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Abstract Meat and meat products can be contaminated

with pathogenic microorganisms, which cause serious

health problems and economic loss. Recently, numerous

novel non-thermal technologies have been developed to

respond to growing consumer demand for high quality and

safe meat products. Cold atmospheric plasma (CAP) is a

novel and emerging non-thermal technology, showing

great potential for applications in the food industry. This

review presents recent advances on the developments and

applications of CAP in meat products, including generation

and microbial inactivation effects of CAP as well as its

influences on physicochemical qualities and sensory attri-

butes of meat products. Furthermore, the safety assessment

of CAP-treated meat products and challenges in industrial

application of CAP are also discussed.

Keywords Cold atmospheric plasma � Inactivation � Meat

products � Physicochemical qualities � Sensory attributes

Introduction

As an excellent source of high-quality protein and

numerous essential nutrients, meat and meat products make

a significant contribution to human nutrition. As a result of

unique nutrient composition, high water activity, and

moderate pH (Iulietto et al. 2015), meat and meat products

consequently are excellent growth media for a variety of

microorganisms and are identified as frequent vehicles for

foodborne diseases (Dave and Ghaly 2011). Spoilage

microorganisms can cause the degradation of proteins,

carbohydrates, fats, and other components, resulting in the

development of off-odours, off-flavours, grayness or other

discolorations, pH changes, slime formation, and texture

softening (Dave and Ghaly 2011). More importantly, meat

and meat products are easily contaminated with a number

of foodborne pathogens, including Salmonella spp.,

Campylobacter spp., Escherichia coli O157:H7 and other

Enterohemorrhagic E. coli (EHEC), Listeria monocytoge-

nes, prions, and so on (Mor-Mur and Yuste 2010). Dietary

intake of meat products contaminated with pathogenic

microorganisms may cause serious foodborne illnesses or

even death, leading to a great financial burden for medical

care and social costs. According to Painter et al. (2013),

contaminated meat products, including beef, game, pork,

and poultry, were to blame for 22.2% of foodborne ill-

nesses and 28.8% of deaths in the USA from 1998 to 2008,

and these were mainly caused by bacteria. Therefore, there

is an urgent need to improve the microbial safety of meat

products with appropriate preservation and processing

methods. With increasing consumer demand for better

quality and safer meat products, some novel non-thermal

food processing technologies have been developed and

used in the meat industry, such as high hydrostatic pressure

(Campus 2010), pulsed electric fields (Arroyo et al. 2015),
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irradiation (Singh et al. 2015), modified atmosphere

packaging, and so on.

In recent years, the application of cold atmospheric

plasma (CAP) in the food industry is gaining more atten-

tion, including decontamination (Niemira 2012), food

packaging (Pankaj et al. 2014), modification of food

structure and properties (Bahrami et al. 2016), and inacti-

vation of endogenous enzymes (Misra et al. 2016) in var-

ious food systems. On this basis, a few authors have

summarized the application of CAP in the food industry

(Afshari and Hosseini 2012; Mir et al. 2016; Misra et al.

2016; Niemira 2012; Pankaj et al. 2014; Thirumdas et al.

2015), but detailed descriptions on the effects of CAP on

meat products are not available. Therefore, the present

review summarizes the recent progress in the application of

CAP on the microbial safety, physicochemical qualities,

and sensory attributes of meat products. Additionally, the

risk assessment of CAP-treated meat products and chal-

lenges are also discussed.

Cold plasma characteristics and sources

The existence of plasma was first discovered by William

Crookes in 1879, who described it as ‘‘radiant matter’’

(Crookes 1879). The term ‘‘plasma’’ was first applied to

ionized gas by Irving Langmuir in the late 1920s (Lang-

muir 1928). In term of physics and chemistry, plasma is a

completely or partially ionized gas, that consists of a large

number of different species such as ions, electrons, and

uncharged particles (atoms, molecules, etc.) and radicals

(Hoffmann et al. 2013). Generally, plasma is considered as

the fourth state of matter besides solids, liquids, and gases,

and makes up approximately 99% of the visible matter in

the universe (Hoffmann et al. 2013).

Classification of plasma

In terms of the relative temperatures of the electrons, ions,

and neutrals, plasmas are generally divided into two main

groups: high temperature plasma and low temperature

plasma (Fig. 1). High temperature plasma is also known as

thermally equilibrium plasma, because all particle species

exist in thermodynamic temperature equilibrium at the

same temperature (Te & Ti & Tg, where Te, Ti, and Tg are

the temperatures of the electron, ion, and gas molecules,

respectively) (Afshari and Hosseini 2012). The gas tem-

perature (Tp) of thermal plasma is about 106–108 K (Huang

and Tang 2007). Low-temperature plasma is also called

thermally non-equilibrium plasma and is further subdi-

vided into thermal plasma (quasi-equilibrium plasma) and

non-thermal plasma (non-equilibrium plasma). For quasi-

equilibrium plasma, particle species are in a local thermal

equilibrium state and Tg is about 2 9 104 K (Afshari and

Hosseini 2012). Non-equilibrium plasma is also known as

cold plasma, because of its low gas temperature of

300–1000 K (Fridman et al. 2008). Cold plasmas can be

generated under low-pressure (\ 1 Pa), moderate pressure

(& 100 Pa), and atmospheric pressure conditions. With

versatility, low-cost operation, and user-friendly operation

compared to plasmas in vacuum, cold atmospheric plasmas

offer significant potential for application in food industry

(Mir et al. 2016).

