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Abstract

In this article, we evaluate Parallel Level Sets (PLS) and Bowsher’s method as segmentation-free 

anatomical priors for regularized brain PET reconstruction. We derive the proximity operators for 

two PLS priors and use the EM-TV algorithm in combination with the first order primal-dual 

algorithm by Chambolle and Pock to solve the non-smooth optimization problem for PET 

reconstruction with PLS regularization. In addition, we compare the performance of two PLS 

versions against the symmetric and asymmetric Bowsher priors with quadratic and relative 

difference penalty function. For this aim, we first evaluate reconstructions of 30 noise realizations 

of simulated PET data derived from a real PET/MRI acquisition in terms of regional bias and 

noise. Second, we evaluate reconstructions of a real brain PET/MR data set acquired on a GE 

Signa TOF PET/MR in a similar way. The reconstructions of simulated and real 3D PET/MRI data 

show that all priors were superior to post-smoothed Maximum Likelihood Expectation 

Maximization with ordered subsets (OSEM) in terms of bias-noise characteristics in different 

regions of interest where the PET uptake follows anatomical boundaries. Our implementation of 

the asymmetric Bowsher prior showed slightly superior performance compared to the two versions 

of PLS and the symmetric Bowsher prior. At very high regularization weights, all investigated 

anatomical priors suffer from the transfer of non-shared gradients.
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I. Introduction

Image reconstruction in Positron Emission Tomography (PET) is challenged by different 

factors. First of all, due to limited acquisition time and injected dose, the acquired 

coincidence data are subject to high Poisson noise that propagates into the reconstructed 

image. Second, the resolution of PET systems is limited (ca 4.5mm for the latest clinical 

systems [1]) due to finite detector size and photon acollinearity.

This limited resolution in the reconstructed images causes partial volume effects (PVEs) that 

affect quantification [2]–[6]. The PVEs can be partly compensated by incorporating a 

suitable resolution model into the forward model during iterative reconstruction [7]. 

However, resolution modeling causes Gibbs artifacts (overshoots and undershoots near sharp 

edges) which affect quantification as well [7].

Regularization in combination with resolution modeling in PET image reconstruction can be 

used to reduce PVEs and noise. In addition, regularization can help to suppress Gibbs 

artifacts caused by resolution modeling [8]. Under the assumption that the PET tracer 

distribution follows anatomical boundaries that can be determined with high spatial 

resolution with other imaging modalities such as magnetic resonance imaging (MR), 

penalized-likelihood reconstructions using anatomical information have been investigated by 

several groups to suppress noise and Gibbs artifacts while limiting the loss of resolution 

caused by this regularization.

Those methods can be divided into two groups: (i) methods that require a segmentation of 

the anatomical image [9]–[12], and (ii) segmentation-free methods [13]–[22]. The latter 

methods have the advantage that they are insensitive to potential errors in the segmentation 

of the anatomical images.

Recently, Ehrhardt et al. [21] (see also [23]) compared different segmentation-free 

anatomical priors for PET reconstruction in 2D simulations and a 2D reconstruction of a 

clinical data set. The authors conclude that their proposed method of Parallel Level Sets 

(PLS) is superior to the segmentation-free priors by Kaipio [14], Bowsher [15], Kazentsev 

[20], and to joint total variation [19].

In this work, which is an extension of [24], we show how to efficiently apply PLS 

regularization for the reconstruction of 3D clinical time-of-flight PET data. We evaluate a 

variant of PLS which was proposed in [25] for color imaging for PET reconstruction as well 

as a modified PLS version that is independent of the gradient magnitude of the anatomical 

image. In contrast to [21], [23], [25], both investigated PLS versions are an extension of the 

original, non-smooth total variation (TV) functional instead of a smoothed TV functional. 

We present an algorithm for the PLS regularized PET reconstruction problem that is very 

suitable from a practical point of view, in particular for 3D TOF PET, due to its memory 

efficiency and because it allows to incorporate ordered subsets.

In addition, we aim to evaluate the performance of PLS against Bowsher’s method in 3D 

simulations and a clinical data set. Particularly, we include the asymmetrical version of the 

Bowsher prior [16] as well. This heuristic modification of the Bowsher prior was shown to 
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give superior results to the symmetrical Bowsher prior used by Ehrhardt et al. in [21]. In the 

following subsections we formulate the penalized-likelihood PET reconstruction problem 

and provide details about PLS and Bowsher’s method as segmentation-free anatomical 

priors.

