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The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat
contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can
balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption
capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element
simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the
traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the
structural parameters of the X-shaped energy-absorbing structure including thickness (tu), side arc radius (R), and clamping
boost beam thickness (tb) are analyzed using a full factorial method, and a multiobjective optimization is implemented
regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the
feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety
and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels.

1. Introduction

The front car bumper system is a complex energy-absorbing
system in a car design [1] which must meet both the require-
ments of pedestrian safety [2, 3] and low-speed impact [4].
An energy absorber is often set between the bumper beam
and the bumper skin to absorb impact energy [5–7]. How-
ever, the bumper system design requirements of pedestrian
safety and low-speed impact are somewhat contradicting
regarding force and impact energy levels. Taking the foam
bumper energy absorber as an example, the absorber satisfy-
ing the low-speed impact well can be generally too stiff when
considering the impact with pedestrian lower extremities due
to the high force level. On the contrary, the situation is
similar. Besides, the traditional energy absorbers are usually
an integrated structure made of thermoplastic polymer or
foamed polypropylene (EPP) which could need an overall
replacement due to a local damage.

In previous studies, several attempts considering pedes-
trian safety and low-speed impact have been tried [8]. Yao
et al. designed a car-front structure on the purpose of pedes-
trian safety. The structure includes a mechanical cushion in
the car bumper for impact energy absorption and a bounce
device of hood cover triggered by outer force, and the
bumper performance was verified [9]. Wang et al. analyzed
the low-speed impact based on dynamic load strength tests
of three typical standards of bumper system [10]. Some
new bumper systems were designed using new materials
[11–14] or structures [15, 16] to achieve the purpose of
improving the crashworthiness under the two collision
circumstances. In study of Lv et al., a systematic method
had been performed to design and optimize the car front-
end structure in order to reduce pedestrian injury risks
[17]. Shuler designed a new bumper energy absorber using
engineering plastics, which included a body and the upper
and lower crushable members which would absorb more
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energy during impact [18]. Mohapatra designed a tunable
energy absorber which consists of a frame and a body includ-
ing a mount of tunable crush lobes to absorb the energy
during pedestrian and low-speed impacts [19]. But they
featured a complex structure, difficult to manufacture, and
still used an integrated structure. Davoodi et al. made a
conceptual design and a simulation verification analysis on
the bumper energy absorber with fibre-reinforced epoxy
polymer composite material [20]. But the energy absorber
was mainly in consideration of pedestrian safety without
detailed design description for low-speed impact. There-
fore, it is expected to design a bumper energy absorber
which can well consider the requirements of both pedestrian
safety and low-speed impact with evidently different impact
energy levels.

Composite material with resin matrix which performs
light-weighted, safe, and flexible performance in design and
manufacturing is being more andmore widely used in vehicle
bumper system [21–25]. The present study aims to design an
energy-absorbing structure of the bumper system with
composite materials which can adaptively adopt different
deformation modes according to the amount of impact
energy to benefit both pedestrian and low-speed impact.
Multiobjective optimization has also been implemented to
optimize the conceptual design of this energy-absorbing
structure in a realistic family car model, and its results are
compared with the original foam absorbing structure.

2. Methods and Materials

2.1. Conceptual Design of the X-Shaped Energy-Absorbing
Unit. To create a single structure with different energy
absorption phases, an X-shaped absorber made of Xenoy
composite is proposed as shown in Figure 1. The Xenoy
composite (PC/PBT 1103) with a density of 1145 kg/m3,
elastic modulus of 2317.48MPa, Poisson’s ratio of 0.3, and
yield strength of 33.19MPa is adopted. Its validated

simulation parameters of Mat 24 in LS-DYNA codes are pre-
sented and validated through the implemented experimental
tests using Instron 5984.

Initial geometric parameters of this unit are then
determined regarding the vehicle bumper system that would
be applied on, with the depth l=80mm, the width w=
40mm, R = 180mm, r = 10mm, t=2.5mm, and the height
h=56mm. The compression test is performed on the
X-shaped energy absorber with a U shape impactor at a
speed of 4 km/h. The compression force and energy-
absorbing curves are shown in Figure 2.

During the entire compression process, the X-shaped
unit shows different deformation modes with various force
levels and energy-absorbing rates. In the deformation stage
from 0 to 12mm, the unit begins to deform to an elastic limit
with low force level and low energy-absorbing ability. In
12~40mm deformation, the two sides of the unit arc get into
contact and begin to perform a self-locking status. This leads
to a rapid increase of energy-absorbing ability and force
levels of the X-shaped unit. In the phase of the deformation
higher than 40mm, the energy absorption unit totally kinks
together and is continuously compressed to a deformation
limit. Thus, a proper structure design with a number of
X-shaped units can be expected to meet different safety
requirements under various impact force and energy levels.

