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Abstract

It is generally accepted that year-to-year variability in moisture conditions and drought are linked 

with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface 

moisture state at seasonal lead-times has been challenging due to the absence of a long soil 

moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. 

Here we apply model simulations of surface soil moisture that numerically assimilate observations 

from NASA's Gravity Recovery and Climate Experiment (GRACE) mission with the US Forest 

Service's historical Fire-Occurrence Database over the contiguous United States. We quantify the 

relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by 

land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25-

degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires 

when months preceding fire season are wet, while larger fires are more frequent when soils are 

dry. This result is consistent with the concept of increased fuel accumulation under wet conditions 

in the pre-season. These results demonstrate the fundamental strength of the relationship between 

soil moisture and fire activity at long lead-times and are indicative of that relationship's utility for 

the future development of national-scale predictive capability.

1. Introduction

Wildfires in the United States have increasingly become larger and more frequent during the 

last several decades, contributing to greater environmental degradation, property damage, 

and economic losses (Dennison et al. 2014, Morton et al. 2003). By 2025, the cost of fire 

suppression in the United States is predicted to increase to nearly $1.8 billion per year 

(United States Department of Agriculture Forest Service 2015). As a result, there is growing 

need for the capability to direct operational fire resources before the fire season begins. This 

points to the growing importance of seasonal to sub-seasonal forecasting capacity for 
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wildfires, similar to those that are being developed for weather and natural resources 

management (National Academies of Sciences, 2016).

Wildfires are typically defined as uncontrolled fires that occur in areas of combustible 

vegetation, and depend greatly on vegetation type, structure, arrangement, and moisture. In 

the contiguous United States, 90% of wildfire ignitions are associated with human activity, 

but several other environmental factors such as fuel availability, fuel moisture, wind, and 

lightning strikes can be of critical importance in ignition and growth. The largest 

contributing factors to general wildfire risk are the pre-fire-season accumulation of fuels and 

changing fuel moisture content (FMC), both of which can contribute to greater fire severity 

in a given region. Depending on the vegetation class, more fuels and lower FMC generally 

indicate higher fire risk and greater fire severity potential—the degree of environmental 

change caused by a fire (e.g. Verbesselt et al. 2002; Van Der Werf et al. 2008).

The spatial distribution and the moisture content of transient (i.e. fast-growing) fuels tend to 

be associated with precipitation and soil moisture conditions at the land surface over the 

months prior to fire season, when some regions experience an annual wet period or rainy 

season (Chuvieco et al. 2004; Krueger et al. 2015). These results suggest that soil moisture 

may be a good predictor of fire occurrence and fire severity, even at seasonal lead times.

However, in order to understand this relationship, the required local-scale that are adequately 

discretized and have a spatially and temporally uniform structure are difficult to obtain over 

large domains (Famiglietti et al. 2008). Therefore it is challenging to develop a quantitative 

description of the relationship between land surface wetness conditions in the period before 

fire-season and wildfire occurrence during the fire season, and the specific impacts of 

surface moisture conditions on wildfire occurrence across land cover types is largely 

unquantified.

The National Interagency Fire Center currently publishes seasonal fire potential outlook 

reports for the United States (Predictive Services, National Interagency Fire Center 2016). 

These reports use the US Drought Monitor, past monthly temperature and precipitation 

deviations from average, and one and three-month weather outlooks to qualitatively assess 

regional fire potential. The fire potential maps produced offer a tercile assessment—normal, 

above normal, or below normal—of fire potential over broad geographic regions. This 

method does not currently apply a numerical relationship between seasonal fire occurrence 

and variability in contributing environmental factors such as soil moisture. It also does not 

yet produce a quantitative estimate of probable fire occurrence that could be used in a risk-

assessment framework.

The Palmer Drought Severity Index (PDSI), additionally, has been shown to have utility in 

assessing drought impacts on wildfire activity (Xiao and Zhuang 2007). However, the PDSI, 

similar to the National Interagency Fire Center outlook reports, is based on temperature and 

precipitation sums and not actual soil moisture observations, and has been shown to be 

biased for assessment of drought conditions in some cases (Sheffield et al. 2012). Burgan et 

al. (1998) also developed a fire danger fuel model map across different ecoregions, largely 

based on satellite NDVI observations, but no soil moisture record was then available. These 
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studies provide both a precedent and evidential basis for the use of large-scale climatological 

variables in wildfire assessment. The recent availability of large-coverage soil moisture 

products, specifically those produced in a combination of remote sensing and land-surface 

model simulations through numerical data assimilation, now offer the ability to quantify 

such relationships at finer scales and across large-domains. The development of these data 

sets should provide a unique opportunity for advancement in seasonal wildfire risk 

assessment.

