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Abstract. Trearment of disseminated epithelial ovarian cancer
(EOC) is an unmet medical need. Therefore, the identification
along with preclinical and clinical validation of new targets is
an issue of high importance. In this review we focus on
microRNAs that mediate metastasis of EOC. We summarize
up-regulated metastasis-promoting and down-regulated
metastasis-suppressing microRNAs. We focus on preclinical
in vitro and in vivo functions as well as their metastasis-
related clinical correlations. Finally, we outline modalities
for therapeutic intervention and critical issues of microRNA-
based therapeutics in the context of metastatic EOC.

In 2016, approximately 22,000 women were diagnosed with
ovarian cancer in the U.S. and about 14,000 have died from
this disease (1). Ninenty percent of ovarian carcinomas are
epithelial tumors referred to as epithelial ovarian cancer
(EOC) with subtypes such as serous (more than 50%),
endometrioid, clear cell, mucinous and undifferentiated or
unclassifyable tumors (1). Other types of ovarian cancer are
germ cell and sex-cord stromal tumors arising from egg-
prducing oocytes or from estrogen and progesterone producing
stromal cells. After surgical debulking, EOC patients are
treated with intravenous and/or intraperitoneal platin or
taxane-based chemotherapy; however, patients typically
relapse within two years of the initial treatment (2, 3). For
treatment of platinum-sensitive recurrent ovarian cancer, the
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targeted agent, Avastin, a humanized antibody directed against
vascular endothelial growth factor, isoform A, (VEGF-A) has
been approved in combination with chemotherapy (4).
Numerous other agents such as: tyrosine kinase inhibitors that
target both VEGFR and other proangiogenic receptors, a
peptide-Fc fusion protein that inhibits binding of angiopoietins
1 and 2 to the Tie-2 receptor, several poly ADP ribose
polymerase (PARP) inhibitors and a cytotxic agent targeting
the a-folate receptor are under clinical investigation (5, 6).
Very recently, FDA has approved rucaparib, a PARP inhibitor,
for treatment of breast cancer 1/2 mutation (BRCA) ovarian
cancer that has not responded to at least two chemotherapy
drugs (7). In order to further highlight pathways and targets
for therapeutic intervention, we review the role of microRNAs
(miRs) in metastasis of EOC.

Metastasis

EOC is a tumor entity arising from tissue on the surface of
the ovary that can metastasize via transcoelomic,
hematogenous and lymphatic routes (8). In this review we
will focus on the role of miRs in transcoelomic dissemination,
which is generally the preferred mechanism of metastasis of
EOC. The process of metastasis starts with the shedding of
single cells or multicellular aggregates (spheroids) into the
peritoneum after expression of anoikis-inhibiting proteins and
morphological conversion by epithelial-mesenchymal
transition (EMT) (2, 9). Several mechanisms of suppressing
an immune response against disseminating ovarian cancer
cells are implemented by the tumor cells, such as secretion of
Fas-ligand, which induces apoptosis in Fas-expressing
immune cells (10). Tumor cells are passively transported by
ascitic fluid which contains an abundant source of metastasis-
promoting factors and its formation is enhanced by tumor-cell
secreted VEGF (11). Eventually nodules are formed in the
omentum and peritoneum originating from interactions of
tumor cells with the mesothelium (2, 8, 9). The mesothelium
is composed of a single layer of specialized epithelial cells
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with luminal microvilli that are attached to a basement
membrane composed of collagens of type I and IV,
fibronectin and laminin (2, 8, 9). A number of interactions
have been shown to be crucial for adhesion of tumor cells to
mesothelial cells, for example: the interaction of tumor cell
Integrin B1 with fibronectin expressing mesothelial cells,
mesothelial cell expressed vascular cell adhesion molecule
(VCAM) with tumor-cell a4f31, and tumor cell expressed
cluster of differentiation 44 (CD44) with hyaluronic acid on
mesothelial cells (12-14). An essential step for colonization
of secondary sites is the recruitment of endothelial cells (EC)
by tumor-secreted pro-angiogenic factors (15). In addition,
adipocytes which are a major constituent of the
microenvironment of ovarian cancer have been shown to
promote tumor growth and metastasis (16). There is evidence
that cancer stem cell (CSC)-related subpopulations are
involved in ovarian cancer metastasis and chemotherapy
resistance (17, 18). In this review we focus on the role of
miRs in the metastatic cascade of EOC in order to identify
possible new targets with an impact for treatment of EOC.
Angiogenesis is one essential aspect for ovarian cancer
metastasis, however it is also involved in other steps of the
pathogenesis of ovarian cancer, therefore we will not discuss
miRs modulating angiogenesis in detail in this review (19).