Generation of CAP

Plasma can be generated by supplying energy (such as

thermal energy, mechanical energy, electrical energy, and

nuclear energy) to gaseous medium. When molecules of

the gas are given energy in excess of their ionization

potential, these energies dissociate gaseous molecules into

mixture of electrons, ions, charge-neutral gas molecules,

photons, radicals and other species (Conrads and Schmidt

2000). The most commonly used method for generation of

CAP is by applying an electric field to a neutral gas at

atmospheric pressure, including dielectric barrier discharge

(DBD), atmospheric pressure plasma jet (APPJ), glow

discharge, corona discharge, radio frequency discharge,

high voltage pulsed discharge, microwave discharge, flex-

ible thin-layer dielectric barrier discharge (FTDBD),

plasma needle, plasma pencil, and so on (Hoffmann et al.

2013). The schematic diagrams of the DBD plasma system

and the APPJ system are shown in Fig. 2.

CAP induced microbial inactivation in meat

products

Table 1 provides a summary of microbial inactivation in

fresh meat products (such as raw pork, raw beef, and

chicken breast) and processed meat products (beef jerky,

bacon, and chicken ham, etc.) using various CAP appli-

cations along with the process parameters employed.

CAP induced inactivation of various

microorganisms

As reviewed in Table 1, CAP can effectively kill patho-

genic bacteria in pork, beef, poultry, and related products,

such as Salmonella Typhimurium (Kim et al. 2011),

Escherichia coli O157:H7 (Jayasena et al. 2015), Listeria

monocytogenes (Kim et al. 2013a; Lee et al. 2011), Listeria

innocua (Noriega et al. 2011), Campylobacter jejuni and

Salmonella enteric (Dirks et al. 2012). The above men-

tioned bacterial strains are the most prevalent and serious

pathogenic bacteria inside meat and meat products (Mor-

mur and Yuste 2010). CAP treatments also can effectively

induce the inactivation of molds (Choi et al. 2016) such as
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Aspergillus flavus (Yong et al. 2016), yeasts (Ulbin-Fig-

lewicz et al. 2015), and viruses, including murine norovirus

(MNV-1) and hepatitis A virus (HM-175) in meat products

(Bae et al. 2015).

CAP induced inactivation of bacterial biofilms

During the last decades, biofilms formed by pathogenic and

spoilage bacteria have lead to serious hygienic problems

and economic losses in the meat industry (Giaouris et al.

2013). Compared with planktonic cells, biofilms and

attached cells have significantly greater resistance to

antimicrobial treatments and environmental stresses

encountered in food production plants (Giaouris et al.

2013). Hence, it is important to assess the efficacy of CAP

on inactivation of biofilms. According to Han et al.

(2016a, b) and Ziuzina et al. (2015), DBD plasma effec-

tively induced inactivation of three meat pathogens

(E. coli, L. monocytogenes, and Staphylococcus aureus)

grown as biofilms by using a meat model medium. Besides,

CAP treatment also caused significant reductions of

Pseudomonas aeruginosa quorum sensing-regulated viru-

lence factors, such as pyocyanin and elastase (Ziuzina et al.

2015). In summary, CAP can effectively induce the direct

inactivation of both planktonic cells and preformed biofilm

of meat pathogens and may play an important role in

attenuation of virulence of pathogenic bacteria.

Mechanism of CAP sterilization

The underlying mechanisms of microbial inactivation

induced by cold plasma treatments were previously

investigated in order to improve the efficiency and efficacy

of such plasmas. While the mechanism of bacterial inac-

tivation by plasma is still not well understood, it is believed

that reactive species, charged particles, electrostatic dis-

ruption, and electroporation are all involved (Takamatsu

et al. 2015; Liao et al. 2017). CAP operated in air is cer-

tainly known to create copious quantities of reactive spe-

cies, including hydroxyl radicals, hydrogen peroxide,

singlet oxygen, superoxide anion, ozone, NO, nitrites,

peroxinitrite (ONOO-), and so on (Shintani et al. 2010).

These reactive oxygen species (ROS) and reactive nitrogen

species (RNS) can cause cell injury by attacking cellular

membranes, DNA, lipids, proteins, and other cell compo-

nents in microorganisms, which disrupt normal metabolic

functions and lead to cell death (Thirumdas et al. 2015).

Moreover, charged particles generated by plasma can

accumulate on the surface of bacteria and induce rupture of

the outer membrane, and consequently cause the

Fig. 1 Classification of plasma.