2.2. Design of Modular Bumper Energy Absorber.With regard
to impact energy levels and installation space in the realistic
car model, a modular energy absorber is designed as shown
in Figure 3(a). It includes fifteen X-shaped units and two
clamping boost beams to lock the units between them. The
absorber is installed between the bumper skin and bumper
beam as the location could be seen in Figure 3(b).

Based on the present car model and energy absorber
design, the finite element models of pedestrian lower legform
and low-speed impact are established using Hypermesh
software as shown in Figure 4 according to the 631/2009/
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Figure 1: Structural features and material properties of a single X-shaped energy-absorbing unit.
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EC regulation [26] and the CMVSS215 regulation, respec-
tively. The impact velocity of the legform is 40 km/h with
impact energy at 827.16 J. The low-speed impactor is set at
8 km/h with impact energy at 3207.01 J. Then, impact
simulations are initially performed.

2.3. Structural Optimization. To further improve the
performance of the new bumper system, multiobjective

optimization is adopted to determine the structural param-
eters of the modular energy absorber with X-shaped units.
Tests are designed using the full factorial method, input
factors are defined as X-shaped unit thickness (tu), X-
shaped unit side arc radius (R), and clamping boost beam
thickness (tb) in three levels (Table 1). Output indexes
include maximum tibial acceleration (MTA), maximum
knee bending angle (MKBA), maximum knee shear
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Figure 2: Energy deformation and load deformation curves of X-shaped absorber unit under compression.
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Figure 3: Schematic diagram of the (a) energy absorber and (b) installation position.
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Figure 4: Finite element models of (a) pedestrian lower extremity impact and (b) low-speed impact.
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displacement (MKSD), collider intrusion (CI), and bumper
deformation (BP).

Tests are performed adopting the Hypermesh software,
the full factorial experiments are detailedly made then.

3. Results and Discussions

The overall results of low-speed impact and pedestrian safety
tests are listed in Table 2. The correlation of output index
values to input structural parameters is shown in Figure 5.
As can be visualized in Figure 5, tu is the most influential
parameter of all these factors. MTA is also greatly influenced
by R, while the effect of tb is less. MKBA, MKSD, BD, and CI
are affected by tb a lot and the influence of R is slight.

Regarding pedestrian safety tests, Figure 5(a) reveals the
interaction effect between tu and R on MTA. The MTA value
considerably increases with the increase of tu at high levels tu
from approximately 4.2mm to 5mm. On the contrary, the
decline of tu leads to the decrease of the MTA at low tu values.
The influence of R on the MTA is less. For the values of R
from 80mm to 180mm, the MTA increases initially and then
decreases. The minimum MTA of 130 g is obtained at
approximately 3.8mm tu and 180mm R. The changes of
the MKBA value on tb and tu are presented in Figure 5(b).
It presents that increasing tu leads to decrease of the MKBA.
Similarly, the MKBA slightly increases with the decline of tb.
The minimum MKBA of approximately 4° is obtained at
3mm tu and 2mm tb. The dependence of MKSD on tb and
tu is presented in Figure 5(c). It is observed that the MKSD
notably increases with the increase in tu and is slightly
influenced by tb.

For low-speed impact tests, Figure 5(d) plots the influ-
ences of tb and tu on CI. The CI decreases from 95mm to
78mm with the increase of tu from 2mm to 5mm while
the effects of tb on CI are less. The effect of tu and tb on BD
values can be visualized in Figure 5(e). It is revealed that
BD increases to a maximum point and then decreases with
tu from 3mm to 5mm. BD has a gentle increase with the
increase of tb. The maximum BD of approximately 70mm
is obtained at 4.8mm tu.

After this, we adopt a set of samples to ensure that the
accuracy of the Kriging model is accepted. We use four cri-
teria to judge the accuracy of the model: R-squared (R2), root
mean square error (RMSE), relative average absolute error
(RAAE), and relative maximum absolute error (RMAE).
The values are 0.999, 0.131, 0.492, and 0.009, respectively. It
can be observed that this model is relatively accurate and
can be used for the subsequent optimization model.

