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Abstract
Introduction: Autism spectrum disorder (ASD) is mainly characterized by functional 
and communication impairments as well as restrictive and repetitive behavior. The 
leading hypothesis for the neural basis of autism postulates globally abnormal brain 
connectivity, which can be assessed using functional magnetic resonance imaging 
(fMRI). Even in the absence of a task, the brain exhibits a high degree of functional 
connectivity, known as intrinsic, or resting-state, connectivity. Global default connec-
tivity in individuals with autism versus controls is not well characterized, especially for 
a high-functioning young population. The aim of this study is to test whether high-
functioning adolescents with ASD (HFA) have an abnormal resting-state functional 
connectivity.
Materials and Methods: We performed spatial and temporal analyses on resting-state 
networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the 
spatial analysis, we used probabilistic independent component analysis (ICA) and a 
permutation statistical method to reveal the RSN differences between the groups. For 
the temporal analysis, we applied Granger causality to find differences in temporal 
neurodynamics.
Results: Controls and HFA display very similar patterns and strengths of resting-state 
connectivity. We do not find any significant differences between HFA adolescents 
and controls in the spatial resting-state connectivity. However, in the temporal dy-
namics of this connectivity, we did find differences in the causal effect properties of 
RSNs originating in temporal and prefrontal cortices.
Conclusion: The results show a difference between HFA and controls in the temporal 
neurodynamics from the ventral attention network to the salience-executive network: 
a pathway involving cognitive, executive, and emotion-related cortices. We hypothe-
sized that this weaker dynamic pathway is due to a subtle trigger challenging the 
cognitive state prior to the resting state.
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1  | INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodevelop-
mental disorder, which is characterized by persistent deficits in so-
cial communication and social interaction across multiple contexts 
and restricted, repetitive patterns of behavior, interest, or activities 
(DSM–V). Although not part of the diagnostic classification and not 
formal subcategories of ASD, a distinction is also often made between 
low-functioning autism (LFA) and high-functioning autism (HFA). No 
consensus criteria regarding LFA and HFA exist, but high-functioning 
individuals with autism tend to have a “normal” IQ (Barendse et al., 
2013). Recently, increasing interest has been focused on abnormalities 
in (functional)organization of specific brain regions, or networks, re-
lated to cognitive functions such as working memory, executive func-
tion, visual attention, and language processing (Anderson et al., 2011; 
Cherkassky, Kana, Keller, & Just, 2006). Many task-based fMRI studies 
report that ASD is associated with either weaker or stronger connec-
tivity between various structures (Monk, Peltier, Wiggins, & Weng, 
2009). However, focusing on the “resting-state” (i.e., task free) in fMRI 
provides a different domain to measure cortical synchronization pat-
terns. Indeed, in the past decade, functional connectivity of resting-
state fMRI data is rapidly emerging as a highly efficient and powerful 
tool for in vivo mapping of neural circuitry in the human brain (Zuo 
et al., 2010). Thus far, resting-state functional connectivity MRI stud-
ies in autism provide inconsistent results, that is, showing either under- 
or hyperconnectivity in similar investigated brain regions (Monk et al., 
2009; Müller et al., 2011; Rane et al., 2015; Uddin, Supekar, Menon, 
Hutchison, & Williams, 2013). But those studies mainly assessed 
within-network connectivity, that is, between hubs/ROIs connectiv-
ity. And evidence shows that for adolescents and adults, the impaired 
connectivity is to be found between, rather than within, large-scale 
networks (Bos et al., 2014; Nomi & Uddin, 2015; Redcay et al., 2013; 
Tyszka, Kennedy, Paul, & Adolphs, 2014). To extract those large-scale 
resting-state networks and their associated time series, neuroimag-
ing researchers have adopted a multivariate signal processing method 
known as independent component analysis (ICA). This data-driven 
method needs no a priori on the measured signals, and hence, really 
suitable for resting-state analysis (Beckmann, DeLuca, Devlin, & Smith, 
2005; Thomas, Harshman, & Menon, 2002). Although ICA can provide 
spatial and temporal information about anatomical regions that show 
similar functional connectivity, it does not reveal causal relationships 
between components, that is, the effectiveness—directionality and 
strength—of the connectivity (Deshpande, LaConte, James, Peltier, & 
Hu, 2009; Liao et al., 2010). And recent evidence suggests that not the 
topology (structural and functional maps), but rather the dynamics of 
the network can better describe the disorder (Chen, Cai, Ryali, Supekar, 
& Menon, 2016; Deshpande, Libero, Sreenivasan, Deshpande, & Kana, 