II. Theory

A. Penalized-likelihood PET reconstruction

The penalized-likelihood PET reconstruction problem can be written as

(1)

where yi are measured coincidences for line of response i 1, LPET is the negative of the 

Poisson log-likelihood, u is the non-negative discretized PET image to be reconstructed, R is 

a penalty function (prior) and β is a non-negative scalar controlling the weight of the 

regularization. The forward model u ↦ ŷ(u) for the estimated measured data ŷ is given by

(2)

In (2), the operator P with matrix elements Pij is the geometrical forward projection 

including the effects of sensitivity, attenuation, and finite spatial resolution. Its adjoint 

operator P* is the back projection. Additive contaminations such as random and scattered 

events are denoted as s.

In the case of anatomy-guided PET reconstruction R is a function that incorporates 

information from a discretized anatomical prior image v. Popular choices for those joint 

images are high resolution MR images with low noise. Assuming that for certain tracers and 

applications the PET tracer distribution follows anatomical boundaries, we aim to design a 

function R that transfers knowledge about anatomical boundaries into the PET 

reconstruction. In the case of MR-guided PET reconstruction the following properties of R 
are desirable:

• Since we aim to share information about boundaries, R should incorporate the 

gradients of the PET and MR image.

• R should encourage neighboring voxels to have the same intensity (to suppress 

noise and Gibbs artifacts) unless they are separated by anatomical boundaries.

1In the case of time-of-flight (TOF) PET reconstruction, i is a master index that includes the physical lines of response and the TOF 
bins.
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• R should not depend on the sign of the gradient of the MR image. This is 

important since the MR image contrast might be inverted compared to the 

contrast in the PET tracer uptake.

• R should be convex in u which makes it possible to obtain global solutions of (1) 

using efficient convex optimization methods.

In the following we will discuss two promising choices for R that have been proposed 

before.

B. Parallel Level Sets

The concept of Parallel Level Sets (PLS) was introduced by Ehrhardt et al. [25] and applied 

to 2D PET and MR reconstruction [21], [23], [26]. The assumption behind PLS is that the 

gradients in the PET (u) and MR images (v) are either parallel or anti-parallel which means 

that the level sets (isocontour lines) of both images are parallel. In [25], a generalized 

version of PLS for continuously differentiable images u(x) and v(x) was defined as

(3)

where d(∇u(x),∇v(x)) is a general measure of the parallelism of two gradient vectors at 

every point x in the domain Ω given by

(4)

with arbitrary strictly increasing functions φ, ψ : [0,∞) ↦ [0,∞). |∇u(x)| denotes the 

Euclidean norm of the gradient of u at point x given by

(5)

Choosing  and ψ(t) = t2 we obtain

(6)

where θ(x) is the angle between ∇u(x) and ∇v(x) at point x. Using (6) we obtain a version of 

PLS that is similar to the quadratic level sets version proposed in [23]2
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(7)

In the case of discrete images u and v with voxels j we obtain

(8)

which is the first version of PLS that we include in this study. In the discrete setting, we use 

finite forward differences to calculate the discrete gradient operator (∇u)j of the discretized 

image u in every voxel j.

That is, reindexing the PET signal points uj with j = 1, … , K×L×M according to the voxel 

position in space such that uk,l,m for k = 1, … , K, l = 1, … , L, m = 1, … , M is the signal 

value at position (k, l,m) in space, we define ∇u = (δxu, δyu, δzu) with

and δy, δz accordingly.

We see that the PLS1 penalty depends on the relative orientation between the two gradients 

but also on the magnitude of the (∇v)j which might be undesirable for MR-guided PET 

reconstruction3. Hence, we define a second version of PLS as

(9)

where we define sin θj = 1 if |(∇v)j | = 0. In contrast to PLS1, PLS2 is completely 

independent of the magnitude of (∇v)j. In addition, it reduces to Total Variation (TV) in 

regions where |(∇v)j | = 0 4. We remark that this second version of PLS cannot be regarded 

as a special case of [23], [25], but is rather related to [21]. In [21], the functional 

 is employed as prior, where ξj = (∇v)j/|(∇v)j |η, 

 with the edge parameter η > 0 and the smoothing parameter β > 

2The quadratic Parallel Levels Sets function in [23] uses ψ(t) = t2 and  in order to obtain a smooth objective 
functional.
3The magnitude of the gradient between different tissue classes (e.g. GM and WM) is strongly sequence dependent in MR imaging 
and completely unrelated to the PET tracer uptake.
4Note that the case |(∇v)j | = 0 almost never occurs in real MR images.
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0. The PLS2 functional used here corresponds to the choice β = 0 (no additional smoothing 

of the objective functional) and ξj = (∇v)j/|(∇v)j | if (∇v)j ≠ 0 and ξ = 0 otherwise.