This study thus seeks to integrate NASA earth observation data and the USDA Forest 

Service's historical fire record to quantify climatic relationships with fire activity. Model-

assimilated hydrology observations are leveraged to examine finer spatial and longer 

temporal scales and to establish the quantitative basis for seasonal forecasting relationships. 

Since pre-season soil moisture can serve as a proxy for pre-season fuel accumulation and 

live fuel moisture conditions, a historical record of remotely sensed soil moisture data 

products was examined to disentangle the bearing pre-fire season soil moisture conditions 

have on a succeeding year's fire activity. With a proven statistical relationship, the methods 

developed herein can in turn be applied to improve fire prediction and risk assessment 

capabilities in the contiguous US. As more communities in the earth sciences work at 

achieving seasonal to sub-seasonal (S2S) predictive capabilities, the importance to society of 

knowing what might happen at several months lead-time is clear.

Launched in 2002, NASA's Gravity Recovery and Climate Experiment (GRACE) mission 

provides monthly observations of terrestrial water storage anomalies (TWSA) that describe 

spatial and temporal changes in the amount of water stored in soils, groundwater and above 

the land surface (Tapley et al. 2004), which have proven useful in the monitoring of 

changing hydrologic conditions (e.g. Famiglietti et al. 2011). However, GRACE 

observations have an intrinsically low spatial resolution (∼150,000 km2), due to the altitude 

of the satellites. This makes GRACE TWSA observations difficult to apply for natural 

resource management. One way to circumvent the resolution limitations of GRACE is to 

perform a physical downscaling of the GRACE observations through numerical data 

assimilation. This has been done with much success for drought and flood monitoring 

applications (Houborg et al. 2012, Reager et al. 2015), and is currently included as an input 

to the U.S. Drought Monitor framework (Hobourgh et al. 2012). The resulting surface soil 

moisture data, downscaled from raw GRACE data with the CLSM, form the base climatic 

independent variable in this study.

Building upon these successes, we investigate the relationship between GRACE-assimilated 

seasonal surface (top several centimeters) soil moisture (Zaitchick et al. 2008) as a proxy for 

fuel moisture content and yearly wildfire occurrence and burn extent. We apply GRACE-

assimilated soil moisture simulations downscaled with the Catchment Land Surface Model 

(CLSM) and in-situ wildfire observations over the continental United States during the 

2003-2012 period (Short 2015), at 0.25-degree spatial resolution, with the 2012-2013 data 

withheld for validation. Each grid cell represents approximately 785.18 km̂2, or 194022.02 

acres. While other remotely sensed soil moisture data products exist, such as those derived 

from Soil Moisture and Ocean Salinity (SMOS) and AMSR-E/Aqua, these GRACE-

assimilated data offer monthly datasets over a long temporal record and with higher spatial 
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resolution that are more ideal for calibrating a historical regression model over the 

contiguous United States. We disaggregate the study domain by land cover type (Homer et 

al. 2015), under the hypothesis that wetness should modulate different land cover responses 

to wildfire ignition differently. Surface soil moisture alone, as opposed to root zone moisture 

content and total terrestrial water storage, was utilized in order to optimally capture seasonal 

variance in wetness that affects all dominant species across land cover types, including 

grasses with shallow roots (Famigietti et al. 1999). Additionally, utilizing surface soil 

moisture in this way provides a reference model that can then be applied with future Soil 

Moisture Active Passive (SMAP) data. We then determine the historic relationship between 

wildfire occurrence and CLSM-assimilated surface soil moisture across land cover types, 

and cross-validate a predicted response to show the strength of the relationship. In doing so, 

this study reveals complex nonlinearities in the influence of fuel moisture content on 

wildfire severity, and further establishes the need to incorporate accurate surface moisture 

information in the quantitative assessment of fire risk and potential in the United States. The 

aim of this study is to demonstrate a relationship between pre-season soil moisture and fire 

occurrence likelihood and to characterize large-scale fire sensitivity to seasonal moisture 

patterns.