2013; Hanson, Hanson, Ramsey, & Glymour, 2013; Kana, Uddin, 
Kenet, Chugani, & Müller, 2014; Wicker et al., 2008). Hence, we also 
extract causality measures, which we call “temporal neurodynamics” in 
this paper, to represent temporal causal effect dependencies between 
RSNs. Temporal neurodynamics can be visualized using the Wiener–
Granger causality test (Bressler & Seth, 2011; Granger, 1969) and its 
derived causality magnitude F upon two brain signals (time series). 
Here, the time series represent the RSN low-frequency oscillations, 
extracted from ICA. Therefore, in this study, we focus on large-scale 
networks, their shape and strength (within-network spatial connectiv-
ity), and their effective connectivity with other large-scale networks 
(between-network neurodynamics). Regarding the potentially im-
paired networks, we also focus only on networks involving saliency, 
executive function, ventral attention network, and the default mode 
network, as those well-known networks have shown atypical connec-
tivity within and between networks (Anderson, Ferguson, & Nielsen, 
2013; Keown et al., 2017; Nomi & Uddin, 2015).

Finally, we also test, using two resting-state scans (rs-scan 1 and 2) 
and a 1-back visual task-based fMRI in-between, the hypothesis that 
a task-based fMRI scan prior to a resting-state scan session influences 
the post-task resting-state connectivity (Barttfeld et al., 2012; Hassan 
Saleh, 2011). Indeed we could expect a change in neurodynamics, and 
brain flexibility, after a cognitively demanding task in ASD, while con-
trols would recover faster and should show none or less significant 
between-resting-state scans changes. Therefore, not only between-
group difference is analyzed, but also the between-scan (recovery) 
effects (within the groups).

Differences between HFA and controls may be present in the com-
position of the spatial network organization (connectivity) and/or in 
the temporal neurodynamics (causal effect).

2  | MATERIALS AND METHODS

2.1 | Participants

Thirteen adolescents with ASD and 13 age- and IQ-matched con-
trols participated in this study. All participants were between 12 
and 18 years old. Individuals with ASD were recruited from De 
Berkenschutse, a special secondary education school in Heeze (the 
Netherlands). All adolescents in the control group were recruited 
through an advertisement in a (local) newspaper and visited regular 
secondary schools in various regions of the Netherlands. Written 
informed consent was also obtained from the next of kin, caretak-
ers, or guardians on behalf of the adolescents enrolled in this study. 
Inclusion criteria for the adolescents with HFA were established 
diagnostic criteria according to the DSM–IV, as well as the autism 
algorithm cut-offs on the Autism Diagnostic Observation Schedule 
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(ADOS) (Barendse et al., 2013; de Bildt et al., 2009). Inclusion cri-
terion for the control group was no history of psychiatric illness. 
Adolescents in the control group were excluded if they and/or one 
of their siblings and/or parent(s) had a diagnosis of ASD. Further 
exclusion criteria for both groups were a comorbid psychiatric 
disorder, a significant hearing or visual impairment, an inability to 
speak/understand the Dutch language, and/or a comorbid central 
neurologic or other somatic disorder.

Table 1 shows the means and standard deviations (SD) of the ages 
in months and the Wechsler scores: the verbal comprehension index 
(VCI), perceptual organization index (POI), freedom from distractibility 
index (FDI), and full-scale intelligence quotient (FSIQ). Using the anal-
ysis of variance (ANOVA) statistical method, we assessed the differ-
ences in the conditions (intelligence scores) of both groups.

The study protocol was approved by the Medical Ethical 
Commission of the Maastricht University Medical Center.

2.2 | Image acquisitions

MRI was performed on a 3.0-Tesla unit (Philips Achieva) equipped 
with an 8-channel receiver-only head coil. For anatomical reference, 
a T1-weighted 3D fast (spoiled) gradient echo sequence was acquired 
with the following parameters: repetition time (TR) 8.2 ms, echo 
time (TE) 3.7 ms, inversion time (TI) 1,022 ms, flip angle 8°, voxel size 
1 × 1 × 1 mm3, field of view (FOV) 240 × 240 mm2, 150 transverse 
slices. Then, resting-state fMRI data were acquired using the whole-
brain single-shot multislice BOLD echoplanar imaging (EPI) sequence, 
with TR 2 s, TE 35 ms, flip angle 90°, voxel size 2 × 2 × 4 mm3, matrix 
128 × 128, 32 contiguous transverse slices per volume, and 210 vol-
umes per acquisition; resulting in total resting-state acquisition of 7 min.