microRNA

miRs are evolutionary-conserved small non-coding RNAs
comprising of 18-25 nts (20-23). They interact with their
target mRNAs through a 6-8 nt seed sequence at their 5’end
by base-pairing with a complementary sequence often
located in the 3’-untranslated region (3’-UTR) of their target
mRNA, which results in their cleavage, degradation or
inhibition of translation (22). Approximately 1,000 miR
genes have been identified. After transcription by RNA
polymerse II, miRs undergo a number of processing steps,
which include capping at their 5’end, polyadenylation at
their 3’end, cleavage and sometimes splicing. The
corresponding genes can be located in exons, introns or
intergenic regions (24). miRs are synthesized as precursor
mRNAs that are processed to mature miRs by several
sequential steps. Pri-miRNA, the hairpin-shaped primary
transcript comprising several hundred nts is first converted
to double-stranded, hairpin-shaped pre-miRNA by the action
of RNAse III enzyme DROSHA and its cofactor DiGeorge
syndrome critical region 8 (DGCRGS) (25). Pre-miRNA (60-
70 nts) is exported to the cytoplasm by Exportin 5 through
a nuclear pore (26) and subsequently its loop is cleaved by
RNAse DICER and TAR RNA binding protein (TRBP)
resulting in a miRNA duplex (27, 28). In the next step the
miRNA duplex is incorporated into the RNA-induced
silencing complex (RISC). Processing of the 18-25 nts miR-
miR* duplex is mediated by the argonaute family of proteins

(AGO) in conjunction with several co-factors. After
unwinding and strand selection, the mature miR can interact
with its cognate target(s) and excert its action as described
above. An alternative mechanism for generation of functional
miRs has emerged (29). In this context, mirtrons arise from
spliced out introns and circumvent cleavage by the
microprocessor complex (29). Since miRs can hit several
targets, their inhibition may result in modulation of several
distinct pathways and disturb regulatory networks (30).

miRs are involved in several steps of the pathogenesis and
dissemination of cancer (31, 32). A crucial step in this context
was the demonstration of involvement of miR-15a and miR-16-
1 in the pathogenesis of B-cell chronic lymphocytic leukemia
(B-CLL) (33,34,35). Tumor suppressors are frequently deleted
in B-CLL on chromosome 13q14, a locus containing miR-15a
and miR-16-1 (33-35). In a proof-of-concept experiment,
deletion of miR-15a and miR-16-1 cluster in mice recapitulated
the human disease phenotype of B-CLL in mice (33-35) by
circumventing the cleavage of the mRNA coding for the anti-
apoptotic protein Bcl2. miRs are involved in several steps of the
pathogenesis of ovarian cancer (36, 37). In this review we focus
on their involvement in metastasis of EOC and their role as
possible targets for therapeutic intervention.

Metastasis-promoting miRs with
Preclinical In Vivo Efficacy

In this category we discuss miRs -182, -205 and -141.

miR-182. Anti-miR-182 inhibits invasion,
proliferation and anchorage-independent cell growth of EOC
cell lines SKOV-3, HEY and OVCAR3, as well as the
growth and size of tumors resulting from i.p. injected
OVCARS3 cells (38). The impact of miR-182 on EOC cell
metastasis was investigated by intrabursal implantation of
pellets derived from OVCAR3 cells, where anti miR-182
treatment resulted in a five-fold reduction of nodules in
peritoneal organs compared to controls (38). Another study
investigated the role of miR-182 in T29 and T80 (surface
epithelium), FTE 187 (fallopian tube) and HEY, SKOV3 and
OVCAR3 (EOC) cell lines, and showed that miR-182
increased transformation and invasiveness, but had no impact
on proliferation. In an experimental metastasis model with
SKOV-3 cells overexpressing miR-182 and corresponding
controls, significantly larger and increased number of lung
metastases were observed with the transfectants (39). miR-
182 exerts its metastasis-promoting effects through down-
regulation of BRCA1 and concomittant up-regulation of
high-mobility group AT-hook2 (HMGAZ2) and further
through negative regulation of metastasis suppressor 1
(MTSS1) as direct targets (Figure 1). HMGA2 is an
oncogenic transcription factor with a documented role in
promoting EMT during EOC progression (40). MMTS]1 has

treatment
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Figure 1. The role of microRNAs -182, -205, -141 and -194 as mediators of migration and metastasis in ovarian carcinoma. Pathways leading to
migration and metastasis of ovarian carcinoma activated by individual miRs are indicated. BRCAI, Breast cancer antigenl; EGFR-P, phosphorylated
epidermal growth factor; HER2-P, phosphorylated human epidermal growth factor 2; HMGA2, high mobility group AT-hook 2; KLF12, kriippel-
like factor 12; MMTS1, metastasis suppressor 1; PIP2, phosphatidyl-inositol 4,5 biphosphate; PIP3, phosphatidyl-inositol 3,4,5 triphosphate; PI3K,
phosphoinositide-3 kinase; PTEN, phosphatase and tensin homolog; PTPNI2, tyrosine phosphatase non-receptor 12; RhoA, ras homolog A; SMADA4,
suppressor of mothers against decapentaplegic 4; Spl, transcription factor Spl, XIAP, X-linked inhibitor of apoptosis.