2. Data And Models

2.1 GRACE AND CLSM-DA

NASA's GRACE mission consists of two Earth-observing satellites orbiting in tandem and 

spaced about 220 kilometers apart at roughly 450 km altitude. A K-band Ranging System 

(KBR) provides precise measurements (within 10 μm) of the distance between the satellites 

caused by spatial and temporal fluctuations in the Earth's gravity field (Tapley et al. 2004). 

These measurements are used to determine variations in the Earth's mass distribution at a 

horizontal resolution of 150,000 km2, with generally higher measurement accuracy across 

larger spatial scales (Wahr et al. 2004). The monthly to decadal temporal changes in the 

gravity field are attributed primarily to mass redistribution in the atmosphere, ocean, 

continents and solid earth. After isolation and correction of ‘unwanted’ signals for 

hydrology applications (i.e. ocean, atmosphere, and postglacial rebound), these 

measurements, referred to as terrestrial water storage anomalies (TWSA), are assumed to 

approximate the movement of water mass over time. Swenson and Wahr (2004) and Wahr et 

al. (1998) offer general post-processing logistics and Landerer and Swenson (2012) offer 

specifics on scaling, signal restoration, and regional error calculation. The GRACE dataset 

utilized for this project is processed by the Texas Center for Space Research (CSR; version 

CSR-RL05) and NASA's Jet Propulsion Laboratory. It is a global, monthly, one degree 

gridded, scaled GRACE land data product available for download at grace.jpl.nasa.gov. The 

data for this project is from the time period April 2002 to December 2013.

Developed at the NASA Goddard Space Flight Center, The Catchment Land Surface Model 

(CLSM) is a physically based land surface model (Koster et al. 2000). For the model 

forcing, the horizontal structure of a rectangular atmospheric grid is separated into 

topographically-defined catchments with an estimated average area of 4000 km2. Water is 

spatially and vertically distributed in the model determined by topography and the model's 
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hydrologic processes are generally determined by the catchment's topographical statistics. In 

the assimilation algorithm, the model-generated terrestrial water storage moisture elements 

are corrected with the GRACE observational estimate using an Ensemble Kalman 

Smoothing Filter method (EnKS) as described in Zaitchik et al. (2008). Assimilation 

incorporates the relative uncertainty in the model and the observations. In this process, a 

two-step smoother is applied to manage GRACE's monthly temporal resolution both forward 

and backwards in time. In order to create consistency among observed and modeled 

variables, the GRACE water storage anomalies are changed to absolute values by adding the 

simulated time mean water storage variable from the CLSM output to the observations. The 

observations are directly applied to the column-integrated forecasted variable (the catchment 

deficit) and the primary non-equilibrium prognostic (the root zone excess moisture), and the 

vertical disaggregation occurs based on covariance. The CLSM-Data Assimilation (CLSM-

DA) data used in this study extend from January 2003 to December 2014, and the outputs 

are reported on 0.25-degree grid cells for the contiguous United States. The gridded analysis 

used in this paper is an interpolation of catchment tiles to an equally spaced model grid for 

consistency with the other data sets used. Resampling these other datasets to the coarser 

resolution always introduces uncertainty but captures more first order climatic 

characteristics.

2.2 FIRE PROGRAM ANALYSIS-FIRE OCCURRENCE DATABASE

The USDA Forest Service's Fire Program Analysis Fire-Occurrence database (FPA FOD) is 

a comprehensive geospatial database of wildfires in the United States from 1992 to 2013. It 

includes 1.73 million geo-referenced wildfire records, representing a total of 126 million 

acres burned during the 22-year period (Short 2015). It also contains vital information for 

each of these fires, including date, cause, fire size, fire class, burned area, and coordinates. 

These data were imported as points into a geographic information system and processed into 

two separate raster datasets that matched the spatial and temporal resolution of the GRACE 

derived soil moisture data. The first dataset aggregated the annual number of fires in each 

0.25 × 0.25 degree cell for May through April of the following year, while the second 

summed the total burned area (in acres) for each cell in that timeframe.

2.3 NATIONAL LAND COVER DATABASE

The land cover type dataset used in this study was the USGS' National Land Cover Database 

2011 (NLCD 2011) (Homer et al. 2015). This dataset maps land cover and land use across 

the United States at a 30 meter resolution. The NLCD data were first reclassified for 

generalization and resampled to the same spatial extent and resolution as the previous two 

datasets using a majority resampling technique that allocates each pixel's class based on the 

most popular value within a 3 by 3 window. This allowed each grid cell to have a unique 

land cover classifier, which could then be programmatically used to extract values and 

characterize each relevant vegetation type's relationship between soil moisture and wildfire. 