Both our definitions of PLS are non-differentiable and convex in u. See Section II-D for 

more details about the convexity. However, as pointed out in [23], they are not jointly convex 

in (u, v). In contrast to the proposed PLS versions for PET reconstruction in [21], [23], [25] 

we do not use smoothed versions of PLS to solve (1). In [26], Ehrhardt et al. use the 

alternating direction method of multipliers (ADMM) to solve the non-smooth PLS-

regularized MR reconstruction problem. In Section II-D of this article (see also [24]), we 

show how to solve the non-smooth optimization problem for PLS-regularized PET 

reconstruction using the EM-TV algorithm in combination with the first-order primal dual 

algorithm by Chambolle and Pock. The proposed algorithm is efficient and suitable for 

reconstruction of clinical 3D time of flight PET data.

C. Bowsher Prior

The Bowsher prior proposed in [15] is a smoothing Markov prior operating on a position 

dependent set of voxels. In the discrete setting, it can be written as

(10)

where M(uj, uk) is a function penalizing differences between the reconstructed PET uptake 

in voxels k and j. The neighbor weights wjk are 1 if the voxel k is in a set Bj, which consists 

of the n most similar voxels around j, and 0 otherwise. In all reconstructions shown in this 

work this set Bj includes the 4 out of the 18 nearest voxels around j that, according to the 

MR image intensity v, are most similar to voxel j. The absolute MR intensity difference was 

used as the similarity measure.

Popular choices for M are the quadratic difference [27]

(11)

or the relative difference [28]

(12)

We denote the respective versions of the Bowsher prior with BOWquad and BOWrd. To solve 

(1) with the Bowsher prior as penalty function R we used the preconditioned gradient 

descent algorithm proposed in [28]. The required first derivative for the Bowsher priors is 

given by
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(13)

In the last equation, the partial derivatives of M with respect to a and b represent the partial 

derivatives with respect to the first and second argument of M, respectively.

The first sum in (13) involves the 4 voxels uj that are most similar neighbors of ul. The 

second sum involves all voxels uj for which ul is one of their most similar neighbors. These 

terms are not identical because wlj can be different from wjl. Intuitively, it makes sense to 

only use the first term when updating ul (if the second term introduces additional neighbors, 

they will always be less similar). This leads to the following heuristic modification resulting 

in improved quantification in [18F]Fluorodeoxyglucose (FDG) PET imaging5, as shown in 

[16]

(14)

In the following we will refer to the original Bowsher prior as symmetrical Bowsher (BOW) 

and the algorithm using the heuristic modification as asymmetrical Bowsher (aBOW). Note 

that, while RBOW indeed is a convex function, we are not aware of any function whose 

derivative corresponds to (14). Consequently, the result of the gradient descent algorithm in 

[28] with the asymmetrical Bowsher prior cannot be regarded as the solution of a convex 

optimization problem. However, since the performance of the asymmetrical version seems 

superior and no convergence issues of the gradient descent algorithm were observed in 

practice [16], [17], we included this method in our comparison.

D. Algorithm for PET reconstruction with PLS

To solve (1) with TV regularization, Sawatzki et al. [29] proposed the iterative EM-TV 

Algorithm shown in Algorithm 1. In the EM-TV algorithm every iteration consists of two 

main steps. The first step (step 5) is a normal expectation maximization (EM) step that 

results in the intermediate update d. The second step (step 7) consists of a weighted 

denoising problem that uses d as noisy input image. The main advantage of the EM-TV 

algorithm is the fact that the EM step can be performed with any existing Maximum 

Likelihood Expectation Maximization (MLEM) implementation (including list-mode 

MLEM). In addition, the incorporation of acceleration techniques such as ordered subsets is 

straightforward.

5The second derivative needed in the gradient descent algorithm was modified in a similar way.
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Algorithm 1

EM-TV [29] with ordered subsets

1: input y and s

2: initialize u > 0

3: for n = 1… ni do

4:  for k = 1… ns do

5:

   

6:

   

7:

   

8:   u = u+

9:  end for

10: end for

11: return u

When using ns subsets, the EM step and the denoising step are performed ns times in each 

iteration n. In the EM step, Pk denotes the PET forward operator for the k-th subset. yk and 

sk denote the data and contamination sinogram of the k-th subset, respectively. To investigate 

the number of iterations and subsets needed to achieve convergence in a practical feasible 

setting, we performed the bias-noise analysis for the different priors for 21 subsets with 20 

and 40 iterations. Since the difference in the results when using 40 compared to 20 iterations 

were small, we decided to use 20 iterations in practice. Note that the weights wj become 

infinite if uj = 0. To keep the weights finite, we first calculate the inverse of the weights. In 

voxels where uj = 0, we replace the inverse weights by the average weight divided by 104. 