Then, the multiobjective particle swarm optimization
algorithm including 511 iterations is selected to optimize
the design variables. Then, a relatively good result was

selected among the results, and the optimization results are
shown in Table 3. Since the above results are based on the
optimization results of the algorithm, analyses are performed
to verify the obtained structural parameters. The three opti-
mal structural parameters are substituted to the original finite
element model of pedestrian safety and low-speed impact.
Two contrast simulation models are established and the eval-
uation results are shown in Table 3.

As shown in Table 3, all damage index values of the opti-
mized structure are superior to the initial solution while sat-
isfying the requirements of the regulations. The error of the
value between the final verification and the optimal solution
is controlled within 15%. This indicates that the optimization
method used in this study is reliable.

The performances of pedestrian safety and low-speed
impact protection based on the traditional foam absorber,
the original X-shaped energy absorber model, and the
optimal verification model are compared and shown in
Figure 6. It should be noted that most risk index values of
the impact simulations with X-shaped energy absorbers are
reduced including all below the corresponding thresholds
compared to those of the impact simulations with the tradi-
tional foam absorber. One of the most important reasons

Table 2: Design of experiments with experimental conditions.

Run A B C
MTA
(g)

MKBA
(°)

MKSD
(mm)

CI
(mm)

BD
(mm)

1 1 1 1 139.1 4.46 2.40 113.47 49.70

2 1 2 2 149.3 4.05 1.40 102.02 44.72

3 1 3 3 124.3 4.11 1.60 101.35 44.22

4 2 1 2 138.5 4.71 2.09 85.69 64.79

5 2 2 3 148.3 7.11 3.97 82.08 65.26

6 2 3 1 140.9 4.56 2.50 83.44 54.66

7 3 1 3 171.5 6.86 3.24 80.56 72.83

8 3 2 1 162.8 6.02 2.97 79.04 67.56

9 3 3 2 179.0 6.42 3.27 78.76 68.43

10 1 1 2 156.4 4.01 1.48 106.99 47.42

11 1 1 3 130.8 4.14 1.66 101.77 50.24

12 1 2 1 127.3 3.93 1.54 110.68 46.73

13 1 2 3 124.9 3.99 1.59 95.75 49.35

14 1 3 1 148.6 4.42 1.61 110.17 46.62

15 1 3 2 143.6 4.00 1.44 101.55 44.37

16 2 1 1 138.1 4.87 2.33 90.84 42.60

17 2 1 3 143.4 5.28 2.38 84.15 67.08

18 2 2 1 133.5 4.33 2.06 84.34 64.84

19 2 2 2 144.6 4.64 2.14 83.30 65.90

20 2 3 2 135.9 4.55 2.13 82.43 64.30

21 2 3 3 141.7 5.15 2.39 80.90 64.01

22 3 1 1 164.3 6.06 2.86 87.40 68.89

23 3 1 2 170.9 6.32 2.93 81.03 69.03

24 3 2 2 159.4 6.39 3.14 78.10 68.31

25 3 2 3 161.2 6.89 3.58 77.35 68.04

26 3 3 1 183.8 6.02 2.96 79.59 68.43

27 3 3 3 194.9 6.89 3.68 77.90 68.70

Table 1: Levels of structural parameters.

Number Factor Case1 Case2 Case3

A tu 3mm 4mm 5mm

B R 60mm 120mm 180mm

C tb 1mm 2mm 3mm
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Figure 5: Response surfaces showing simultaneous effects of (a) tu and R onMTA, (b) tb and tu onMKBA, (c) tb and tu onMKSD, (d) tb and tu
on CI, and (e) tb and tu on BD.

Table 3: Multiobjective optimization results and verification.

Variables A B C MTA (g) MKBA (°) MKSD (mm) CI (mm) BD (mm)

Regular value — — — 150.0 15.00 6.00 165.00 64.00

Foam absorber — — — 221.58 7.80 3.21 77.78 67.56

Original results 2.5 180.0 2 143.6 6.41 3.29 111.93 53.91

Optimal results 3.2 146.4 3 127.0 4.50 1.93 93.55 51.55

Verification 3.2 146.4 3 134.5 3.88 1.76 94.81 47.09

Deviation — — — 5.91% 13.78% 8.81% 1.35% 8.65%
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Figure 6: Comparison of evaluation index values regarding pedestrian safety and low-speed impact.

6 Applied Bionics and Biomechanics



can be due to dual deformation modes of the X-shaped
energy-absorbing unit during various impacts with different
amounts of energy. In the pedestrian safety test, the units
absorb energy mainly before forming the self-locking struc-
ture and effectively decline the peak value of the impact force.
In the low-speed impact test, the X-shaped units absorb
energy mainly by the self-locking mode with higher energy-
absorbing efficiency.