For the purposes of this study, only vegetated land cover types are of importance to 

wildfires. Accordingly, the Developed/Urban, Barren Land, and Planted/Cultivated classes 

were not considered in the analysis. The Mixed Forest class was not considered due to its 

unsuitably small number of pixels. Additionally, even though model simulations of wetland 

soil moisture may not be accurate due to missing physical processes, we include this class to 
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represent general wet/dry responses in wetland environments. Figure 1 shows a visualization 

of this processed land cover data along with the other two datasets mentioned above.

3. Methods

3.1 DATA PROCESSING

The first step in algorithm development was to disaggregate the fire data by wildfire size 

class (Table 1). Annual January through April (2003-2014) soil moisture from the GRACE-

derived CLSM-DA data were averaged into single two-dimensional maps (latitude × 

longitude) for each year that depict a fire season's antecedent moisture conditions (Xystrakis 

et al. 2014). Annual total fire occurrence and cumulative burned area maps, aggregated from 

the rasterized FPA FOD data, were produced for each wildfire class, covering the period 

ranging May through April of the following year. This time period was selected in order to 

delineate a nominal fire season in line with the beginning of the Western US fire season, 

although true fire season tends to vary in time and by location (Westerling et al. 2003). 

Within each land cover type, all burned area and fire occurrence values—which here refers 

to the total number of fires occurring in a given grid cell— were plotted against 

corresponding CLSM-DA soil moisture values for the entire population of 0.25-degree grid 

cells. While wildfires belonging to a smaller size class constitute only a fraction of a percent 

of their parent grid cell, the frequency of their occurrence within each discretized area is an 

important climatological figure linking soil moisture to fire activity.

This produced a distribution of fire occurrence, visible in Figure 1, and burned area as a 

function of soil moisture for each land cover class. These data were then binned by soil 

moisture ranges to calculate average fire occurrence and burned area values over each range. 

These distributions reveal the unique relationship in each land cover class between 

occurrence of wildfires of increasing size classification as a function of soil moisture state. 

These relationships were then individually modeled by fitting an exponential or linear 

function depending on which resulted in a higher R2 value. If neither function's R2 surpassed 

0.5, meaning pre-season soil moisture explains less than 50% of the variance in fire activity, 

mean number of fires and mean burned area were plotted instead. This methodology is 

displayed for fire occurrence in Figure 2 for each land cover type and fire size class, and the 

same method was followed for burned area.

We also investigated whether the information contained in these relationships with soil 

moisture demonstrated predictive utility. Comprehensive deterministic prediction is 

challenging, because we don't include all of the information required to determine the 

comprehensive source and forcing for all fire occurrence and severity; variables such as 

lightning strikes, human activity, wind gusts, and fuel loading all contribute substantially to 

actual wildfire predictability. Instead, we investigate a statistical tendency of soil moisture to 

affect wildfire occurrence by lumping a large population of observations into a single model, 

and evaluating how the population responds as whole to this single factor. We assume that 

the population captures the probable best estimate of the relationship that would occur at a 

single location under different conditions and across time. A comprehensive fire prediction 

model could likely include other forcing variables.
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3.2 PREDICTIVE MODEL

Each modeled distribution's fitted function or mean was referenced for mapping fire 

probability and predicted burned area. Fire probability and average burned area were 

calculated by applying each individual pre-season soil moisture value to the function 

corresponding to its land cover type for the relevant fire size class. Probable total burned 

area (Equation 1) is then estimated by multiplying the modeled fire occurrence by the 

modeled average burned area value for each cell's soil moisture value as broken down by 

land cover type and fire size class.

(1)

In Equation 1, i is a given 0.25 degree grid cell, and SMi and LCi are the corresponding 

values of soil moisture and land cover classification. Maps for both predicted number of 

fires and predicted burned area were thus created for each fire size class. These maps, binned 

by fire size for each parameter, can be added together to create maps for a year's total 

predicted number of fires and total burned acreage.

4. Results

Figure 2 shows that within each land cover type, there are different distributions of fire 

occurrence as a function of soil moisture for each fire class. For example, within the 

evergreen forest type, the smaller fire classes B, C, and D tend to be more frequently 

associated with a higher average number of fires following high pre-fire season soil 

moisture. Meanwhile, the larger fire classes E, F, and G, show the opposite trend whereby 

dryer soil moisture conditions in January – April are associated with more fires throughout 

the following year. Some distributions are relatively uniform and showing little variability. 