Subsequently, we calculate the weights for the denoising problem from the modified inverse 

weights.

The weighted denoising problem in the step 7 can be solved with the primal-dual algorithm 

by Chambolle and Pock [30] which results in the iterative scheme shown in Algorithm 2.

Note that the accelerated Algorithm 2 of [30] was used because the data fidelity term given 

by sum of the weighted squared differences is uniformly convex with convexity parameter γ 
= min(w). For the initialization of the dual variable q in the denoising problem after every 

EM step we use q from the previous denoising problem. In the first denoising problem we 

use q = 0. The constant L in step 3 (the norm of the 3D gradient operator) can be estimated 

to be  [31]. In this study we always use nd = 10 when applying Algorithm 2. In step 6, 

div denotes the negative adjoint of ∇.
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Algorithm 2

Chambolle-Pock weighted image denoising [30]

1: input d and w from EM step

2: initialize u = ū = d, q

3: initialize γ = min(w), τ = 1/γ, σ = 1/(τL2)

4: for l = 1… nd do

5:  q+ = proxσ,R* (q + σ∇ū)

6:  u+ = proju≥0 ((u + τ (divq+ + wd))/(1 + τw))

7:

  , τ ← τϑ, σ ← σ/ϑ

8:  ū+ = u+ + θ(u+ − u)

9:  u = u+, ū = ū+, q = q+

10: end for

11: return u

In order to apply the iterative scheme to solve the weighted denoising problem, the 

proximity operator proxσ,R* needs to be known. To derive the proximity operators for PLS1 

and PLS2, we define a candidate for the conjugate function of PLS to be

(15)

where gj = (∇v)j and rj is a positive real number, which we will determine below. The 

corresponding proximity operator of  is then given by

(16)

where (q⊥)j is the component of qj that is perpendicular to gj given by

(17)

This proximity operator first removes the component of qj that is parallel to gj and then 

projects the residual perpendicular component to have Euclidean norm less or equal rj. The 

convex conjugate of  is given by
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(18)

(19)

(20)

where sin θj is the sine of the angle between the gradient of the PET reconstruction and the 

gradient field g in voxel j. sin θj is set to 1 when |gj | = 0. Choosing rj = |gj | we obtain 

 and for rj = 1 we get . Hence both RPLS1 and RPLS2 are 

convex as being the pointwise supremum of a family of affine functions [32]. Since  is 

convex and lower semi-continuous, their proximity maps are given as in (16).

Remark—By introducing a dual variable for the estimated measured data in the data 

fidelity term of (1), it is possible to directly use the first order primal-dual algorithm of 

Chambolle and Pock [30] to solve (1) as shown in [22]. However, since for modern PET 

scanners with good time of flight resolution the size of data sinograms is big (ca. 20GB for 

the GE Signa TOF PET/MR [1]), it is desirable to use algorithms that do not require keeping 

a second sinogram (the one of the dual variable) in memory. In addition, we are convinced 

that the fact that the use of listmode data in the EM-TV is straight forward is of great 

practical value for the reconstruction of current and future time of flight PET scanners 

whose data sinograms are highly sparse.

Remark—We note that a disadvantage of Algorithm 1 is the fact that for most priors, step 7 

requires inner iterations and that convergence can only be guaranteed under some restrictive 

assumptions (see [33]). As alternative, one can also employ the primal-dual algorithm of 

[34], which uses an explicit descent on the data fidelity, for the numerical solution of (1).

III. Materials and Methods

A. Reconstruction of simulated PET data

To investigate the performance of different segmentation-free anatomical priors, we first 

created a 3D PET/MR software phantom based on a T1-weighted MR image of a healthy 

volunteer acquired on a GE Signa PET/MR scanner with an 8 channel head coil. The 

parameters of the T1-weighted sequence were: pulse sequence BRAVO (3D gradient echo 

sequence with magnetization preparation), imaging mode 3D, flip angle 12°, TI 450 ms, 

voxel size 0.7×1×1mm3, TE 3.2 ms, TR 8.5 ms. The raw k-space data were fully sampled 
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and reconstructed with the vendor-provided MR reconstruction software implemented on the 

Signa PET/MR.

The T1 MR was segmented into fuzzy gray matter (GM), white matter (WM) and cerebral 

spinal fluid (CSF) compartments using SPM12 (Wellcome Trust Centre for Neuroimaging, 

UCL, UK) [35] and resampled to the voxel size of the PET reconstruction (1 × 1 × 1mm3). 

