROI of pat-AIF can be easily selected based on average of under-

sampled data. This ROI can then be used for joint reconstruction of AIF and TK parameters 

in the proposed method. Figure 8 shows the reconstruction results of TK maps and pat-AIF 

(same case as Figure 7) at different under-sampling rates. Comparing to the AIF extracted 

from fully sampled data, the proposed method was able to provide clear depiction of AIF 

peak up to R=100x, with good-quality TK maps restored at the same time.

Figure 9 show the quantitative evaluation of joint AIF and TK reconstruction across the 4 in-

vivo data sets. Based on the nRMSE of the TK maps, TK maps can be restored with error 

less than 30% at for all cases and under-sampling rates. Radial sampling patterns with 

different initial angle created different noise realization for each case, and multiple noise 

realizations show that the method is robust to noise, with an expected increase in variance at 

higher under-sampling rates. The shape of the AIF can be estimated at up to R=100x, with 

AIF nRMSE below 8% for all cases. The peak of the AIF shows larger variance for different 

noise realization, since the peak is only one point. However, the proposed method is still 

able to restore the AIF peak up to R=60x with the error at most 0.25 mMol across all cases.

Figure 10 shows reconstruction of pat-AIF and TK maps from prospectively under-sampled 

in-vivo data from a brain tumor patient. This demonstrates that whole-brain TK maps can be 

reconstructed jointly with patient-specific AIF, with no obvious under-sampling artifacts in 

the final TK maps. The clinically-meaningful benefits of under-sampling can be best 

demonstrated in prospective study, where arbitrary reformats of the 3D TK maps are made 

possible thanks to the ability to achieve high spatial resolution and whole-brain coverage.

Discussion

We have described, demonstrated, and evaluated a novel model-based reconstruction 

approach for DCE-MRI, where the TK model is posed as a penalized consistency constraint. 

By this formulation, we decoupled the TK model consistency from the k,t space data 

consistency. The two sub-problems can be solved using existing techniques, namely TK 

modeling (including AIF estimation) and regularized SENSE reconstruction. The proposed 

approach allows for easy inclusion of different TK solvers, including third-party solvers, and 

also allows for joint estimation of the patient-specific AIF. We have demonstrated the 

robustness of the proposed method in one anatomically-realistic brain-tumor DRO, and a 

retrospective study of nine brain tumor DCE-MRI datasets. The DRO study demonstrated 

that the proposed method provides performance comparable to conventional TK modeling 

results from fully sampled noisy images, with only a 2% higher error at 60-fold under-

sampling. The retrospective study shows that the proposed method is robust to noise across 

different cases, and can provide accurate TK maps with less than 32% error, and AIF with 

less than 8% error up to 100-fold under-sampling. We also demonstrated the application of 

the proposed method to prospectively under-sampled data, where whole-brain high-

resolution TK maps can be jointly reconstructed with patient-specific AIF.
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Limitations of the Study

The proposed method also has a few important limitations. First, the alternating algorithm 

proposed is a two-loop iteration, where an iterative solver is needed for each sub-problem. 

Comparing to a gradient-based direct reconstruction (14), this formulation takes longer 

computing time. This issue can be addressed by using more powerful computers, 

implementing in C, and/or using GPU acceleration.

Second, although we demonstrate that the proposed method is compatible with a third-party 

solver, it requires that the solver not use any approximation for the modeling. This is 

because the proposed approach requires the backward and forward modeling operators to be 

exact inverses of each other, otherwise error will accumulate during the iteration process. 

For higher-order TK models, a few linearized approximation approaches have been proposed 

for fast computation (46, 47). Unfortunately, those approximation methods are not 

compatible with this framework.

Third, although we have shown that this method can include different TK solver, it may be 

difficult to use a nested model that selects between several different local model based on 

local fitting errors (23–25). This type of approach has been shown in recent literature to be 

advantageous. The quality of intermediate anatomic images in the proposed method, 

especially in the first few iterations, may make it challenging to generate a modeling mask 

needed for nested models.

Fourth, we have not accounted for phase that can be induced by the contrast agent (primarily 

in vessels). Many centers, including ours, use a half dose for DCE-MRI which makes this 

effect negligible. If a full dose is used, the potential phase effects on the AIF signal can and 

should be modeled using the closed-form solution by Simonis et al. (48).