This indicates the absence of a clear relationship between soil moisture and fire occurrence, 

or that other factors tend to mask that relationship. Each vegetation type differs from the 

other in its surface soil moisture and fire occurrence and size patterns. Deciduous forest 

tends to be the wettest modeled ecosystem (mean volumetric water content fraction = 0.31, 

standard deviation = 0.06) and shrubland tends to be the driest (mean volumetric water 

content fraction = 0.19, standard deviation = 0.05). Wetland ecosystems have the most fires 

per cell on average (11.46 fires per year, standard deviation = 16.79), while shrublands have 

the fewest (3.48 fires per year, standard deviation = 9.16). These values were calculated by 

compiling the preseason surface soil moisture and fire occurrence values across all cells 

within each land cover type for each year in the study period. These values indicate the need 

to disaggregate the relationship between fire occurrence and soil moisture by land cover 

type, as each type shows a significantly different fire response to soil moisture levels.

Figure 3 provides an example of results by hindcasting the May 2012 – April 2013 fire year. 

The top map shows the total number of fires expected to occur in each cell that year based 
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on the preceding January – April average soil moisture. Figure 3 (bottom) shows total 

predicted burned acreage. The spatial gaps in the predictive maps represent the withheld 

land cover classes. These maps were created for each year in the study period, and their 

summary statistics for predicted number of fires and total burned acres were compiled and 

charted in Table 2 and Figure 4.

To validate these results, predicted fire occurrence and burned area maps that were generated 

for the 2012 - 2013 fire year (i.e. the most recent year in the FPA FOD dataset), and 

compared against the observations. For proper cross-validation, this fire year was held out of 

the algorithmic step. Results are compiled in Table 2. Additionally, the processed FPA FOD 

data was disaggregated by land cover type and charted next to the predicted fire data, as 

shown for May 2012 – April 2013 in Figure 4, showing the relative accuracy of the 

algorithm's prediction for each vegetation type with standard percent error calculations 

(Equation 2).

(2)

Vegetation types that were deemed unsuitable for the analysis (i.e. mixed forest, agricultural, 

and urban) were removed from the data sets. Figure 4 shows that in the 2012 – 2013 case 

study, the values for predicted fire occurrence and burned area match the actual data within 

an error of 13.89% and 9.52% respectively, compared to an average error 13.10% for 

predicted fires and 119.40% for predicted burned area for the entire study period.

5. Discussion And Conclusions

It should be noted that the predictive maps presented are not intended to offer an accurate 

hindcast of actual fire occurrence and severity in individual 0.25–degree grid cells. Rather, 

they offer an assessment of the relationship between seasonal soil moisture and wildfire 

potential, specifically the sensitivity of fires in the fire season to pre-season surface moisture 

conditions. The modeled functions and validation results show that the total number of fires 

and burned area predicted is in fact correlated with the pre-season soil moisture data for the 

corresponding year, across the land cover grouping. A positive correlation would indicate 

that high pre-season soil moisture is followed by high fire activity, while a negative 

correlation would see low fire activity. Regional hindcasting of fire occurrence was 

performed by aggregating the land-cover consistent regions in their entirety over the 

contiguous US, and optimizing the fire response model for each land cover type. This 

improves upon an ecoregion approach for which a number of included land cover types may 

exist, and a corresponding number of fire responses to moisture may occur (e.g. Parks et al. 

2014). The strong correlation achieved in our results highlights the principal importance of 

preseason soil moisture in governing fire risk and potential, likely as a proxy for preseason 

fuel accumulation.

These results provide the first evidence that pre-season soil moisture and wildfire occurrence 

can be strongly negatively correlated across land cover types. In all land covers, the smaller 
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fire classes (i.e. class “D” or smaller, <300 acres) are generally (11 out of 20 scenarios) 

associated with higher pre-season soil moisture, not lower soil moisture as hypothesized. 

This likely describes a situation in which smaller and quick-growing vegetation (e.g. grasses 

and understory) are more prolific in wet years, and tend to contribute to wildfire persistence 

and propagation after ignition. As the resampled NLCD 2011 data was implemented in our 

algorithm, land cover is assumed to be static over the study period. It is possible that this 

represents an additional error source in our regression, though there is no clear pattern in the 

percent error figures (Table 2) and land cover changes may represent a small fraction of the 

regressed relationships across the entire aggregated domain. The random error structure 

suggests that the model error is more associated with year-to-year weather and soil moisture 

patterns rather than land-cover change. As soil moisture in this study is used as a proxy for 

vegetation moisture and general climate conditions, a wet pre-season in certain vegetation 

types is correlated with more primary production creating increased fuel availability when 

fire season arrives. This is further corroborated by observations made by Xystrakis et al. 