Note: Te, Ti, and Tg are the

temperatures of electron, ion,

and gas molecules, respectively

Fig. 2 Schematic diagrams of the dielectric barrier discharge plasma system (a) and the atmospheric pressure plasma jet (APPJ) system (b)
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Table 1 Overview on studies dealing with microbial inactivation by CAP in meat products

Sample Plasma source Microorganism Process gas Log reduction References

Sliced pressed

Ham

Atmospheric

pressure

plasma

L.monocytogenes (ATCC

19114, 19115, and 19111)

Power: 75, 100, 125, and

150 W

Frequency:13.56 MHz

Gap distance: 0.6 mm

Gas and flow rate: He (10

lpm)

Operation time: 60, 90,

and 120 s

After 120 s APP treatments at

75, 100, and 125 W,

reductions ranged from 0.25 to

1.73 log CFU/g

Song et al.

(2009)

Bacon Glow

discharge

plasma

L. monocytogenes (KCTC

3596), E. coli (KCTC

1682), and S. Typhimurium

(KCTC 1925)

Power: 75, 100, and

125 W

Frequency:13.56 MHz

Gas and flow rate: He (10

lpm) or He (10

lpm) ? O2 (10 sccm)

Operation time: 60

and 90 s

After treatments at 125 W for

90 s with He and O2 mixture,

the number of E. coli, L.

monocytogenes, S.

Typhimurium and total aerobic

bacteria were reduced by 3.0,

2.6, 3.73, and 4.58 log CFU/g,

respectively

Kim et al.

(2011)

Chicken skin

and breasts

Cold

atmospheric

plasma pen

apparatus

L. innocua (ATCC 33090) Power: 6.5–16 kV

Frequency: 23–38.5 MHz

Gas and flow rate: He (5

L/min) and O2 (100 mL/

min)

Operation time: 10 s to

8 min

After treatments for 8 min or

4 min, the population of L.

innocua was reduced by about

1 log CFU/cm2 on skin,

and[ 3 CFU/cm2 on muscle

Noriega

et al.

(2011)

Cooked

chicken

breast and

ham

Atmospheric

pressure

plasma jet

(APPJ)

L. monocytogenes (KCTC

3596)

Power: 2 kV

Frequency: 50 kHz

Gas and flow rate: He (7

L/min), N2 (7 L/min);

He (7 L/min) ? O2 (0.07

L/min), N2 (7

L/min) ? O2 (0.07

L/min)

Operation time: 2 min

2 min exposure resulted in

reduction of 1.37–4.73 log

CFU/g in chicken breast and

1.94-6.52 log CFU/g in ham

Lee et al.

(2011)

Chicken

breast and

chicken

thigh with

skin

Dielectric

barrier

discharge

(DBD)

plasma

S. enteric (ATCC19214 and

ATCC13076), and C. jejuni

(ATCC700819, RM 2002,

and RM1849)

Power: 30 kV

Frequency: 0.5 kHz

Power density: 0.15 W/

cm2

Gas: air

Operation time: 0–200 s

Gap distance: 1.5 mm

Inoculum levels of 104 CFU of

S. enteric, 3 min treatments

resulted in reduction of 2.54

log on chicken skin and 1.31

log on chicken breast,

respectively. Inoculum levels

of 104 CFU of C. jejuni, 3 min

treatments resulted in

reduction of 3.11 log on

chicken skin and 2.45 log on

chicken breast, respectively

Dirks et al.

(2012)

Porcine

musculus

longissimus

dorsi

(MLD)

Microwave

plasma

Total aerobic microbial Power: 1.2 kW

Frequency: 2.45 GHz

Gas and flow rate: air (20

slpm)

Temperature:\ 20 �C
Operation time:

2 9 2.5 min or

5 9 2 min

Indirect plasma treatment is able

to prolong the shelf life of

porcine MLD and the aerobic

viable count of MLD remained

between 102 and 103 CFU/g

during the storage period of

20 days at 5 �C

Fröhling

(2012)
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Table 1 continued

Sample Plasma source Microorganism Process gas Log reduction References

Sliced ready-

to-eat meat

product

(bresaola)

DBD plasma L. innocua (DMRI 0011) Power: 27 kV

Frequency: 27.8 kHz

Gas: air

Distance: 10 mm

Operation time: 2, 5, and

10 min

Indirect DBD plasma treatment

can reduce L. innocua on the

surface of a ready-to-eat meat

product (bresaola) inside

sealed linear-low-density

polyethylene bags

Rød et al.

(2012)

Oval-shaped

slices of

pork loin

DBD plasma E. coli (KCTC 1682)

and L. monocytogenes

(KCTC 3569)

Power: 3 kV

Frequency:30 kHz

Gas and flow rate: He (10

slpm) ?O2 (0.3%)

Operation time: 5 or

10 min

Following a 10 min exposure

with He ? O2, the population

of E. coli and L.

monocytogenes were reduced

by 0.55 log CFU/g and 0.59

log CFU/g, respectively

Kim et al.