It can be observed in Figure 6(b) that at 4ms, the leg
impactor gets into contact with the bumper skin which
leads to an elastic deformation of the X-shaped energy
absorber; the first peak is obtained. At about 7ms, the
X-shaped energy absorber reaches the elastic limits after
compressing and forms the second peaks. Further, when
the X-shaped energy absorption unit exceeds the elastic
limit to 13ms, the two arc sides get into contact with each
other to form a third peak. At 40ms, the energy of the X-
shaped energy absorption unit is gradually released, resulting
in a certain rebound.

Figure 6(b) shows that the X-shaped energy absorber
shows an evidently better energy absorption performance
when compared with the foam absorber. After using the
new energy absorber with the X-shaped units, the maximum
tibial acceleration related to pedestrian protection decreases
notably to 127 g. As shown in Figure 6(a), the impact load
is distributed to different compression stages to achieve the
purpose of reducing damage with multiple peaks instead
of a large acceleration peak of the traditional foam energy
absorber. When the leg impactor comes into contact with
the bumper skin and the X-shaped energy absorption unit
begins to compress, the tibial acceleration curve obtains
the first peak. Then, the energy absorber is continuously
compressed until its elasticity limit and until the second
acceleration peak is formed. Further, the elastic limit is
exceeded and a self-locking status of the X-shaped unit
is formed; the third peak is obtained. The maximum knee
bending angle and shear displacement are also significantly
reduced by 50% (Figures 6(c) and 6(d)) to 4.5° and
1.93mm, respectively. All these indicate that the X-shaped
bumper energy absorber adaptively adopts the small defor-
mation mode in the pedestrian safety test due to the low
impact energy.

In the low-speed impact test as shown in Figure 6(e), the
maximum deformation of the bumper has a significant
decline when comparing the new X-shaped energy absorber
with the traditional foam absorber. At the initial stages of
0~30ms, the X-shaped units are in the deformation phase
before two arcs are in contact and the two sides of the arc
are in contact with each other to form a self-locking struc-
ture, reaching a peak of 90ms while the energy absorption
capacity rapidly increases. It is revealed that the new bumper
energy absorber adaptively adopts the large deformation
mode in the low-speed collision test, which absorbs more
energy and significantly reduces the bumper deformation
peak, as shown in Figure 6(a). In Figure 6(f), the maximum
value of the collider intrusion has also been largely reduced
due to the structure optimization.

All of the above indicates that the new X-shaped energy
absorber shows a better performance in the present bumper

system compared to the traditional foam absorber, in partic-
ular to provide an effective force and energy-absorbing con-
trol through different deformation modes. Meanwhile, due
to the modular design, only the damaged bumper energy-
absorbing units during the impact need to be replaced and
the other units remaining intact can be used again which
means that the new energy absorbers are easy to repair in
an economical way.

In addition, the parameters of pedestrian safety and
low-speed impact are greatly improved after applying the
structural parameters obtained by the optimization algo-
rithm in this study. For pedestrian safety, the maximum
MTA decreases from 143.6mm to 134.5mm, the maximum
MKBA decreases from 6.41° to 3.88° with a reduction of
39.47%, and the maximum MKSD decreased from 3.29mm
to 1.76mm with a reduction of 46.50%. For low-speed
impact, the maximum CI decreases from 111.93mm to
94.81mm with a reduction of 15.30%. The maximum
value of BD reduces from 53.91mm to 47.09mm with a
reduction of 12.65%. All these indicates the efficiency and
contributions of the multiobjective optimization method
used in the design of the new energy absorber with the
X-shaped unit.

4. Conclusions

This paper proposes and designs a new conceptual type of
bumper energy absorber in a multioptimization method
considering the requirements of both pedestrian safety and
low-speed impact, which adopts a modular design in the
form of assembling with an X-shaped unit. This unit type
presents grading deformation modes with different energy-
absorbing rates and force levels. The results reveals that the
new bumper energy absorber proposed in this paper adap-
tively uses different energy absorption modes in different
collision forms based on the structural characteristics of its
own X-shaped unit and rapidly increases the energy
absorption capacity after self-locking. So, it performs a better
comprehensive performance compared to the traditional
foam-type energy absorber by effectively controlling the force
level and energy-absorbing rate. The modular design also
indicates its easy changing and fixing.

Besides, the multiobjective optimization of the structural
parameters is performed for the detailed design of the new
bumper energy absorber. The pedestrian protection and
low-speed impact performance of the new energy absorber
with optimized structural parameters are greatly improved,
and the requirements of pedestrian safety and low-speed
impact are better balanced.
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