This required resampling along the x axis only, which was done by linear interpolation from 

the 0.7mm to a 0.5mm grid, followed by averaging pairs of neighbors into the final 1mm 

grid. In the PET image, fixed ground truth values for a [18F]FDG-like tracer uptake in all 

tissue classes (white matter 1 arbitrary unit (arb.u.), gray matter 4 arb.u., CSF 0 arb.u.) were 

assigned. We artificially decreased the uptake by 40% in three gyri to simulate regional 

hypometabolism. In addition, we added two lesions with increased uptake. The first 

ellipsoidal lesion was placed between GM and WM in the PET ground truth to study the 

influence of an MR gradient crossing a PET lesion. The second (standalone) ellipsoidal PET 

lesion was placed into WM where the MR is very homogeneous. Lastly, we placed a 

hypointense ellipsoidal MR lesion in a white matter region with constant PET uptake to 

study the influence of an MR gradient in a homogeneous PET region.

The top row of Fig. 2 shows a transversal slice of the simulated PET/MR software phantom.

We simulated measured PET data by forward projecting the simulated ground truth PET. 

The effects of limited resolution, attenuation, realistic detector sensitivities, and a smooth 

scatter distribution were included. Random coincidence events were not simulated. A 

forward projector with the geometry of the Siemens mCT [36] (4mm crystal size) was used 

in the data simulation and reconstruction. The resolution of the PET scanner was modeled 

by a convolution with a 2D Gaussian kernel of 4.4mm in sinogram space operating along the 

radial and axial dimensions. The simulated TOF resolution was 400 ps which mimics the 

TOF resolution of current state-of-the-art PET detectors. We also simulated a smooth 

contamination (scatter) sinogram with a scatter fraction of 20% by convolving the forward 

projected PET ground truth image with a Gaussian kernel of 50 mm.

We generated 30 Poisson noise realizations each containing 108 true coincidence events 

which corresponds approximately to a 5 min (60 min p.i.) [18F]FDG acquisition with an 

injected activity of 150MBq on the GE Signa PET/MR which has a similar detector pixel 

size and time-of-flight resolution. For each noise realization, we performed a standard 

Ordered Subset Maximum Likelihood Expectation Maximization (OSEM) [37] 

reconstruction without anatomical information and different levels of Gaussian post-

smoothing as regularization. In addition, we performed reconstructions with the following 

anatomical priors:

• Parallel Level Sets version 1 (PLS1),

• Parallel Level Sets version 2 (PLS2),

• symmetrical Bowsher prior combined with quadratic penalty function 

(BOWquad),
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• asymmetrical Bowsher prior combined with quadratic penalty function 

(aBOWquad),

• asymmetrical Bowsher prior combined with relative difference penalty function 

(aBOWrd).

In all reconstructions with anatomical priors the original T1-weighted MR image that was 

resampled to the voxel size of the PET reconstruction was used as anatomical prior image. 

The exact attenuation and detector sensitivities were included in the system matrix as well, 

and the noise-free scatter sinogram was used as the scatter estimate. For each anatomical 

prior reconstruction we used eight different levels of prior strength. Between two 

neighboring levels the prior strength was increased by a factor of three. In all reconstructions 

20 iterations with 21 subsets and a voxel size of 1×1×1mm3 were used. To evaluate the 

different reconstructions we first of all performed a visual comparison of all reconstructions. 

Subsequently, we calculated bias-noise curves in different anatomical regions of interest 

(ROIs). The ROI averaged relative voxel bias that was used in the bias noise curves was 

calculated as follows: First, we calculated the bias bj in each voxel j using all reconstructions 

ur of the nR noise realizations and the ground truth image p as

(21)

Subsequently, in each ROI the average bias was calculated as the regional mean of the voxel 

bias. Finally, this value was divided by the ROI mean of the ground truth image to obtain the 

ROI averaged relative voxel bias as

(22)

Similarly, we calculated the standard deviation σj in each voxel j using all reconstructions ur 

of the nR noise realizations as

(23)

Subsequently, the ROI-averaged voxel noise was calculated as:
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(24)

All reconstructions were implemented in IDL v.8.4 and C.