(2013a)

Raw chicken

breast and

pork loin

APPJ S. Typhimurium (KCTC

1925)

Power: 0.5 kW

Gas and flow rate: N2 (6

lpm) ?O2 (10 sccm)

Distance: 20 mm

A treatment on both sides for

2.5 ? 2.5 min resulted in

reduction of 0.66 log CFU/g in

chicken breast and 1.33 log

CFU/g in pork loin,

respectively

Kim et al.

(2013b)

Raw chicken

breasts with

skins

APPJ E. coli (KCTC 1682) Power: 50 W

Gas and flow rate: N2 (6

slpm) and O2 (10 sccm)

Distance: 20 mm

Operation time: 5 or

10 min

Inoculum levels of 104 CFU/g of

E. coli, 5 min treatments

resulted in reduction of 1.85

log CFU/g in chicken breast

Yong et al.

(2014)

Beef loin,

pork

shoulder,

and chicken

breast

APPJ Murine norovirus (MNV-1)

and hepatitis A virus

(strain HM-175)

Power: 3.5 kV (peak

voltage)

Frequency:28.5 kHz

Gas and flow rate: N2 (6

slpm)

Distance: 4 cm

Operation time: 0.5, 1, 3,

5, 10, and 20 min

5 min of APP jet treatment

showed[ 99% reduction (2

log PFU/mL) of MNV-1 titer

and[ 90% reduction (1 log

PFU/mL) of HAV titer without

concomitant changes in meat

quality

Bae et al.

(2015)

Pork butt and

beef loin

Flexible thin-

layer

dielectric

barrier

discharge

(FTDBD)

plasma

E. coli O157:H7 (KCCM

40406), S. Typhimurium

(KCTC 1925), and L.

monocytogenes (KCTC

3569)

Power: 100-W peak power

and 2-W average power

Frequency:15 kHz

Gas: air

Operation time:

2.5–10 min

Following a 10-min treatment,

the microbial-load reductions

of L. monocytogenes, E. coli

O157:H7, and S. Typhimurium

were 2.04, 2.54, and 2.68 log

CFU/g in pork-butt samples

and 1.90, 2.57, and 2.58 log

CFU/g in beef-loin samples,

respectively

Jayasena

et al.

(2015)

Pork

longissimus

dorsi muscle

Pulsed plasma

reactor

Psychrotroph bacteria,

total microorganisms,

yeasts, and moulds

Power: 1.2 kVA

Frequency: 20–100 kHz

Gas: He, Ar, and N2

Operation time: 5 or 10

Pressure: 0.8 MPa

After the He plasma treatment

for 10 min, the population of

psychrotroph bacteria, total

microorganisms, yeasts and

moulds were reduced about

2.7, 2.96, and 3.08 log CFU/

cm2, respectively

Ulbin-

Figlewicz

et al.

(2015)

Fresh and

frozen pork

slices

Corona

discharge

plasma jet

(CDPJ)

E. coli O157:H7 (ATCC

43894) and L.

monocytogenes (KCTC

3569)

Power: 20 kV

Current strength: 1.50 A

Frequency: 58 kHz

Gas: filtered air

Span length: 25 mm

Operation time: 30–120 s

Following CDPJ treatment (0-

120 s), the population of

E. coli O157:H7 and L.

monocytogenes were reduced

by 1.5 log and[ 1.0 log units,

respectively

Choi et al.

(2016)
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inactivation of bacterial cells (Hoffmann et al. 2013;

Fridman et al. 2008). Additionally, electrostatic disruption

and electroporation may also contribute to the inactivation

of microorganisms induced by plasma (Liao et al. 2017;

Lunov et al. 2015). Ultraviolet (UV) has been demon-

strated to play a very prominent role in the inactivation of

microorganisms particularly when treated with vacuum

plasma at very low pressure; however, the role of UV

radiation for atmospheric plasmas appears to be less

important (Hoffmann et al. 2013). Up to now, the steril-

ization mechanism of cold plasma is not well elucidated

and more research is still needed.

Factors affecting the sterilization efficacy of CAP

Several factors significantly affect the microbial inactiva-

tion efficacy of CAP, such as plasma sources (Schnabel

et al. 2012), input power (Kim et al. 2011; Song et al.

2009), exposure time (Bae et al. 2015; Jayasena et al. 2015;

Noriega et al. 2011), the distance between plasma and

surface of samples (Baier et al., 2014), gas composition

(Kim et al. 2011; Lee et al. 2011; Marsili et al. 2002) and

gas flow rate (Niemira and Sites 2008), relative humidity

(Patil et al. 2014; Ragni et al. 2010), microbial species

(Jayasena et al. 2015; Lee et al. 2016), initial concentration

of microorganisms (Dirks et al. 2012; Yong et al. 2014),

food microstructure (Smet et al. 2017) and so on.