an impact on cellular migration of EOC cell lines and acts
as a scaffold protein that interacts with multiple partners to
regulate actin dynamics (41, 42). In addition, suppression of
MMTSI1 has been shown to activate ras homology A (RhoA),
a small GTPase, which promotes breast cancer metastasis
(43). miR-182 is overexpressed in EOC compared to
corresponding normal tissue (44). Data correlating its
expression with clinical outcome are still pending.

miR-205. miR-205 is wup-regulated in EOC and its
overexpression correlates with poor survival (45). miR-205
promotes EOC cell proliferation, migration and invasion as
shown with HO-8910 and SKOV-3 cells as well as resistance
against  cisplatin.  Suppressor of mothers against
decaplentaplegic 4 (SMAD4) and phosphatase and tensin
homolog (PTEN) have been identified as direct targets of miR-
205 in EOC cells (Figure 1) (45-47). Smad4 is a key regulator
of transforming growth factor 3 (TGFp)-signaling. After TGFf3
binds to its receptor, Smad4 forms a complex with Smad2/3 and
translocates to the nucleus where it binds DNA and up-regulates
the expression of target genes that cause cell-cycle arrest and
apoptosis (46). PTEN is a key modulator of phosphoinositide-
3 kinase (PI3K/AKT) signaling by catalysing the conversion of

membrane-bound second messenger phosphatidyl-inositol 34,5
triphosphate (PIP3) to PI 4,5 biphosphate (PIP2) (47). HO-8910
cells stably expressing miR-205 gave rise to increased number
of nodules in omentum, peritoneum, bowel mesentery, liver and
ovary in nude mice after ip. injection in comparison to the
control cell line (45).

miR-141. In EOC cell lines and clinical samples the mean
expression level of miR-149 is approximately 10-fold higher
than that of human ovarian surface epithelium (HOSE) cell
lines and normal ovarian tissues (48). In A2780, SKOV3 and
OVCAA433 cells, miR-141 augments anchorage-independent
growth and survival (48). One of the direct targets of miR-141
that has been identified is Kriippel-like factor 12 (KLF12)
(Figure 1) (48). KLF12 is a member of the KLF family of
transcription factors which are involved in EMT, survival and
development (49, 50). In EOC cells, KLF12 exerts a tumor-
suppressive effect (48). KLF12 antagonizes transcription
factor Spl which up-regulates survival factor survivin (51).
Overexpression of miR-141 or loss of KLF12 enhances
anoikis resistance by modulating the Spl/survivin/ X-linked
inhibitor of apoptosis (XIAP) intrinsic apoptotic pathway (48).
In vivo studies were performed by injection of SKOV3 cells
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Figure 2. miRs -92a, -708 and -6126 inhibit integrin-related pathways of metastases in ovarian cancer. The pathways outlined lead to inhibition of
FAK and actin remodeling. a5, Alpha$l, integrin subunit; bl, betal, integrin subunit; FAK-P, phosphorylated fokal adhesion kinase; FN, fibronectin;

Rap 1B, ras-related protein-1B.

stably expressing miR-141 into nude mice. Significantly more
nodules were observed across the peritoneal cavity with the
transfected cell line (48). Increased survival, enhanced
metastatic capability, or a combination of both might be
responsible for the observed effects. Clinical data correlating
expression of miR-141 with survival are not yet available.

Other EOC Metastasis-promoting miRs not
yet Validated in Preclinical In Vivo Models

miR-194 is up-regulated in EOC compared to normal ovarian
tissue and enhances proliferation, migration and invasion of
SKOV3 and OVCAR3 cells (52). Protein tyrosine
phosphatase non-receptor 12 (PTPN12) was identified as a
direct target of miR-194 (Figure 1) (52). PTPN12 plays an
important role in adhesion and motility in several types of
cancer (53, 54). Due to loss of PTPN12 several tyrosine
kinases are activated in breast cancer, including EGFR and
human epidermal growth factor receptor 2 (HER2). PTPN12
suppresses growth and metastasis of PTPN12 deficient breast
cancer cells and low PTPN12 correlates with poor prognosis
and tumor recurrence in breast cancer patients (52).
miR-146a and miR-150 promote survival and spheroid
formation as well as cisplatin resistance of EOC cells (55).
Both of them exhibit significantly increased expression in
omental metastases in comparison to the corresponding
normal tissues (52). miR-196a is overexpressed in EOC
compared to normal ovarian surface tissue and correlates

with international federation of gynecology and obstetrics
(FIGO)-stage, tumor size, lymph node metastases and high
levels are associated with poor survival (56).