B. Reconstruction of clinical PET/MR data set

In addition to the reconstructions of the simulated data, we also reconstructed a clinical 

[18F]FDG PET/MR examination of a patient suspected for neurodegeneration. The patient 

had a thrombosis visible in the PET and T1 MR image in the left temporal lobe. The patient 

was injected with 167.5MBq of [18F]FDG and examined 78 min p.i. with a GE Signa time-

of-flight PET/MR. The PET acquisition time was 20 min. The parameters of the T1 MR 

acquisition were the same as in the case of the healthy volunteer that was used to generate 

the simulated PET/MR data set. We performed a standard OSEM reconstruction without 

anatomical information and different levels of post-smoothing as regularization. Gaussian 

kernels with a full width at half maximum (FWHM) of 2, 3, 4, and 5mm were used for the 

post-smoothing. In addition, we performed reconstructions with the PLS2 and aBOWrd 

priors with different prior strengths. We chose PLS2 and aBOWrd for the clinical 

reconstructions since their performance in the simulations was most promising. All 

reconstructions used 20 iterations with 28 subsets and an image-based resolution modeling 

with a Gaussian kernel of 4.5 mm. After visual inspection of all reconstructions, we 

calculated the mean uptake in four different anatomical ROIs (right middle frontal gyrus, 

right superior frontal gyrus, left putamen, and cerebral white matter). The ROIs were defined 

in PMOD v.3.6 (PMOD, Zurich, Switzerland) using the Hammers atlas [38]. The image 

noise in each reconstruction was estimated by the coefficient of variation calculated over all 

voxels in a central white matter ROI. All reconstructions were implemented in IDL v.8.4 and 

C. The GE PET reconstruction toolbox v.1.26 was used to estimate the scatter and randoms 

contributions and to extract the sensitivity and emission sinograms, enabling image 

reconstruction with our research software.

IV. Results

A. Reconstruction of simulated PET data

Figure 1 shows regional bias noise curves for the reconstructions of the simulated 3D PET 

data set. In all cerebral gray matter (GM) ROIs (top row) and in the right caudate nucleus, 

the reconstructions with the asymmetrical Bowsher prior with relative difference penalty 

(aBOWrd) shows the smallest bias at a given noise level. In the same ROIs, PLS2 

reconstructions show slightly less bias than PLS1 reconstructions. Both PLS versions have 

less bias than the symmetrical Bowsher with quadratic penalty (BOWquad) in the cerebral 

GM ROIs. In the cerebellar GM ROI the difference between aBOWrd and both PLS versions 

is small. In the cerebral white matter (WM) ROI, aBOWrd and PLS2 show the smallest bias 

at a given noise level. By comparing the bias-noise curves of aBOWrd, aBOWquad, and 
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BOWquad it can be seen that the main improvement between aBOWrd and BOWquad is due 

to the asymmetry and not due to the penalty function.

In the first seven ROIs, where the simulated PET uptake coincides with the anatomical 

boundaries in the MR, all reconstructions with anatomical priors show less bias than post-

smoothed OSEM at a given noise level. In those ROIs, all anatomical prior reconstructions 

allow suppression of noise without increasing the bias (due to smoothing over anatomical 

boundaries) up to a certain prior strength (kink in the biasnoise curve). At the noise level of 

minimal bias in the aBOWrd reconstructions, the bias in the post-smoothed OSEM 

reconstructions is approximately 10 percentage points bigger (e.g. -20% vs. -30% in the 

95% GM ROI 1). The comparison between the cerebral GM, cerebellar GM and right 

caudate nucleus ROIs shows that the minimal achievable bias in a given ROI is object 

dependent. In the stand-alone PET lesion in WM (ROI 8), where the simulated PET uptake 

does not follow the anatomical boundaries of the MR, the difference between post-smoothed 

OSEM and all anatomical prior reconstructions is small.

Figures 2 and 3 show a transversal slice of mean, bias, and standard deviation images over 

30 noise realizations derived from reconstructions with post-smoothed OSEM, aBOWrd, 

PLS1, and PLS2 with different degrees of regularization. Figures 4, 5, and 6 show zoomed 

versions of the same transversal slice for the mean of all noise realizations.

It is obvious that all anatomical prior reconstructions suffer from the transfer of non-shared 

MR gradients at high degrees of regularization. As shown in Figure 6, the transfer of the 

stand-alone MR lesion to the PET reconstruction is less pronounced with PLS1. In addition, 

at high degrees of regularization, the detectability of the stand-alone PET lesion is best in the 

PLS1 images as shown in Fig. 5.