Conclusion

We have demonstrated a novel model-based reconstruction approach for accelerated DCE-

MRI. Posing the TK model as a model consistency constraint, this formulation provides 

flexible use of different TK solvers, joint estimation of patient-specific AIF, and 

straightforward implementation. In anatomically realistic brain tumor DRO studies, this 

method provides TK maps with low error that are comparable to fully sampled data. In 

retrospective under-sampling studies, this method provides TK maps with nRMSE less than 

32% and patient-specific AIF with nRMSE less than 8% at under-sampling rates up to 100x.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix I

The proposed method uses an alternating approach to solve for C and θ from under-sampled 

k,t-space data. This appendix details the steps involved in solving the two sub-problems 

shown in Eqn [3] and Eqn [4].

In Eqn [3], we solve for the contrast concentration vs time from the measured data using the 

following equation:

[3]

where A=UFEΨ. We first solve for the image difference (ΔS) from b (since the pre-constrast 

signal S0 is included in b) by solving the following least-square problems using CG (or 

another iterative algorithm for least-square problems). We use the result from the previous 

iteration as an initial guess for faster convergence.

[A.1]

where first term represents SENSE, and the second term is an identity constraint to ΨP(θn) 

that is constant in this step. P is the forward modeling from TK maps to contrast 

concentration vs time C, and Ψ is the conversion from contrast concentration C to signal 

difference ΔS following the steady-state SPGR signal equation:

[A.2]

where TR is the repetition time, α is the flip angle, r1 is the contrast agent relaxivity. R0 and 

M0 are the pre-contrast R1 (reciprocal of T1) and the equilibrium longitudinal magnetization 

that are estimated from a T1 mapping sequence. In this work, we used DESPOT1 (49) prior 

to the DCE-MRI scan.

Note that Ψ is a one-to-one mapping for each voxel, and its inversion (C= Ψ−1(ΔS)) is:

[A.3]

Eqn [A.3] is used to compute C after solving for ΔS using Eqn [A.1], this completes the 

detailed algorithm for solving Eqn [3].
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After C is estimated, Eqn [4] represents backward TK modelling. C(t) is used in the equation 

below to avoid confusion. For the Patlak model, Eqn [4] is expressed as:

[A.4]

Where Cp(t) is the arterial input function (AIF). The Patlak model is linear, and a pseudo-

inverse can be used to solve θ=P−1(C).

For the extended-Tofts (eTofts) model, Eqn [4] is expressed as:

[A.5]

where an extra TK parameter Kep is modeled for better fitting. eTofts is nonlinear, and an 

iterative algorithm can be used to solve this model fitting:

[A.6]

We use a gradient-based l-BFGS algorithm to solve Eqn [A.6], where we derive the gradient 

for each TK parameter. In this study, we also used an open-source DCE-MRI TK modeling 

toolbox, Rocketship (31), for comparison.

We have made the code and examples of the proposed algorithm publicly available at the 

following GitHub Link: https://github.com/usc-mrel/DCE_MOCCO
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Figure 1. 
The proposed method is compatible with third-party TK solvers. Shown are results from an 

anatomically-realistic brain-tumor DCE-MRI digital reference object using an in-house 

solver and the Rocketship solver, both using the model consistency constraint method. 

R=60x were tested at white matter SNR level of 20 and 10. Tumor ROI Ktrans nRMSE 

(normalized to 90%ile value) were shown on the upper left corner of respective Ktrans maps. 

Correlation plots are shown at the bottom of each respective result, where the upper left 

corner shows the R2 value, and lower right corner shows the correlation coefficient. Both 

methods were able to restore Ktrans maps with less than 50% nRMSE, while the Rocketship 

solver yielded Ktrans maps with higher errors, especially at SNR=10. Kep and vp maps are 

more sensitive to noise, especially when using the Rocketship solver.
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Figure 2. 
Performance for different β values at R=20x for one representative in-vivo data set. (a) The 

l-curve shows that β value controls the balance between model and data consistency. (b, c, d) 

Convergence of the cost function to within 1% of its final value required 116, 24, 10, 4, and 

2 iterations for β values of 10, 1, 0.1, 0.01, and 0.001, respectively. The actual reconstructed 

TK maps for different β values are shown in Figure 3.
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Figure 3. 
TK maps reconstructed for different β values using the case in Figure 2. Tumor ROI nRMSE 

(Ktrans) are 0.102, 0.073,0.072, 0.098, 0.105 respectively for β values 10, 1, 0.1, 0.01, 0.001. 