Song et al. (2009) evaluated the impact of input power

(75, 100, 125, and 150 W) and exposure time (60, 90, and

120 s) on atmospheric pressure plasma-induced inactiva-

tion of L. monocytogenes (ATCC 19114, 19115, and

19111) and a greater population reduction was achieved

with elevated input power and prolonged treatment time

(Song et al. 2009). These results are consistent with those

of Jayasena et al. (2015), Kim et al. (2013b), and Noriega

et al. (2011). The inactivation efficacy of CAP is also

significantly affected by the types of carrier gasses used to

generate plasma (Kim et al. 2011; Lee et al. 2011; Marsili

et al. 2002; Yong et al. 2014). Compared with the use of

helium alone (10 slpm), the addition of 0.3% O2 was

previously found to improve the inactivation efficiency of

DBD plasma against E. coli and L. monocytogenes on pork

loin (Kim et al. 2011). Lee et al. (2011) investigated the

sterilization effect of atmospheric pressure plasma against

L. monocytogenes on cooked chicken breast and ham with

four kinds of carrier gases (He, He ? O2, N2, and

N2 ? O2) and determined that the gas combination of

N2 ? O2 was the most effective. The increasing inactiva-

tion ability of plasma may be related with the increased

production of ROS and RNS during the breakdown of these

gases molecules (Marsili et al. 2002). Initial concentration

of microorganisms is also an important factor affecting

inactivation efficiency of plasma (Dirks et al. 2012; Yong

et al. 2014). Yong et al. (2014) verified that the reduction

rate of E. coli after APPJ treatment was the highest at

Table 1 continued

Sample Plasma source Microorganism Process gas Log reduction References

Beef DBD plasma E.coli NCTC 12900 Power: 1.3 KVA

Frequency: 18–22 kHz

Gas: He or Ar (6 L/min)

Distance: 20 mm

Operation time: 4, 6 or

10 min

After 10 min of exposure

with argon or helium gas,

the E. coli populations were

reduced by 2.18 and 1.38 log

CFU/sample, respectively

Hosseini

et al.

(2016)

Raw chicken

breasts

FTDBD

plasma

E. coli O157:H7 (KCCM

40406), S. Typhimurium

(KCTC 1925), and L.

monocytogenes (KCTC

3569)

Power: 100-W peak power

and 2-W average power

Frequency:15 kHz

Gas: air

Operation time:

2.5–10 min

Following FTDBD plasma

treatment for 10 min, the

numbers of total aerobic

bacteria, L. monocytogenes,

E. coli, and S. Typhimurium

were reduced by 3.36, 2.14,

2.73, and 2.71 log CFU/g,

respectively

Lee et al.

(2016)

Beef jerky FTDBD

plasma

L. monocytogenes (KCTC

3569), E. coli O157:H7

(ATCC 43894), S.

Typhimurium (KCTC

1925), and A. flavus

(KCTC6905)

Power: 100-W peak power

and 2-W average power

Frequency:15 kHz

Gas: air

Operation time:

2.5–10 min

After plasma treatment for

10 min, E.coli O157:H7, L.

monocytogenes, S.

Typhimurium, and A.flavus

populations on the beef jerky

were reduced by about 2–3 log

CFU/g.

Yong et al.

(2016)

lpm liter per minute; sccm standard cubic centimeter per minutes; slpm standard liters per minute
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inoculum levels of 104 CFU/g in chicken breast, followed

by 105, 106, and 107 CFU/g.

Owing to the influences of various treatment conditions

on the inactivation efficiency of CAP, the process param-

eters (such as carrier gasses, input power, exposure time,

and so on) should be optimized based on the different

characteristics of meat products. Meanwhile, the impacts of

the microstructure of whole-muscle meat products and the

use of additives on the microbial inactivation efficacy of

CAP also should be investigated in the further work.

CAP induces bacteria into VBNC state

Traditionally, the killing ability of CAP is usually assessed

using plate count techniques and the results are usually

expressed as colony forming units (CFUs). However, some

pathogenic bacteria can enter a distinct state known as the

viable but non-culturable (VBNC) state following exposure

to multiple environmental stresses. The microbial cells in

the VBNC state do not form colonies on most laboratory

media, but retain metabolic activity and may be resusci-

tated back into culturable state under suitable conditions

(Ramamurthy et al. 2014). Numerous research studies have

revealed that many species of bacteria enter the VBNC

state after CAP treatment, such as Bacillus stratosphericus

(Cooper et al. 2010), Chromobacterium violaceum CV026

(Joaquin et al. 2009), and P. aeruginosa (Ziuzina et al.

2014). The CAP-induced VBNC bacterial cells cannot be

detected by conventional plate count techniques and

remain potentially pathogenic upon favourable conditions,

which may contribute to further contamination and

increase the risk of human exposure to contaminated water

or foods. Therefore, the mechanisms underlying the

induction of VBNC state mediated by CAP should be

identified and technological parameters of CAP treatment

should be optimized to reduce the induction of VBNC

states.