B. Reconstruction of clinical PET/MR data set

Figure 7 and supplemental figures S1 and S2 show a coronal, transversal, and sagittal slice 

of post-smoothed OSEM, PLS2 and aBOWrd reconstructions with different degrees of 

regularization for the patient data set acquired on the GE SIGNA PET/MR. Supplementary 

materials are available in the supplementary files/multimedia tab. Figure 8 shows a 

comparison of the mean reconstructed uptake in two gyri, the left putamen, and in the right 

cerebral white matter against the image noise. The image noise was estimated by the 

coefficient of variation in a central white matter ROI. At the same noise level, the 

reconstructions with aBOWrd show higher uptake than reconstructions with PLS2 in the first 

three ROIs (ROIs with lower uptake in the surrounding background). The difference in the 

mean uptake in the middle frontal gyrus between post-smoothed OSEM and aBOWrd 

reconstructions is approximately 10% at the noise level corresponding to the highest mean 

uptake of the aBOWrd reconstructions. At low to intermediate degrees of regularization 

(before the kink in the bias-noise curves), the difference in the reconstructed mean uptake 

between PLS2 and aBOWrd is small (less than 3%). In the cerebral white matter ROI which 

is influenced by spill-in from gray matter, reconstructions with aBOWrd show lower uptake 

than reconstructions with PLS2.
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V. Discussion

In this article we have presented two versions of Parallel Level Sets that can be used as 

segmentation-free anatomical priors for PET reconstruction. The application of the EM-TV 

algorithm [29] in combination with the first-order primal-dual algorithm by Chambolle and 

Pock [30] makes it possible to efficiently solve the associated convex optimization without 

the need to introduce smoothing parameters. As discussed in Section II-D, the introduced 

computational overhead by the additional denoising problem in every EM-TV iteration is 

small, especially when reconstructing 3D time-of-flight PET data sets.

Our proposed prior PLS2 has the advantage that it is completely independent of the 

magnitude of (∇v)j. In addition, as shown in Section II-D, its proximity map can be 

calculated efficiently which facilitates the solution of the PLS2-regularized PET 

reconstruction problem. Because there is no straightforward general way to derive the edge 

parameter η from a realistic MR image, we believe that independence of the magnitude of 

(∇v)j without the need of tuning the parameter η is a useful property of PLS2. A 

disadvantage of PLS2 is the fact that it is also sensitive to small gradients in v. However, in 

all PLS2 reconstructions of the simulated and clinical data we did not observe artifacts that 

were introduced by gradients due to noise in the MR image.

The analysis of the bias-noise curves of the reconstructions of the simulated data sets 

confirms the finding of [21] (where a PLS version that is similar to PLS2 was proposed) that 

PLS2 is superior to the symmetric Bowsher prior with quadratic penalty function 

(BOWquad). However, as demonstrated in the reconstructions of our simulated and in the 

clinical data sets, both proposed PLS versions seem slightly inferior compared to the 

asymmetrical Bowsher prior with relative difference penalty (aBOWrd). At noise levels 

obtained with algorithms typically applied in clinical routine (e.g. early-stopped OSEM with 

4mm post-smoothing) the difference in the bias between PLS2 and aBOWrd is small (less 

than 3%) compared to the bias of post-smoothed OSEM. PLS2 has no internal parameters 

that have to be optimized. In contrast, Bowsher’s method depends on the chosen 

neighborhood and the penalty function.

When using the quadratic or relative difference penalties, the Bowsher prior is differentiable. 

This is advantageous because simple preconditioned gradient descent algorithms as 

proposed in [28] can be used to solve the optimization problem. We are aware that the 

iterative scheme of [28] used in combination with the asymmetric Bowsher derivative may 

not be the solution of a convex optimization problem. However, as observed in our analysis 

and shown in [16], this scheme is stable and gives better results compared to the symmetric 

Bowsher prior.

We believe that the reason for the difference in the performance of PLS1 compared to PLS2 

can be found in the pointwise rescaling: At any point, PLS1 weighs the (anisotropic) 

penalization of the gradient by the magnitude of the gradient of the prior images. In contrast, 

PLS2 does not perform any weighting. A first, direct consequence of this is that the overall 

cost of the PLS1 and PLS2 regularizer are different (PLS1 has lower cost if (|∇v)j| ≤ 1), 

which explains that different values of β lead to comparable results. Furthermore, compared 
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to PLS2, PLS1 potentially penalizes different edges, depending on the gradient magnitude of 

the prior image. On the other hand, in regions where the prior image is flat, the regularizing 

effect of PLS1 is very small, while PLS2 always has some regularizing effect.

The choice of the regularization parameter β is non-trivial and should be done task-

dependently. For example, for some applications, such as kinetic modeling, minimal bias 

might be more important than low voxel noise. On the other hand, for visual evaluation the 

noise level plays an important role. In all cases when using anatomical prior information, the 

possible transfer of non-shared gradients should be considered. As shown in Figures 4, 5 and 

6, the transfer of non-shared gradients is a problem for all investigated segmentation-free 

anatomical priors at high degrees of regularization. This fact should always be kept in mind 

when choosing the degree of anatomical regularization.