The resting-state scans were performed twice with an 8-min last-
ing 1-back test for working memory assessment in-between. This 

1-back test was performed to assess the working memory processes. 
For this memory task, pictures of houses or faces (neutral and smiling 
faces) were displayed randomly at regular intervals. Then, patients and 
controls were asked to indicate when the current stimulus (pictures) 
matched the previous picture (Koshino et al., 2008); for more details 
on the 1-back task, see Supporting Information SI2. For both resting-
state scans, participants were instructed to lie with their eyes closed, 
and to think of nothing but not to fall asleep.

2.3 | Data preprocessing

Data analysis was carried out using FMRIB Software Library (FSL; 
www.fmrib.ox.ac.uk/fsl). The following preprocessing was applied (van 
der Kruijs et al., 2014): discard of the first 3 volumes (=6 s) allowing 
the magnetization to reach equilibrium; rigid-body motion correction 
(Jenkinson, Bannister, Brady, & Smith, 2002); nonbrain tissue removal; 
slice-timing correction; registration to the Montreal Neurological 
Institute (MNI) standard space (2 mm isotropic); spatial smooth-
ing using a Gaussian kernel of 4.0 mm full width at half-maximum 
(FWHM); grand-mean intensity normalization; and high-pass temporal 
filtering at 100 s (0.01 Hz). After these preprocessing steps, one autis-
tic subject and the second scan of a control participant were rejected 
because of a too large head motion: absolute displacement (mean) 
>1 mm with a maximal relative displacement (between two consecu-
tive slice) >3 mm. Also, we reported the average framewise displace-
ment (FD) in mm for each group and rs-scan in Table 1.

2.4 | Group independent component analysis

A single group-level ICA was performed across all subjects and all 
scans from both HFA and control groups using probabilistic ICA 
as implemented in FSL multivariate exploratory linear optimized 

Measure
ASD 
M (SD)

Controls 
M (SD)

Difference 
F(1, 24) p*

Gender 12 male, 1 female 12 male, 1 female — —

Age (years) 15.3 (1.2) 14.5 (1.3) 2.89 .102

Verbal comprehension index 117.1 (9.0) 117 (10.4) 0.00 .968

Perceptual organization 
index

114.0 (5.8) 109.1 (7.8) 4.85 .038

Freedom from distractibility 
index

99.5 (14.5) 101.9 (14.6) 0.19 .670

Full-scale IQ 116.7 (5.0) 113.2 (7.8) 1.92 .179

Autism Diagnostic 
Observation Schedulea 
(number of patients)

2 (6) 
1 (5) 
0 (2)

0 (13) — —

Framewise displacement (mm)

Scan 1 0.089 (0.043) 0.092 (0.034) 0.063 .80

Scan 2 0.082 (0.034) 0.079 (0.033) 0.033 .86

a2 = autistic disorder, 1 = ASD, and 0 = no diagnosis according to ADOS.
*A p < 0.05 means that a score or a characteristic (rows of the table) differs significantly between the 
two cohorts.

TABLE  1 Demographic and descriptive 
data of ASD and control adolescents

http://www.fmrib.ox.ac.uk/fsl
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decomposition into independent components (MELODIC). First, the 
previously preprocessed 4D dataset was temporally transformed 
by concatenation into a single time series. This new 4D image was, 
then, separated into 34 independent components (ICs). The num-
ber of components was arbitrarily set to 34 as it seems to be a good 
trade-off to get a sufficient number of relevant networks (around ten), 
without splitting them into subcomponents (Wang et al., 2011). To 
obtain the components, group probabilistic ICA processing steps were 
applied to the temporally concatenated 4D image: masking out non-
brain voxels, voxel-wise demeaning of the data, and normalization of 
the voxel-wise variance. Subsequently, the preprocessed data were 
projected into a 34-dimensional subspace using probabilistic principal 
component analysis. Then these observations were decomposed into 
sets of vectors which describe signal variations across the temporal 
domain (time courses), the session/subject domain, and the spatial 
domain (maps) by optimizing for non-Gaussian spatial source distribu-
tions using a fixed-point iteration technique (Hyvärinen, 1999). The 
resulting estimated component maps were divided by the standard 
deviation of the residual noise and threshold at a posteriori probability 
threshold of p > .5 (i.e., an equal loss is placed on false positives and 
false negatives) by fitting a Gaussian/gamma mixture model to the 
histogram of intensity values (Beckmann et al., 2005).