Effects of CAP on the physicochemical qualities

of meat products

Before the acceptance of CAP as a food decontamination

process, it is necessary to determine its effects on the

chemical composition and physico-chemical properties of

meat products.

pH

pH value is a reliable indicator for meat quality and is often

associated with dark meat color. Several recent studies

have shown that CAP can significantly affect the pH of

meat and meat products. For example, the pH of DBD

plasma-treated pork loins was significantly lower than that

of untreated meat samples (Kim et al. 2013a). CAP treat-

ment also affects the pH of meat during storage. After

storage at 5 �C for 20 d, the pH of untreated porcine meat

was changed from 5.6 (3 d) to 6.0 (20 d), which might be

due to the release of ammonia induced by spoilage bacteria

during storage, while the pH of CAP-treated samples was

maintained at 5.5 or 5.4 (Fröhling 2012). The influence of

CAP treatment on the pH of meat during storage may be

related its sterilization effects, because the increases in pH

mainly due to the release of ammonia induced by spoilage

bacteria during storage (Nychas et al. 2008).

The CAP-mediated decrease in pH can be attributed to

acidogenic molecules such as NOx, which are normally

generated in corona discharge plasma (Stoffels et al. 2008).

After the treatment by corona discharge plasma, the pH of

E. coli solution in distilled water quickly decreased from

7.5 (0 min) to about 1.2 after 20 min (Korachi et al. 2010).

It is assumed that bacterial molecules and H2O are disso-

ciated into smaller units during prolonged plasma treat-

ment, thus increasing the H? concentration and decreasing

the pH value of the solution (Kim et al. 2013a; Korachi

et al. 2010).

Lipid oxidation

For muscle foods, lipid oxidation is a very complex and

important event, which results in decreases in flavor, color,

taste, texture, shelf life, nutritional value, as well as gen-

eration of toxic compounds (Cheng 2016). Rød et al.

(2012) investigated the treatment of DBD plasma on the

lipid oxidation of commercial bresaola by measuring the

thiobarbituric acid reactive substance (TBARS) values,

which were formed as a byproduct of lipid peroxidation.

After plasma treatment, the TBARS contents in sliced

bresaola were significantly higher than those of control

samples after 1 and 14 days of storage at 5 �C (Rød et al.

2012). After the treatment by FTDBD plasma for 10 min,

the peroxide value (POV) of beef jerky and TBARS values

of raw pork and beef were also significantly increased

(Yong et al. 2016; Jayasena et al. 2015).

The formation of lipid oxidation products induced by

DBD plasma increased with increasing power, treatment

time, and storage time (Rød et al. 2012). The types of

plasma sources and carrier gases (Kim et al. 2013a), and

sample characteristics such as fat content and composition

of meat (Bae et al. 2015; Kim et al. 2011) are important

factors affecting the levels of lipid oxidation in plasma-

treated meat products. For example, Bae et al. (2015)

determined that chicken breast was easier to be oxidized

than beef loin and pork shoulder after CAP treatment. After

the treatment of DBD plasma with He ? O2, the pork loins

had higher TBARS levels, which might be due to the

increased formation of free radicals after the addition of O2
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(Kim et al. 2013a; Tani et al. 2012). However, Kim et al.

(2011) reported that there were no significant differences in

TBARS values of bacon upon the addition of O2. The

inconformity of these results may be due to variations in

the fat content and fatty acid composition of different meat

products as well as the different types of plasma used.

The accelerating effects of CAP on lipid oxidation in

meat products may be attributed to the radicals produced

by plasma, such as ROS, RNS, metastables, excited atoms

and molecules, UV photons, charged particles (electrons,

ions, etc.) and so on (Khelifa et al. 2016; Rehman et al.

2016). The reactive species produced in plasma, especially

hydroxyl radical, superoxide anion radical, and ozone, can

initiate lipid oxidation reactions in meat products and result

in significant increases of TBARS values in plasma-treated

meat products (Kim et al. 2013a).

Metmyoglobin content

Myoglobin is a metalloprotein composed of globin and

hemes and is responsible for the color of red meat. Met-

myoglobin is formed by oxidation of deoxymyoglobin or

oxymyoglobin (Mancini and Hunt 2005). Several studies

have indicated that the radicals formed in plasma may lead

to oxidation of myoglobin to metmyoglobin, which results

in higher b values on the Hunter Lab-system and browning

(Fröhling 2012). The generated metmyoglobin can also

initiate lipid oxidation in muscle and muscle-based foods

(Baron and Andersen, 2002). On the other hand, the met-

myoglobin contents of FTDBD plasma-treated beef jerky

and low pressure plasma-treated raw pork were not chan-

ged significantly (Ulbin-Figlewicz et al. 2015; Yong et al.

2016). Therefore, the effects of various plasma sources on

the chemical state of myoglobin in meat products should be

investigated further.

Moisture content

Moisture content plays an important role in the quality,

taste, and safety of meat and poultry (Yalçın and Şeker

2016). Bae et al. (2015) reported that after exposure to

APPJ for 0.5–20 min, the moisture content of fresh beef

loin, pork shoulder, and chicken breast were significantly

decreased in a time-dependent way. Because of the high

correlation coefficient (r =?0.80, p\ 0.01) between color

lightness (L*) on the CIELAB Color Space and moisture

content (Sanabria et al. 2004), the evaporation of small

amounts of moisture may contribute to CAP-induced

decrease of L* value (Bae et al. 2015; Kim et al. 2011). In

addition, the moisture loss may also cause decreases in

meat succulence, which is one of important factors in meat

palatability (Carvalho et al. 2015).