(2014), which saw high spring precipitation succeeded by high burned area values. The case 

that would lead to the most fires in these land cover types is likely that of a very wet pre-

season, followed by a very dry fire season. This relationship has been studied before using 

precipitation observations (e.g. Holden et al. 2007).

While the necessity is clear, the feasibility of wildfire predictive capabilities is increasing 

with the advent of innovative applications of new remote sensing data. As our analysis 

focused on quantifying and validating the overall relationship between pre-season soil 

moisture and succeeding fire activity rather than providing accurate annual fire activity 

predictions, model outputs are not intended to be applied as accurate annual fire activity 

predictions. While the model illuminates this relationship, its performance may be 

negatively affected by limitations in the datasets and omitted environmental factors. For one, 

resampling the NLCD land cover to the coarser GRACE-DA resolution inevitably decreased 

the purity of each pixel's designated land cover type. Using finer-scale SMAP data to expand 

this analysis may mitigate these effects, and additionally improve the retrieval of burned 

area. Since accurate, observation-based surface soil moisture information has been difficult 

to obtain over large domains, GRACE-assimilated model outputs may offer a unique 

contribution to fire severity prediction methods. This builds upon successes in using 

GRACE-assimilated model outputs for hydrologic drought monitoring (Houborg et al. 

2012), and reinforces the importance of the relationship between large-scale hydrologic 

forcing and fire response. The current NASA SMAP mission (Entekhabi et al. 2010), 

launched January, 2015, offers global observations of radiometer-based surface soil moisture 

at a base 36-km spatial resolution that can be used in conjunction with GRACE-assimilation 

efforts and should generally improve this methodology. The expanding temporal and spatial 

coverage of soil moisture brought about by SMAP will additionally allow this methodology 

to be applied in regions with more heterogeneous land cover conditions due to higher 

resolutions. These more complex regions may also be approached with regionally sensitive 

environmental parameters to generate more accurate regional predictive fire maps. For 

example, the classification of large swaths of Minnesota and Michigan as wetland in the 

NLCD (Figure 1) caused those areas' fire frequency to be greatly overestimated as a result of 

the high fire activity in Florida's Everglades and other wetland regions (Figure 3). Indeed, 
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the wetland regression models (Figure 2) do not show high correlation coefficients except in 

the case of large fires, indicating regional processes controlling the majority of the variance. 

Other regional drivers of fire activity that see great spatial and temporal variability, such as 

fuel moisture, wind, and lightning patterns may (Veraverbeke et al. 2017) may further reduce 

the modeled discrepancies in fire occurrence and intensity. Along with the finer-scale SMAP 

data, the fundamental relationship between soil-moisture and fire activity observed in this 

study could be built upon using other environmental variables to generate monthly regional 

predictive fire maps.

Acknowledgments

This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract 
with NASA. We would like to thank Mark Finney and Chuck McHugh, from the USDA Forest Service Predictive 
Services Program for their involvement in providing direction and information pertaining to wildfires in the United 
States. This work was supported by the NASA DEVELOP program, through contract NNL11AA00B and 
cooperative agreement NNX14AB60A. Funding sources include the NASA Applied Sciences Program and the 
NASA GRACE Science Team. The data supporting this study's conclusions consist of the included tables and 
figures. The FPA FOD data (Short, 2015) can be accessed at http://dx.doi.org/10.2737/RDS-2013-0009.3. The 
assimilated GRACE data is available at http://grace.jpl.nasa.gov. The NLCD 2011 is available at http://
www.mrlc.gov/nlcd2011.php.

References

Burgan R, Klaver R, Klaver J. Fuel Models and Fire Potential From Satellite and Surface 
Observations. International Journal of Wildland Fire. 1998; 8(3):159. https://doi.org/10.1071/
WF9980159. 