2.5 | Resting-state networks selection

The most relevant group-level IC maps (of 34) were selected according 
to the following three steps. First, group-level IC maps with more than 
33% of the estimated spectral power in high frequencies (>0.1 Hz) 
were excluded to keep only networks within the low-frequency range 
of 0.1–0.01 Hz (Lowe, Mock, & Sorenson, 1998; Tyszka et al., 2014). 
Second, Smith et al. (2009) described the major covarying networks 
in the resting brain and created a template of these RSNs widely used 
in resting-state fMRI studies. With this template and our remaining 
group maps, a function, using the “goodness-of-fit” approach was 
created and applied (Greicius, Srivastava, Reiss, & Menon, 2004; 
Vanhaudenhuyse et al., 2010). Finally, the third step consisted in a 
visual inspection of each component spatial profile to verify the con-
sistency and ensure the effectiveness of the two previous steps. Plus, 
this last step allows us to select other known and well-described net-
works that are not in Smith and colleagues’ template, but still comply 
with first selection step.

2.6 | Spatial RSN analysis between groups

The first level of the voxel-wise group analysis was performed using 
dual-regression (Beckmann, Mackay, Filippini, & Smith, 2009). The 
aim of this process is to obtain, from the group IC maps, subject-
specific IC maps. Dual-regression involves two general linear mod-
els (GLM). First, the group IC maps were used as spatial regressors 
against the preprocessed individual fMRI scans. This results in 
single-subject time courses for each component separately. Then, 
these time courses were normalized to unit variance to test both 
the “shape” and “amplitude” of the RSN. In the second GLM, these 

normalized individual time courses were used as temporal regres-
sors against the preprocessed individual fMRI images, leading to 
subject-specific IC maps for each subject’s scan. As there were two 
subject-specific spatial maps per IC for each individuals (one per 
scan), before running final group-level analysis, we merged and av-
eraged these two IC maps per subject. We also compared the two 
groups for each scan separately, that is, without the merging and 
averaging of the RSN maps, as explained below.

The second level of the group analysis consisted in getting the 
effects of within-group means (control group average >0; HFA group 
average>0) and between-group differences (HFA > control; con-
trol > HFA). This was assessed using nonparametric permutation test-
ing (5000 permutations), with FSL’s randomize tool (Nichols & Holmes, 
2002). For each RSN, the resulting statistical maps were threshold at 
p < .05, family-wise error (FWE) corrected with the threshold-free 
cluster enhancer (TFCE) technique (Smith & Nichols, 2009). Finally, 
nuisance regressors describing age, IQ, and relative gray matter vol-
ume were added to the model in a second experiment, to observe 
their possible effects on the between-group contrast maps.

2.7 | Temporal dynamics of RSNs

The statistical Granger causality (G-causality) allows us to assess cau-
sality among two signals. One signal Y is said to Granger cause another 
signal X, if the past of Y and X can better predict the future of X rather 
than with the past of X only (Zaremba & Aste, 2014). In this study, we 
use this principle to evaluate pairwise multivariate conditional Granger 
causalities of our independent components (resting-state networks). 
The assessment is performed on each pair of subject-specific RSNs 
time series and repeated for each resting-state scan, using the multi-
variate Granger causality (MVGC) toolbox (Barnett & Seth, 2014). This 
gives us estimates F of Granger causality magnitudes for each network 
pairs, subject, and scan. Furthermore, with two-sample two-tailed  
t-tests we compare these G-causality magnitudes between the two 
groups (HFA vs. controls) to determine different patterns of neuronal 
dynamics of the resting state (effective connectivity). We also perform 
this test for the two resting-state scan sessions to assess whether or 
not a previous task-based fMRI scan can trigger and/or change the 
dynamics of resting-state connectivity, that is, the causality between 
RSNs. Finally, we assess if these changes differ between patients and 
controls. According to several studies, people with ASD show differ-
ences mainly in frontal and temporal cortices, default mode parts, and 
also within networks related to social interaction (Anderson et al., 
2013; Hanson et al., 2013; Keown et al., 2017; Nomi & Uddin, 2015). 
Therefore, we selected the RSNs located mainly in frontotemporal cor-
tices and/or consisting of sociocognitive brain parts. These networks 
are assessed and compared with the method described above.