Volatile basic nitrogen

Volatile basic nitrogen (VBN) is a good index for evalu-

ating the freshness of meat. Increasing amounts of VBN are

the result of decomposition of protein during storage by

microorganisms (Cai et al. 2011; Huang et al. 2014).

According to Lee et al. (2012), the VBN values of cooked

egg white and yolk were significantly increased after APPJ

treatment. However, there were no significant changes in

VBN values of unfrozen or frozen pork after corona dis-

charge plasma treatment (p [ 0.05), and the CAP-treated

pork was considered fresh because its VBN contents were

less than 15 mg/100 g (Choi et al. 2016).

Texture profile

Tenderness is one of the most important factors impacting

meat quality and is also a major factor affecting the con-

sumers’ assessment of meat quality. After exposure to

FTDBD-plasma for 0–10 min, the texture parameters of

pork butt and beef loin samples (including hardness,

springiness, cohesiveness, gumminess, and chewiness)

were not changed significantly (Jayasena et al. 2015).

Similar results were obtained for chicken breasts by using

FTDBD plasma, except that cohesiveness was significantly

increased with plasma exposure time (Lee et al. 2016).

Thus, CAP may serve as a non-destructive preservation

technique in terms of meat texture.

Influences of CAP on the sensory attributes of meat

products

Sensory attributes of meat and meat products, such as

appearance, texture, color, odor, flavor, and taste, signifi-

cantly affect the consumer acceptance and decision-making

process (Font-i-Furnols and Guerrero 2014). Therefore, the

effects of CAP on sensory properties of meat have been

widely investigated.

Surface-color values

As one of the most important quality characteristics of

meat products, meat color significantly influences con-

sumers’ purchasing decisions, because consumers com-

monly use meat color as an indicator of meat freshness and

quality (Mancini and Hunt 2005).

L*-values

The lightness (L*-value) of bacon (Kim et al. 2011) and

pork loins (Kim et al. 2013a) were decreased after DBD

plasma treatment. After the DBD plasma treatment with He

or He ? O2, the L*-values of pork loins were also
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decreased when they were stored for 0 d, 3 d, and 7 d,

respectively (Kim et al. 2013a). By contrast, the L*-values

of FTDBD plasma-treated pork butt and beef loin were not

significantly different from those of the untreated samples

(Jayasena et al. 2015). This nonconformity may be due to

the types of carrier gases used (Jayasena et al. 2015; Kim

et al. 2013a). The evaporation of a small amount of

moisture induced by plasma treatment may also result in

decreases of L* value (Bae et al. 2015; Kim et al. 2011).

a* and b* values

CAP treatment also affects the redness (a*-value) and

yellowness (b*-value) of meat products. After DBD plasma

treatment, a* values of pork and beef samples were sig-

nificantly decreased with lengthening exposure time

(Jayasena et al. 2015). The a* values of plasma-treated

bresaola (Rød et al. 2012), porcine longissimus dorsi

muscle samples (Fröhling 2012), and pork loins (Kim et al.

2013a) were also significantly decreased with increasing

storage time. In contrast, the a*-value of bacon was

increased at a higher input power and exposure time (Kim

et al. 2011).

After the FTDBD plasma treatment for 2.5–10 min, the

b* value of beef loin was increased significantly

(p\ 0.05). By contrast, the b* value of plasma-treated

pork samples was not significantly different from those of

the untreated samples (Jayasena et al. 2015). Similarly, the

b* value of DBD plasma-treated pork loins were not dif-

ferent from those of the untreated samples (Kim et al.

2013a). The contradictory result may be attributed to the

various types of plasma sources used and the different

physicochemical qualities of meat samples.

The changes of a* and b* values may be the results of a

series of complex chemical reactions between plasma-

produced reactive species and constituents of meat prod-

ucts. For example, the hydrogen peroxide generated in

plasma can react with myoglobin and result in greener

color on meat products (Jayasena et al. 2015). Furthermore,

a high concentration of metmyoglobin in the meat can be

formed by the oxidation of myoglobin or oxymyoglobin

(Mancini and Hunt 2005), causing higher b* values in meat

samples (Fröhling 2012).

Sensory quality

The sensory characteristics of plasma-treated meat prod-

ucts were evaluated by trained panelists for appearance,

color, taste, texture, flavor, off-flavor, and overall accept-

ability (Jayasena et al. 2015; Lee et al. 2016). Kim et al.

(2013a) observed that DBD treatment caused significant

reduction of sensory parameters (including appearance,

color, odor, and acceptability) of raw pork loins (p\ 0.05).

However, though the sensory parameters (including

appearance, color, flavor, odor, texture, and acceptability)

of DBD plasma-treated cooked pork loins were lower than

that of the untreated samples, the differences were not

statistically significant (Kim et al. 2013a). As reported by

Jayasena et al. (2015), the appearance, color, off-flavor,

and overall acceptability of pork butt and beef loin samples

were not affected by FTDBD plasma treatment, while the

palatability of the meat products decreased significantly

after FTDBD plasma treatment for 10 min (Jayasena et al.