Metastasis-suppressive miRs with
In Vivo Activity in Preclinical Models

miR-92a. Identification of miR-92a was catalysed by the
finding that high integrin a5 expression is a predictor for
reduced survival for patients with advanced EOC (57). Based
on bioinformatic information, integrin a5 was identified as
a direct target of miR-92a. Integrin a5 predominantly binds
to integrin B1 to form integrin a5f1, which recognizes the
arginine-glycine-aspartate motif of its ligand fibronectin
(FN), one of the most abundant proteins in the extracellular
matrix (ECM) of the omentum and peritoneum (Figure 2)
(58). miR-92a inhibits the adhesion to FN, invasion and
proliferation of EOC cell lines SKOV3, A2780, OVISE and
HeyA-8 (57). Mir-92 inhibits tyrosine phosphorylation of
focal adhesion kinase (FAK) (59), a kinase involved in
integrin signaling, and subsequently down-regulates matrix
metalloprotease 2 (MMP2) (57). HeyA-8 EOC cancer cells
stably transduced to express miR-92a, gave rise to reduced
numbers of peritoneal metastases and tumor burden after i.p.
injection into nude mice (57). However, the function of miR-
92a in EOC is a controversial issue. An independent study
suggests a down-regulation of miR-92a in EOC, linking it to
tumorigenesis or progression of EOC (60).
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Figure 3. miRs -138 and -199 are down-regulated in ovarian cancer and target pro-metastatic genes. miR-138 and -199 related pathways leading
to invasion and metastasis of ovarian carcinoma are shown. EGFR, Epidermal growth factor receptor; HIF-1a, hypoxia-inducible factor 1a; HIF-
2B, hypoxia-inducible factor 2f3; IKKp, Ik kinasef3; LOX, lysyl-oxidase; MAPK, mitogen-activated protein kinase; MET, MET tyrosine receptor
kinase; MyD88, myeloid differentiation factor 88; NFkB, nuclear factor kB; PI3K, phosphoinosite-3-kinase; slug, transcription factor slug; SOX4,

SRY-box4; TLR, toll-like receptor.

miR-6126. miR-6126 is secreted in exosomes by several EOC
cell lines and targets integrin 1 directly (Figure 2) (61).
Integrin 1 has been identified as a key mediator of EOC
metastasis (6, 62, 63). Ectopic expression of miR-6126 impairs
invasion in HeyA8 and HeyA8-MDR EOC cells (61). Low
integrin 1 and high miR-6126 co-expression are correlated
with longer survival in EOC patients (61). In vivo investigations
of the role of miR-6126 were performed in the orthotopic
HeyA8 EOC metastasis model. Tumor cells were inocculated
(i.p.), followed by tail vein injection of liposomes carrying a
miR-6126 mimetic. Tumor weight in the mimic-treated mice
was significantly smaller than in the control miR group (61).
Inhibition of tumor cell proliferation and angiogenesis as well
as reduced integrin 31 levels were observed in the xenografts.
miR-6126 mimic treatment resulted in increased miR-6126 and
decreased integrin 31 levels in the exosomes (61).

miR-138. Making use of isogenic pairs of low and high
invasive EOC cell lines, mir-138 was found to be down-
regulated in highly invasive cells (64). In vitro experiments
have identified miR-138 as an inhibitor of migration and
invasion based on targeting of SRY-related high mobility
group box 4 (SOX4) and hypoxia-inducible factor 1o (HIF1a)
(Figure 3) (64). Overexpression of SOX4 (2,3) and HIF-1a

(4) reverse miR-138 mediated suppression of cell invasion.
SOX4 activates pro-metastatic EGFR through trancriptional
control (65-68) and HIF-10 mediates proteosomal degradation
of EMT-promoting transcription factor slug (64, 69). In vivo
properties of miR-138 were evaluated in an orthotopic model
after intrabursal injection of SKOV-16iv cells stably
expressing miR-138 and a corresponding control cell line. No
effect on primary tumor weight was noted, however, lower
incidence of peritoneal metastases and ascites formation was
observed with the transfected cell line (64). In patient derived
EOC cells, miR-138 low/SOX4 high expression correlates
with lymph node metastases, higher tumor grade and larger
ascites volume (64).

miR-199. miR-199 is down-regulated in the majority of
EOCs and has been shown to directly target pro-metastatic
proteins such as c-MET, HIF-1a, HIF-2f3 and Ik kinase f3
IKKP in this tumor entity (Figure 3) (70-72). In EOC cell
lines, miR199 inhibits proliferation, invasion and adhesion
as well as extracellular signal regulated kinase and nuclear
factor kB (NFxB) signaling (70-72). Inhibition of HIF levels,
down-regulates lysyl-oxidase (LOX), a matrix remodeling
enzyme which cross-links collagens (73). c-MET is a well-
validated target for anti-metastatic therapy in OVC (74, 75).
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Figure 4. Mode of action of anti-metastatic miR-145. P70-6SK phosphorylates TTP leading to dissociation of the TTP-DICER complex resulting in
processing and activation of miR-145 by DICER. DICER, Microprocessor complex; PI3K, phosphoinosite 3-kinase; p70-S6K, p70 S6 kinase; SOX9,
SRY-box 9; TTP-P, phosphorylated tristetraprolin; Twist, transcription factor Twist.