The analysis of the simulated reconstructions has shown that the bias in post-smoothed 

OSEM reconstructions introduced by partial volume effects can be reduced by 

approximately 10 percentage points. However, it should be noted that the minimal 

achievable bias was still object dependent. The difference in the mean ROI values between 

post-smoothed OSEM and the anatomical prior reconstructions at a given noise level was 

very similar in the simulations and the clinical data set. This indicates that the simulated 

conditions are a good approximation of real acquisitions. In the future, we aim to investigate 

the clinical value of PET reconstructions with different anatomical priors in the diagnosis of 

patients suspected for neurodegenerative diseases.

As mentioned in the introduction, the main advantage of segmentation-free over 

segmentation-based anatomical priors is the fact they are insensitive to segmentation errors 

which to our experience mostly occur in the subcortical regions when using SPM12. 

Advances in brain segmentation algorithms might reduce those segmentation errors leading 

to improved results with segmentation-based anatomical priors. For a review of state-of-the-

art brain tissue segmentation methods we refer to [39].

VI. Conclusion

The method of Parallel Level Sets (PLS) is a promising segmentation-free anatomical prior 

for iterative PET reconstruction. The EM-TV algorithm in combination with first-order 

primal-dual algorithm by Chambolle and Pock makes it possible to apply PLS in clinical 3D 

TOF PET imaging. Our simulations and reconstructions of a clinical data set have confirmed 

that PLS has superior bias-noise characteristics compared to the symmetric Bowsher prior as 

reported in [21]. However, we found that PLS was slightly inferior compared to the 

asymmetrical Bowsher prior. At very high regularization weights, all investigated anatomical 

priors suffer from the transfer of non-shared gradients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Regional bias-noise curves generated from 30 noise realizations with 108 true coincidences 

of the simulated 3D PET data set. The panel in the right shows transaxial, coronal and 

sagittal slices through the ROIs that were used in each subplot. For the reconstructions using 

anatomical priors there is factor of 3 difference in the prior strength between each data point. 

ROI 1 (95% cerebral GM) consists of all cerebral voxel with a gray matter fraction greater 

equal 95%. ROI 2 (50% cerebral GM) consists of all cerebral voxel with a gray matter 

fraction greater equal 50%. Note that the transversal, coronal, and sagittal slices that 

visualize the ROIs on the right differ between the ROIs.
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Fig. 2. 
Top row: transversal slice of PET and MR ground truth images that were used to generate 

the simulated data. The following rows show mean, bias and standard deviation images of 

post-smoothed OSEM reconstructions of 30 noise realizations with 108 true coincidences of 

the simulated 3D PET data set. All reconstructions were done with 20 iterations and 21 

subsets. For post-smoothed OSEM the results after 8 iterations and 21 subsets are shown as 

well. The amount of post-smoothing is shown in the bottom and increases from left to right.
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Fig. 3. 
Same as Fig. 2 but for reconstructions with different anatomical priors (aBOWrd, PLS1, 

PLS2). All reconstructions were done with 20 iterations and 21 subsets. The amount of 

regularization increases from left to right.
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Fig. 4. 
Cropped transversal slice of mean images over 30 noise realization with 108 true 

coincidences of the simulated 3D PET data set. In the PET ground truth the added 

ellipsoidal lesion that is located between GM and WM which results in an MR gradient 

crossing the PET lesion is visible. The top row shows the ground truth images that were used 

to simulate the data. The following rows show OSEM reconstructions with different levels of 

post-smoothing, and reconstructions with different levels of PLS1, PLS2, and asymmetrical 

Bowsher prior with relative difference penalty (aBOWrd). All reconstructions were done 

with 20 iterations and 21 subsets. The amount of regularization increases from left to right.
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Fig. 5. 
Same as Fig. 4 for a different region. The PET ground truth shows a small simulated 

standalone lesion that is not present in the MR.
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Fig. 6. 
Same as Fig. 4 for a different region. The MR ground truth shows a simulated lesion (signal 

void) in a region where the PET uptake is constant.
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Fig. 7. 
Post-smoothed OSEM, PLS2 and asymmetrical Bowsher reconstructions of a 20 min (at 78 

min p.i., injected dose 167.5 MBq) clinical [18F]FDG acquisition of a patient with 

thrombosis in the left hemisphere. In all reconstructions 20 iterations with 28 subsets were 

used. The amount of regularization increases from left to right.
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Fig. 8. 
Plots of mean uptake in four different ROIs versus coefficient of variation in cerebral white 

matter ROI for the clinical data set shown in Fig. 7. For the post-smoothed OSEM, PLS2, 

and aBOWrd 20 iterations with 28 subsets were used.
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