2015). Lee et al. (2016) also observed that FTDBD plasma

treatment did not affect most sensory parameters (appear-

ance, color, taste, and acceptability) of cooked chicken

breasts, but the flavor score of plasma-treated chicken

breasts was slightly lower and the off-flavor score was

higher (p\ 0.05) (Lee et al. 2016).

Plasma-mediated lipid and protein oxidation may con-

tribute to the sensory deterioration. Secondary oxidation

products, such as alkanes, alkenes, aldehydes, and ketones,

were produced during CAP treatments (Kim et al. 2013a).

Several of these oxidation byproducts have unpleasant

aromas, such as fishy, metallic, oxidized, and rancid and

affect the sensory attributes of meat products (Ladikos and

Lougovois 1990). Though the plasma-induced sensory

deterioration in meat is minor, further investigations are

still needed to elucidate the deterioration mechanisms and

improve the sensory properties of plasma-treated fresh

meat and meat products.

Safety assessment of CAP-treated meat products

Before the industrial application of CAP in food produc-

tion, the scientific information and the safety assessment of

CAP and CAP-treated foods should be fully established.

Recent studies have investigated the mutagenic risks or

genetic toxicology of plasma (Boehm et al. 2016; Box-

hammer et al. 2013; Han et al. 2016a, b; Kluge et al. 2016;

Lee et al. 2012; Wende et al. 2016) and cold plasma-treated

meat products (Kim et al. 2016; Lee et al. 2016). Box-

hammer et al. (2013) found that plasma treatment inhibited

proliferation of V79 cells, but did not induce mutations at

the Hprt locus in V79 cells. In accordance with Boxham-

mer et al. (2013), argon plasma has no genotoxic or

mutagenic effects on human cells in vitro (Wende et al.

2016). So CAP and cold plasma bio-fluids may be con-

sidered to pose no mutagenic risks (Boehm et al. 2016;

Boxhammer et al. 2013; Han et al. 2016a, b; Kluge et al.

2016; Lee et al. 2016; Wende et al. 2016). However,

whether plasma treatment can result in the formation of

potential toxic substances by chemical transformations of

food components is still not clear. Recently, it has been

reported that the ethanolic extracts of FTDBD plasma-

treated chicken breast posed no mutagenic risk at doses of
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up to 5000 lg/plate and there was no statistically signifi-

cant difference between plasma-treated and untreated

chicken breast samples (Lee et al. 2016). Furthermore, Kim

et al. (2016) mentioned that the addition of plasma-treated

water (PTW) had no effect on the mutagenicity of emul-

sion-type sausage. According to the results of serum TNF-

a levels and Peyer’s patches of female Balb/c mice

administered with a normal diet containing emulsion sau-

sage cured with PTW for 32 d, PTW-cured sausages also

did not show immune toxicity (Kim et al. 2016).

It should be noted that each of the in vitro safety tests

used in the above studies has its own limitations and dis-

advantages (Boehm et al. 2016; Boxhammer et al. 2013;

Han et al. 2016a, b; Kluge et al. 2016; Kluge et al. 2016;

Kim et al. 2016; Lee et al. 2016). For example, S. typhi-

murium is a prokaryote and consequently not a ideal model

for the human body (Claxton et al. 2010). For in vitro

mammalian cell genotoxicity tests, the cell function,

metabolism, genetic makeup, and expression of intracel-

lular proteins are altered in immortalized cell lines, which

may provide different results from in vivo studies or false-

positive results (Johnson et al. 2009). Summarily, the

investigations on the potential toxic effects of CAP treat-

ments and CAP -treated foods are relatively limited and

more work is still needed in order to ensure safety of foods.

Conclusion

Recent studies have indicated that CAP can effectively kill

pathogenic microorganisms in meat and related products,

but also result in changes in physicochemical qualities and

sensory attributes, which may influence consumers’

acceptability of meat based foods. As a result, the process

conditions of CAP treatments (such as generation methods,

gas compositions, methods of product exposure, etc.)

should be optimized in order to retain the maximum eating

quality of meat products and reduce the operating costs.

Secondly, the CAP equipment used in present work is

mainly lab scale, the scaling up of CAP equipment from

laboratory scale to commercial scale is needed for real

applications in meat processing plants. Meanwhile, the

innovative combination of the CAP technique with tradi-

tional food-processing methods is necessary. Finally, as a

novel and emerging technology, the regulatory review

approval of CAP as a food manufacturing tool is one

important challenge for its widespread application in food

industry. For this reason, a lot of work is also required,

including the safety assessment of CAP and CAP-treated

foods, the establishment of regulatory standards, and so on.

During these processes, particular attention should be paid

to consumer acceptance and attitudes toward CAP tech-

nology and CAP-treated foods.

In summary, CAP is a promising and effective alterna-

tive to conventional thermal processing for controlling

microbial contamination of meat products. However, there

are several critical issues yet to be addressed before the

industrial application of CAP in meat preservation and

processing.
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