IKKP promotes function of the toll-like receptor-myeloid
differentiation factor-NFxB (TLR-MyD88-NFkB) pathway,
which enhances the inflammatory microenvironment, a
prerequisite for EOC progression and dissemination (72, 76-
78). This function of IKKf is based on inhibition of inhibitor
of NFkB (IkB), by promoting its degradation through the
proteasome and inhibiting the nuclear translocation of NFxB
(76). In vivo, miR-199 inhibits growth and peritoneal seeding
of ovarian tumors after i.p. injection of SKOV3 and A2780
cells (70, 71). In these models total tumor burden and
number of metastases on the peritoneal surface, omentum,
small bowel mesentery and both ovaries were reduced.
Clinical data correlating miR-199 levels with prognosis and
overall survival are not yet available.

miR-145. miR-145 has the capacity to suppress multicellular
spheroid (MCS) formation of ovarian cancer cells by
preventing the up-regulation of N-cadherin expression
(79.,80). N-cadherin expression is regulated by Twist and
SOX9 and both have been identifed as direct targets of miR-
145 (79). Twist is an EMT-promoting transcription factor and
its expression correlates with bad prognosis in ovarian cancer
patients (81), whereas transcription factor SOX9 promotes
pro-tumoral and metastatic signaling in ovarian cancer cells
(82). miR-145 belongs to a subset of miRs whose expression
is promoted by the interaction of microprocessor DICER
(83) and zinc finger protein tristetraprolin (TTP) (Figure 4)
(84). p70 S6 kinase (p70-S6K), a downstream effector of
PI3K signaling (85) and frequently constitutively active in
EOC disrupts this interaction by phosphorylating TTP and

thus down-regulating expression of miR-145 (79). Meta-
analysis in the Oncomine database has indicated that high
levels of p70-S6K and low TTP levels are associated with
ovarian cancer progression (79). In vivo anti-metastatic
activity of miR-145 was shown in nude mice after i.p.
injection of SKOV3 cells stably transduced with miR-145.
The number and size of tumor nodules in the peritoneal
cavity as well as the volume of ascites fluid were reduced
with transfectants in comparison to the control cell line (79).

miR-708. miR-708 is induced by glucocorticoids (GC) in EOC
cells (86). GC are used in conjunction with chemotherapy of
EOC to prevent hypersensitivity reactions (87). miR-708 is
down-regulated in metastatic OVC and patients with high
miR-708 expression show significantly better survival (86).
miR-708 inhibits migration and invasion of EOC cell lines as
shown by wound healing and transwell Boyden chamber
assays (86). Ras-related protein-1B (Rap-1B), a small GTPase,
was identified as a direct target of miR-708 (Figure 2) (86).
Rap-1B facilitates integrin-mediated signaling and actin
remodeling via FAK and paxillin and stimulates EOC cell
invasion and metastasis (88, 89). miR-708 or depletion of
Rap-1B decreases adhesion of EOC cells to FN and collagen
type I, reduces number and density of focal adhesions and
rescues miR-708 suppressed cell growth and invasion (86).
miR-708 transfectants of SKOV-16iv cells gave rise to reduced
lung metastatic activity after tail vein injection and orthotopic
injection into the mouse ovarian bursa and significantly
reduced abdominal metastasis with transfectants in
comparison to the control cell line as shown by
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bioluminescence imaging (86). GCs also suppress metastasis
of SKOV-I6iv cells in the orthotopic model described above.

miR-26b. miR-26 is down-regulated in EOC and low
expression is associated with FIGO stage, poor disease free
survival, higher risk of distant metastases, recurrence and
overall survival (90). Karyopherin a2 (KPNA2) was identified
as one of its targets (90). KPNAZ2 is a nuclear transport protein
(91) and its down-regulation promotes expression of stem cell
pluripotency homeobox transcription factor 4 (OCT4) (90, 92,
93). Overexpression of KPNA?2 in EOC correlates with poor
prognosis (94). An inverse correlation between KPNA?2 and
miR-26a expression in EOC has been observed (90). The
miR26/KPNA2/OCT4 axis inhibits EOC proliferation,
migration and sphere-forming ability in vitro and in vivo (90).
Ectopic expression of miR-26b down-regulates OCT4 and
vimentin levels and up-regulates E-cadherin expression (90).
However, overexpression of KPNA2 could not completely
counteract the effect of miR-26b indicating involvement of
additional targets (90). In vivo experiments were performed
with OVCARS3 cells stably expressing miR-26b. Tumor
growth was inhibited in the transfectant cell line in
comparison to mice injected with the control cell line after
injection into the dorsal flank. Tail vein injection experiments
resulted in fewer and smaller micrometastases in the lungs
with the transfectant cell line.

miR-448. miR-448 inhibits proliferation and invasion of
SKOV3 and A2780 EOC cell lines and is down-regulated in
human EOC (95). CXC chemokine ligand 12 (CXCL12) was
identified as one of the direct targets of miR-448 (Figure 5)
(95). CXCL12 is a chemokine that mediates interaction of
tumor cells with the microenvironment, angiogenesis, tumor
progression and metastasis (96, 97). miR-448 inhibits
proliferation, migration and invasion of SKOV3 and A2780
cells in vitro (95). miR-448 transfected SKOV3 cells
exhibited suppressed cell growth in nude mice in comparison
to the control cell line. Additional studies are need to
investigate the in vivo anti-metastatic activity of miR-448.
miR-448 is down-regulated in human EOC (95), further
correlations with clinical parameters are not yet available.