Reconstruction with small β values converged quickly, and is closer to a SENSE 

reconstruction with associated g-factor losses and under-sampling artifacts. Reconstruction 

with large β values shows slow convergence, and provides less accurate TK maps since the 

data consistency is violated.
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Figure 4. 
Reconstruction of the TK maps of one representative in-vivo brain tumor case using the 

Patlak model at R=60x and 100x. Tumor ROI (indicated in the reference images) histograms 

are shown below the respective cases. Detailed evaluation of the ROI Ktrans histograms by 

skewness, 90%ile, and nRMSE are shown in Figure 6.
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Figure 5. 
Reconstruction of the TK maps of one representative in-vivo brain tumor case using the 

eTofts model at R=60x and 100x. Tumor ROI (indicated in the reference images) histograms 

are shown below the respective cases. Detailed evaluation of the ROI Ktrans histograms by 

skewness, 90%ile, and nRMSE are shown in Figure 6.
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Figure 6. 
Quantitative evaluation of Patlak (top row) and eTofts (bottom row) reconstruction on 9 

retrospective under-sampled in-vivo cases. 90%ile of the reconstructed Ktrans values for 

different cases were plotted against the reference 90%ile Ktrans. For Patlak model the values 

matched well for all cases and under-sampling rates (a). For eTofts model the values 

matched well for R=20x and 60x, and have larger deviation for R=100x (d). The Ktrans 

histogram skewness were also plotted against the reference histogram skewness (b), (e). The 

tumor ROI Ktrans nRMSE (normalized based on reference 90%ile Ktrans value) were plotted 

against different R’s across different cases. For Patlak reconstruction, the nRMSE are less 

than 32% consistently for all cases and under-sampling factors (c). For eTofts 

reconstruction, the nRMSE are less than 15% at lower under-sampling rates, then increase 

considerably at higher under-sampling rates (f).
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Figure 7. 
Left: Extraction of pat-AIF (b) from a manually selected ROI on the peak contrast frame of 

fully sampled in-vivo data set (a). The pop-AIF show in (b) was delay corrected. In under-

sampling scenario, a time averaged image can be generated (c), and even at R=100x (d), it is 

straightforward to select an artery ROI from this image for the joint AIF and TK maps 

reconstruction. Right: Different AIFs can result in different TK maps (e, f, g, h), and pat-AIF 

is preferred for more accurate TK modeling.
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Figure 8. 
Joint reconstruction of TK maps (cropped portion of the case in Figure 5) and AIF at R=20x, 

60x and 100x for one representative in-vivo case. Comparing to the fully sampled reference, 

the proposed method is able to restore both AIF and TK maps at the same time, even at a 

high under-sampling rate of 100x. Quantitative evaluation of TK maps and AIF, including 

this case, are presented in Figure 7. See Supplemental Material for a movie of the estimated 

pat-AIF vs. iteration number.
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Figure 9. 
Quantitative evaluation of the joint AIF and TK reconstruction for the 4 in-vivo retrospective 

under-sampled cases across R=20x, 60x, and 100x. (a) Ktrans nRMSE was calculated as the 

spatial RMSE across all tumor pixels, divided by the 90%ile of the reference tumor Ktrans 

value. (b) AIF nRMSE was calculated as the temporal RMSE divided by the 90%ile of the 

reference AIF. (c) AIF peak error was calculated as the reference peak minus the estimated 

peak. Across different ceases, the nRMSE mean and variance all increased with under-

sampling rate, as expected.
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Figure 10. 
Joint reconstruction of Pat-AIF and TK maps from in-vivo prospective under-sampled data. 

Whole-brain high-resolution TK maps can be provided together with patient-specific AIF 

using the proposed model-based reconstruction approach.
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