Chuvieco E, Aguado I, Dimitrakopoulos AP. Conversion of fuel moisture content values to ignition 
potential for integrated fire danger assessment. Can J For Res. 2004; 34(11):2284–2293. DOI: 
10.1139/x04-101

Dennison PE, Brewer SC, Arnold JD, Moritz MA. Large wildfire trends in the western United States, 
1984-2011. Geophys Res Lett. 2014; 41:2928–2933. DOI: 10.1002/2013GL058954

Entekhabi D, et al. The soil moisture active passive (SMAP) mission. Proc IEEE. 2010; 98(5):704–
716. DOI: 10.1109/JPROC.2010.2043918

Famiglietti J, Devereaux J, Laymon C, Tsegaye T, Houser P, Jackson T, Graham S, Rodell M, van 
Oevelen P. Ground-based investigation of soil mositure variability within remote sensing footprints 
during the Southern Great Plains 1997(SGP97) Hydrology Experiment. Water Resources Research. 
1999; 35(6):1839–1851.

Famiglietti JS, Ryu D, Berg AA, Rodell M, Jackson TJ. Field observations of soil moisture variability 
across scales. Water Resources Research. 2008; 44(1) http://doi.org/10.1029/2006WR005804. 

Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, 
Megown K. Completion of the 2011 National Land Cover Database for the conterminous United 
States-Representing a decade of land cover change information. Photogrammetric Engineering and 
Remote Sensing. 2015; 81(5):345–354.

Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF. Drought indicators based on model-assimilated 
Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water 
Resour Res. 2012; 48(July)doi: 10.1029/2011WR011291

Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P. A catchment-based approach to modeling 
land surface processes in a general circulation model: 1. Model structure. J Geophys Res. 2000; 
105(D20):24809–24822.

Krueger ES, Ochsner TE, Engle DM, Carlson JD, Twidwell D, Fuhlendorf SD. Soil Moisture Affects 
Growing-Season Wildfire Size in the Southern Great Plains. Soil Sci Soc Am J. 2015; 79(6):1567–
1576. DOI: 10.2136/sssaj2015.01.0041

Landerer FW, Swenson SC. Accuracy of scaled GRACE terrestrial water storage estimates. Water 
Resour Res. 2012; 48(4):1–11. DOI: 10.1029/2011WR011453

Jensen et al. Page 10

Environ Res Lett. Author manuscript; available in PMC 2019 January 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://dx.doi.org/10.2737/RDS-2013-0009.3
http://grace.jpl.nasa.gov
http://www.mrlc.gov/nlcd2011.php
http://www.mrlc.gov/nlcd2011.php
http://https://doi.org/10.1071/WF9980159
http://https://doi.org/10.1071/WF9980159
http://doi.org/10.1029/2006WR005804


Morton, DC., Roessing, ME., Camp, AE., Tyrrell, ML. Assessing the Environmental, Social, and 
Economic Impacts of Wildfire. New Haven, CT: 2003. 

National Academies of Sciences, Engineering, and Medicine. Next Generation Earth System 
Prediction: Strategies for Subseasonal to Seasonal Forecasts. Washington, DC: The National 
Academies Press; 2016. doi:https://doi.org/10.17226/21873

National Significant Wildland Fire Potential Outlook. Boise, Idaho: 2016. Predictive Services, 
National Interagency Fire Center. Retrieved from http://www.predictiveservices.nifc.gov/outlooks/
outlooks.htm

Reager J, Thomas A, Sproles E, Rodell M, Beaudoing H, Li B, Famiglietti J. Assimilation of GRACE 
Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional 
Flood Potential. Remote Sensing. 2015; 7(11):14663–14679. http://doi.org/10.3390/rs71114663. 

Rodell, M. chapter in Climate Vulnerability: Understanding and Addressing Threats to Essential 
Resources. Elsevier Inc: Academic press; 2013. Application of satellite gravimetry for water 
resource vulnerability assessment; p. 151-159.

Shorts, Karen C. 3rd. Fort Collins, CO: Forest Service Research Data Archive; 2015. Spatial wildfire 
occurrence data for the United States, 1992-2013 (FPA_FOD_20150323). http://dx.doi.org/
10.2737/RDS-2013-0009.3

Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophys Res Lett. 
2006; 33(8)doi: 10.1029/2005GL025285

Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM. GRACE measurements of mass 
variability in the Earth system. Science (80-). 2004; 305:503–505. DOI: 10.1126/science.1099192

United States Department of Agriculture Forest Service; 2015. The Rising Cost of Fire Operations: 
Effects on the Forest Service's Non-Fire Work. Retrieved from http://www.fs.fed.us/sites/default/
files/media/2014/34/nr-firecostimpact-082014.pdf