miR-214. miR-214 was identified as an important mediator of
the tumor- and metastasis-promoting role of cancer-associated
fibroblasts (CAFs) in EOC (98). miR-214 (99) was down-
regulated in normal human ovarian fibroblasts during co-
culturing with HeyA8 EOC cells resulting in their conversion
to CAFs (98). The induced CAFs promoted enhanced
invasiveness of HeyA8 cells. CAFs increased growth and
invasion of co-injected HeyAS8 cells and replaced normal
ovarian structures such as follicles or fallopian tubes in an
orthotopic mouse model of EOC (98). It was shown that miR-
214 acts on CC chemokine ligand 5 (CCL5) mRNA as a direct

CCL5
(\ invasion
CCLS
ovC
miR-448
miR-214 |,
CAF CXCL12

Angiogenesis /
Invasion

Figure 5. miR-s -214 and -448 inhibit chemokines mediating
angiogenesis and invasion of ovarian carcinoma cells. miR-448 inhibits
CXCLI2. miR-214 down-regulates CCL5 and is decreased in CAFs
after their interaction with ovarian cancer cells. CAF, Cancer-
associated fibroblast; CCLS5, CC chemokine ligand 5, CXCL 12, CXC
chemokine ligand 12.

target and that the in vivo effects could be blocked by an
antibody directed against CCLS (Figure 5) (98). In EOC,
CCLS5 levels correlate with tumor progression (100). Similar
observations in breast cancer cells were reported earlier (101).
Overexpression of CCLS5 in fibroblasts was sufficient to
promote metastasis of admixed with breast cancer cells (101).

miR-373. miR-373 is down-regulated in EOC and its
expression levels inversely correlate with clinical stage and
histopathological grade of EOC (102). In cells transfected
with miR-373 EMT is inhibited and in vitro invasion of
SKOV3 is mitigated (102). In vivo, i.p. injected miR-373-
expressing SKOV-3 cells gave rise to fewer metastases in the
peritoneal cavity, peritoneal wall, small intestine, colon,
stomach, liver and diagraphm (102). Rab22 was identified as
a direct target of miR-373 (Figure 6) (102). Rab22 is a small
GTPase and member of the Rab family proteins which are
involved in the endocytic pathway (103). Rab22 activates
Rab5 which is functionally involved in degradation of EGFR
and plays a key role in migration of cancer cells through the
integrin-mediated pathway (104-106). There is evidence that
miR-373 may suppress TGF( signaling through the Rab22-
Rab5 pathway (107).

miR-193b. Studies addressing the interaction between EOC cells
and a 3D culture model which mimics human omentum
revealed the down-regulation of miR-193 in tumor cells after
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Figure 6. Further miRs and their targets involved in modulation of invasion and metastasis of ovarian cancer. The oval circle represents an ovarian
carcinoma cell. AXL, Transmembrane tyrosine kinase AXL; EGFR, epidermal growth factor receptor; KPNA2, karyopherin; IncRNA, long non-coding
RNA; MMP 7,14, matrix metalloproteinase 7, 14; NFkB, nuclear factor kB; PRKD, protein kinase C delta; RAB 5,22, RAB family GTPase 5,22,
S1PRI, shingosine-1-phosphate-receptor; UCA-1, urothelial cancer associated-1; uPA, urokinase plasminogen activator; YAP, yes-associated protein.

interaction of both components (108, 109). DNA
methyltransferase 1 (DNMT1) was found to be responsible for
methylation of the miR-193b promoter (108). miR-193b impairs
colony formation and invasion through 3D cultures in Hey8
cells (108). Human urokinase plasminogen activator (uPA) was
identified as a direct target of miR-193b (Figure 6). The effects
observed are at least partly due to inhibition of uPA, because
blocking of uPA mimics most of the effects of miR-193b (108).
uPA is a well validated target as a mediator of invasion and
metastasis (110-113). Hey8 cells transfected with miR-193b
gave rise to a 50% decrease of tumor burden after i.p. injection
in comparison to the control cell line (108). Data connecting
miR-193b to clinical parameters are not yet available.