3  | RESULTS

For each group, age, gender, intelligence scores, ADOS diagnostic 
score, and mean framewise displacement (in mm) per group and per 
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scan are displayed in Table 1. Only the perceptual organization index 
(POI) score showed a significant difference between the adolescents 
with ASD and the controls (p < .05, Table 1).

3.1 | RSN selection and between-groups 
spatial analysis

We extracted functionally relevant group ICs based on the resting-
state template from Smith et al. (2009). After visual inspection, we also 
included the widely described ventral attention network (Corbetta, 
Patel, & Shulman, 2008; Farrant & Uddin, 2015; Fox, Corbetta, Snyder, 
Vincent, & Raichle, 2006). Finally for further analysis, we described 
our executive control network as the salience-executive network, 
since it involves, not only prefrontal and posterior cingulate cortices 

(for executive function), but also the salient network compounded 
with the anterior insular and anterior cingulate cortices (Menon & 
Uddin, 2010; Sala-Llonch, Bartrés-Faz, & Junqué, 2015). The 11 net-
works that we finally obtained are depicted in Figure 1. Those RSNs 
were found in both HFA and controls by testing the subject-specific 
maps of these networks (after the dual regression). In those relevant 
networks, the group effects (group mean > 0) are present and strongly 
consistent with the whole-group (ASD + Controls) networks (see 
Figure S1). Also, after a nonparametric permutation test (5,000 per-
mutations) threshold at p < .05, TFCE corrected for FEW, no voxels, in 
any components, were significant in the second-level group analysis 
for the ASD > control and control > ASD contrasts. The same results 
occurred when comparing the groups for each scan separately. In the 
second equivalent statistical analysis, where age, IQ level, and gray 

F IGURE  1 Relevant components extracted from the group-level ICA. Relevant components extracted from the 34 group IC maps overlaid in 
color on the MNI standard brain (2 × 2 × 2 mm). Names of the networks are in the right-side table. The colorbar is threshold between 3 and 15 
(z-score). MNI coordinates are in mm. The left hemisphere corresponds to the right side in the images (radiological convention)
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matter density were added as covariates, again, no voxels in any com-
ponent survived at the same threshold (p < .05, FWE corrected; see 
Table S1 for more details). Hence, statistically, the strength and the 
extent of each network (functional connectivity) were similar in both 
groups.

3.2 | Temporal dynamics of the RSNs

The causal analysis to detect temporal dynamics differences was 
made upon the four most relevant RSNs that involved frontopari-
etal and temporal cortices, and networks related to social cognition 
(Anderson et al., 2013; Hanson et al., 2013; Keown et al., 2017; Nomi 
& Uddin, 2015). Therefore, we selected the default mode network (IC 
1, Figure 1), the salience-executive system (IC 3), the ventral atten-
tional network (IC 10), and the auditory system (IC 6). Pairwise con-
ditional Granger causality magnitudes, in average, within each group 
for the first and second resting-state scan sessions were significant 
(p < .05 FDR corrected). This was found for the four aforementioned 
selected prefrontal and temporal RSNs and for both groups. Also, the 
positivity of the normality test (Kolmogorov–Smirnov) for the distri-
bution of the causalities among each group allowed us to use the two-
sample two-tailed t-test to compare HFA adolescents’ G-causalities 
with those of the control group.

In the first resting-state scan, none of the pairwise causalities dif-
fered significantly between ASD and controls. We also found no sig-
nificant differences in causality within the control group, that is, when 
comparing first rs-scan and second rs-scan. However, dynamic RSN 
patterns did differ within the ASD cohort (first rs-scan vs. second rs-
scan) and significantly diverged from control adolescents only in the 
second resting-state scan. The latter result shows a significant lower 
value of Granger causality between the ventral attention and salience-
executive networks in the ASD group as compared with control: mean 
F (Granger causality value) for ASD = 0.028 (SD = 0.015); mean F 
controls = 0.058 (SD = 0.031); t(24)  = 3.17, p-value = .0042. Figure 2 
shows this directed causal connection and displays in more detail the 
cortical regions involved in these two networks.