Van Der Werf GR, Randerson JT, Giglio L, Gobron N, Dolman aJ. Climate controls on the variability 
of fires in the tropics and subtropics. Global Biogeochem Cycles. 2008; 22:1–13. DOI: 
10.1029/2007GB003122

Veraverbeke S, Rogers BM, Goulden ML, Jandt RR, Miller CE, Wiggins EB, Randerson JT. Lightning 
as a Major Driver of Recent Large Fire Years in North American Boreal Forests. Nature Climate 
Change. 2017; 7(7):529–34. DOI: 10.1038/nclimate3329

Verbesselt, J., Fleck, S., Coppin, P. Estimation of fuel moisture content towards fire risk assessment: a 
review; Proceedings of the 6th International Conference on Forest Fire Research; 2002. 

Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic 
effects and their possible detection using GRACE. J Geophys Res. 1998; 103(B12):205–229.

Wahr J, Swenson S, Zlotnicki V, Velicogna I. Time-variable gravity from GRACE: First results. 
Geophys Res Lett. 2004; 31(11)doi: 10.1029/2004GL019779

Westerling AL, Gershunov A, Brown TJ, Cayan DR, Dettinger MD. Climate and wildfire in the 
western United States. Bull Am Meteorol Soc. 2003; 84(5):595–604. DOI: 10.1175/
BAMS-84-5-595

Xiao JF, Zhuang QL. Drought effects on large fire activity in Canadian and Alaskan forests. 
Environmental Research Letters. 2007; 2(4):44003. https://doi.org/
Artn044003\rDoi10.1088/1748-9326/2/4/044003. 

Xystrakis F, Kallimanis AS, Dimopoulos P, Halley JM, Koutsias N. Precipitation dominates fire 
occurrence in Greece (1900-2010): Its dual role in fuel build-up and dryness. Natural Hazards and 
Earth System Sciences. 2014; 14(1):21–32. https://doi.org/10.5194/nhess-14-21-2014. 

Zaitchik BF, Rodell M, Reichle RH. Assimilation of GRACE Terrestrial Water Storage Data into a 
Land Surface Model: Results for the Mississippi River Basin. J Hydrometeorol. 2008; 9:535–548. 
DOI: 10.1175/2007JHM951.1

Jensen et al. Page 11

Environ Res Lett. Author manuscript; available in PMC 2019 January 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://https://doi.org/10.17226/21873
http://www.predictiveservices.nifc.gov/outlooks/outlooks.htm
http://www.predictiveservices.nifc.gov/outlooks/outlooks.htm
http://doi.org/10.3390/rs71114663
http://dx.doi.org/10.2737/RDS-2013-0009.3
http://dx.doi.org/10.2737/RDS-2013-0009.3
http://www.fs.fed.us/sites/default/files/media/2014/34/nr-firecostimpact-082014.pdf
http://www.fs.fed.us/sites/default/files/media/2014/34/nr-firecostimpact-082014.pdf
http://https://doi.org/Artn044003\rDoi10.1088/1748-9326/2/4/044003
http://https://doi.org/Artn044003\rDoi10.1088/1748-9326/2/4/044003
http://https://doi.org/10.5194/nhess-14-21-2014


Figure 1. 
The datasets used in this study: (a) GRACE-derived volumetric surface soil moisture 

expressed as percent. This example shows average January – April surface soil moisture 

from 2003 – 2013. (b) All fires from the 2003 – 2013 study period in the FPA FOD mapped 

as points by fire cause. (c) The NLCD 2011 resampled to a 0.25-degree resolution.
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Figure 2. 
Binned average fire occurrence over each complete year and associated fitted functions or 

mean values for each analyzed land cover type by fire size class. The x-axis of each chart 

denotes surface soil moisture as a percentage, and the y-axis shows the average number of 

fires per 0.25 degree cell for that soil moisture bin. The fire size classes are defined by Short 

(2015), displayed in Table 1.
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Figure 3. 
Predictive maps for (a) individual fires and (c) burned area to assess fire risk and potential 

from May 2012 – April 2013. These predictive results are compared against the (b) actual 

fire distribution and (d) actual burned area for that year for validation.
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Figure 4. 
Validation of total predicted fires and burned acres from May 2012 – April 2013.
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Table 1

Fire Size Class Definitions1

Class Burned Acres

A 0 – 0.25

B 0.26 – 9.9

C 10 – 99.9

D 100 – 299

E 300 – 999

F 1000 – 4999

G 5000 +

1
Class size ranges are defined by (Short 2015)
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