miR-200. miR-200 is a family of miRs with a high degree of
sequence homology with only one nucleotide difference in
their seed sequence. The family is composed of miR-200a, -
200b, -200c, miR-141 and miR-429 (114). Due to the
homology in the seed sequences they share many targets.
Inhibition of EMT seems to be a shared property of the miR-
200 family. Investigations with the 60 NCI cell line panel

and additional studies have identified transcription factors
zinc E-box binding homeobox 1 and 2 (ZEB1 and ZEB2) as
direct target of miR-200 (115,116,117). Zn-finger
transcription factors ZEB1 and ZEB2 bind to the E-box of
the E-cadherin promoter and inhibit its expression. Ectopic
expression of miR-200 mediates up-regulation of E-cadherin
and reduces motility of the corresponding cell lines (115).
For EOC inconsistent correlations between expression of
miR-200 and disease progression has been reported (114,
118, 119). One of the reasons for these discrepancies is the
use of varying types of normal cells in the profiling studies
ranging from whole ovary (ovarian surface epithelium only
1% of the cells), to immortalized ovarian surface epithelial
cells and primary cultures of human cells from the surface
of normal ovaries (114, 118, 119). Another complicating
issue might be the dynamic variation of miR-200 expression
during disease progression (118, 120). A current model
suggests high miR-220, low ZEB1+2 and high E-cadherin
expression in primary ovarian carcinoma and low miR-200,
high ZEB1+2 expression in ascites and metastatic EOC (118,
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120). Anti-metastatic function of miR-200c was
demonstrated in vivo with CD117%, CD44*" CSCs isolated
from SKOV3 cells (121). Overexpression of miR-220c¢ in
these cells leads to inhibition of EMT, CSC growth and lung
metastases after s.c. injection (121). It is notworthy to
mention that pro- and anti-metastatic functions have been
described for miR-200 (122, 123). Further studies are needed
to resolve the function of miR-200s in EOC.

Other EOC-related Metastasis-suppressing miRs

In this chapter we describe EOC metastasis-related miRs
with promising preclinical in vitro data and a varying degree
of clinical validation and pending validation in preclinical in
vivo models. They are involved in regulation of diverse
pathways, transcription factors and regulation of MMPs.

miR-7 and miR-34a target transmembrane receptor
tyrosine kinases EGFR and AXL (Figure 6). miR-7 inhibits
EGFR, a driver of EOC cell migration and proliferation (124,
125). Investigation of miR-7 expression in 17 paired EOC
versus normal tissues inversely correlates miR-7 levels and
EOC metastasis. In HO-890 and ES2 EOC cells transfected
with miR-7, invasion and migration was suppressed in vitro
as well as AKT/ERK1/2 pathway activation in an EGFR-
dependent manner (126). miR-7 was shown to be down-
regulated in the highly metastatic EOC clone HO-8910pm in
comparison to the original cell line HO-8910. miR-34a
inhibits AXL as a direct target (127). AXL mediates
proliferation-, invasion- and angiogenesis-related functions
in cancer (128). Overexpression of miR-34a in HO-890 and
SKOV3 EOC cells resulted in inhibition of proliferation,
invasion and migration, and in addition decreased expression
of N-cadherin and up-regulation of E-cadherin (127). miR-
34a is down-regulated in EOC compared with adjacent non-
neoplastic tissue.

miR-340 has been identified to directly target NFxB1 in
EOV (129). NFxB1 is a homodimer of p50 and regulates
cell-cycle, apoptosis, immune responses and tumorigenesis
(130, 131). Decreased levels of miR-340 were noted in the
EOC cell lines OVCAR3, SKOV3, HO-8910 and ES2 in
comparison to FTE 187 cells derived from normal human
immortalized fallopian tube (129). miR-340 restrains
proliferation by impeding G,/S transition and inhibits
invasion by down-regulation of MMP2, MMP9, N-cadherin,
vimentin and up-regulation of E-cadherin (129). Data for
EOC specimens are not yet available.

Sphingosine-1-phosphate-receptor (S1PR) was identified
as a direct target of miR-148a (Figure 6) (132). SIP/S1PR
signaling has been shown to play a role in a number of
cellular functions including cell growth, migration and
invasion and inhibiting EOC invasion potential (133, 134).
Expression of miR-148 is reduced in SKOV3, OVCAR and
A2780 EOC cells in comparison to normal ovarian tissue-

derived cell line HUM-CELL-0088 (132). miR-148a
expression is also reduced in EOC in comparison to normal
ovarian tissues (135).

Protein kinase C delta (PKCD) has been identified as a
direct target of miR-181c (Figure 6) (136). PKCD is
involved in pro- and anti-tumoral functions depending on the
tumor type (137). miR-181 inhibits proliferation and
invasion of A2780 cells and is down-regulated in EOC
tissues in comparison to normal tissues (136).

Yes-associated protein (YAP) (138, 139), an effector of the
Hippo pathway, was identified as a direct target of miR-509-
3p (Figure 6) (140). miR-509-3p attenuates migration and
disrupts multi-cellular spheroids in HEY8, OVCAR3 4,8 and
SKOV3 cells (140). miR-509-3p is more abundant in patients
with favorable prognosis. Its target, YAPI, is functionally
associated with the ECM through its non-canonical Hippo-
independant role as a mechanotransducer. YAPlinfluences
how tumor cells sense and respond to the mechanical
properties of the ECM and their microenvironment and thus
impacts cell proliferation, differentiation, migration and
migration (141-143).

miR-101 directly targets transcription factors ZEB1 and
ZEB?2, inhibiting EMT, invasion and migration of SKOV3 cells
(144). miR-543 and miR-485-5p are involved in MMP-related
interactions. miR-543 inhibits translation of MMP7 by binding
to its 3’-UTR (22). In EOC, placental growth factor (PIGF)
mediates decrease in miR-543 (145). MMP-7 is an important
mediator of invasion of EOC cells due to its induction by
mesothelin (146, 147). miR-485-5p targets MMP14 and is
neutralized by binding to IncRNA urothelial cancer associated
1 (UCA-1) acting as a sponge (Figure 6) (148).

Therapeutic Aspects, Key Issues
and Expert Commentary

We have analysed the steady-state levels of selected miRs in
ovarian cancer specimen by summarizing data as derived from
TCGA (Figure 7). Notworthy, the poor expression of
miRs-26b, -138, -193b, -199, -373, -448, and -708 correlates
with their anti-metastatic potential. Furthermore, significant
expression of miRs-145, -200a, -200b and -205 correlates with
their metastatic propensity. We have outlined in vitro and in vivo
target-validation related experiments for miRs involved in
metastasis of EOC in the previous sections. miRs target the
mRNAs derived from several genes and corresponding pathways
which may translate into enhanced efficacy compared to mono-
target based intervention, however this may also result in
increased toxicity (149). The mode of therapeutic intervention
and corresponding agents are driven by their metastasis-
promoting or suppressive properties (27, 28, 150, 151). This
issue has been discussed in the context specific miRs in previous
chapters of this review and therefore only the key features of
therapeutic intervention with miRs will be summarized here.
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Figure 7. Steady-state levels of selected miRs in ovarian cancer. Log2 normalized expression counts as derived by small RNA sequencing from the
ovarian carcinoma cohort from TCGA are displayed. This cohort comprises data from 453 tumor patients. No matched normal samples are provided.
The red line indicates a count of 100 normalized reads and separates very low from higher expression levels. Data are shown as box plots.

Metastasis-promoting miRs can be inhibited by single-stranded
miRs based on first generation antisense oligonucleotides (ASO)
or locked nucleic acids (LNA) with complementary sequences
to the miRs to be inhibited (27, 28, 150, 151). For improvement
of the pharmco-kinetic (PK) and pharmacodynamic (PD)
properties, diverse modifications of the nucleotide backbone
have been introduced. They also can be inhibited by miR
sponges containing reiterated tandem repeats of the target
sequence or by masking of the miR-binding site of the target
mRNA by making use of single-stranded RNA complementary
to the target sequence (150, 152). Tumor-suppressing miRs can
be reconstituted by gene therapy or by miR mimetics (synthetic
double-stranded RNAs) matching to the corresponding miR
sequence. Despite significant progress in delivery techniques,
making use of viral vectors, coated and uncoated liposomes,
nanoparticles and carrier-related compounds such as
polyethylene glycole, synthetic polyethylenimine, cyclodextran,
N-acetylgalactosamine and dendrimers, several critical issues
remain to be resolved. Key challenges are targeting miRs to the
disease site, tumor penetration, effective dose to reach the
appropriate target cells, efficacy of endosomal escape, immuno-
modulatory off-target effects, toxicty related issues such as liver
toxicity, cytokine-release syndrome and a number of additional
issues (27, 28, 150, 151).

EOC might be a target-indication for miR-based therapy
because some of these issues may be by-passed (153). EOC
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arises at the surface of the ovary, disseminates into the
peritoneum and is therefore amenable to i.p. administration
of therapeutic agents after debulking of the tumor mass. L.p.
injection of the paclitaxel or cisplatin-based standard
therapeutic regimen has been shown to improve the clinical
outcome of patients after debulking of the tumor in
comparison to injection due to increased drug
concentration at the site of disease (154, 155). Anti-
metastatic activity of selected miRs after i.p. administration
in several orthotopic EOC models has been described in
previous chapters of this review. Also it is expected that i.p.
administration of miR-related therapeutic agents will
decrease systemic toxicity and to mediate vasculature-
independent exposure in clinical settings.

Targeting of miR-122 for treatment of Hepatitis C Virus
(HCV) infection has proceeded to Phase II clinical studies
(Roche/Santaris and Regulon Therapeutics) and is the most
advanced miR-related approach (28). A Phase I study with
miR-34 mimetic MRX 34 (Mirna Therapeutics) in patients
with solid tumors was recently terminated due to side effects
caused by cytokine-release syndrome. Clinical studies of
miR-related agents in EOC are expected in the near future.

Taken together, prioritization of miR-related targets for
treatment of dissemination of EOC should be based on the
synoptic view of preclinical target validation data and the
role of the corresponding miR in disease progression. From

iv.
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a technical point of view, i.,p. delivery of miR-related
therapeutic agents is a potential advantage versus i.p.
delivery. Inhibition of overexpressed miR is a more
promising approach than reconstitution of expression of
down-regulated miRs. The present repertoire of targets for
treatment of EOC (156) will be extended by miRs.
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