4  | DISCUSSION

In the present study of high-functioning adolescents with autism, 
resting-state whole-brain functional connectivity was examined. No 
evidence was found for any significant difference in brain spatial 
connectivity between the two populations. However, our results did 
show that patterns in temporal neurodynamics, that is, causal effects 
of one RSN on another, differ between the groups. In contrast with 
controls, HFA display a significant difference in temporal neurody-
namics between resting-state fMRI sessions 1 and 2. Furthermore, in 
contrast with the first resting-state scan, temporal neurodynamics dif-
fer significantly between HFA and controls during the second resting-
state session. The primary findings of similar functional connectivity 
between the two cohorts challenge the theory that the autistic brain 
is globally underconnected (Belmonte, 2004; Uddin, Supekar, Menon, 

et al., 2013). This can be explained by differences in scan protocols, 
in postprocessing methods (ICA vs. seed based) and mainly because 
of the population (type of the ASD, number, and ages). However, 
our findings of similar functional resting-state network, that is, simi-
lar within-network functional connectivity are corroborated by other 
studies on adolescents and adults with high-functioning autism (Bos 
et al., 2014; Tyszka et al., 2014; Uddin, Supekar, Menon, et al., 2013). 
More recently, Nomi and Uddin (2015) also showed that adolescents 
with ASD do not have altered within-network functional connectivity. 
But interestingly, by means of correlation between the RSNs time se-
ries, they obtained evidence of impaired between-network connectiv-
ity in the adolescents with autism. The pairwise temporal correlations 
used in their study can be seen as (undirected) instantaneous causal-
ity. Hence, their results of between-network hypoconnectivity in ASD 
population is partially (only instantaneous causality) in line with our 
results of weaker neurodynamics in autism, which are discussed in the 
next paragraph.

To go further and detect strength and directionality in causality 
between RSNs, we used Granger causality upon four relevant socio-
cognitive RSN time series. The two RSNs showing differences in ef-
fective directed connectivity (neurodynamics) are the ventral attention 
network and the salience-executive control network. The ventral at-
tention contains mainly the left and right superior temporal sulci (STS), 
the temporal poles, the ventrolateral and orbital cortices, and lateral 
premotor cortex. This pathway is known to code for visual recognition 
and identification, and for emotional processes. The temporal pole is 
known to play a role in functions that tend to be weak in autism: social 
and emotional processing, including face recognition and the theory of 
mind (Kana et al., 2015; Olson, Plotzker, & Ezzyat, 2007). Also, the STS 
has been postulated to be a critical component of the abnormal neu-
ral circuitry underlying deficits in social perception in autism (Redcay, 
2008). The STS projects information toward prefrontal cortices (mainly 
the medial and lateral) which are part of the salience-executive net-
work. This salience-executive control network involves the anterior 
cingulate gyrus (ACC), the anterior insular cortex (AI) as well as the 
dorsomedial and dorsolateral prefrontal cortices, and the supplemen-
tary motor area (SMA). These ROIs are involved in cognitive processes 
such as working memory, reasoning, task flexibility, problem solving, 
planning, and execution (Chan, Shum, Toulopoulou, & Chen, 2008). 
The AI cortex is a brain structure implicated in disparate cognitive, af-
fective, and regulatory functions, including interoceptive awareness, 
emotional responses, and empathic processes (Menon & Uddin, 2010). 
More specifically, Dapretto et al. (2006) propose a mirror neuron sys-
tem (MNS) dysfunction in children with ASD (Dapretto et al., 2006). 
Notably, they affirm that the MNS activity in the pars opercularis is 
consistently present during imitation, action observation, and inten-
tion understanding; and this pars opercularis combined with the insula 
and limbic activity (e.g., in the ACC) may mediate the understanding of 
others’ emotional states. However, the absence of mirror neuron ac-
tivity in the frontal part of the MSN (pars opercularis) leads this emo-
tional process to be weaker in ASD. This weakened “theory-of-mind” 
network has been further confirmed in children and adolescents (Kana 
et al., 2015).
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The association AI/ACC, also termed the salient network, plays 
a role in dynamic switching between brain networks in reaction to 
cognitively demanding tasks (switch default mode network/executive 
network; Menon & Uddin, 2010; Sridharan, Levitin, & Menon, 2008). 
A review study reports that this critical system (salience network) is 
impaired in ASD, and that the AI region has demonstrated hypoactivity 
in individuals with ASD across a wide variety of social cognitive task 
paradigms (Di Martino, Ross, et al., 2009; Uddin & Menon, 2009). All 
these findings illustrate that activations in brain areas implicated in the 
ventral attention and salience-executive RSNs are known to be weaker 
in the ASD population. Also, areas in the salient network and the MNS, 
that is, the causal flow “bridge” area (Figure 2), are critical during self- 
and other-related social and affective processes, and also known to 
be underactivated in ASD (Barttfeld et al., 2012; Kana et al., 2015). In 
line with the previously mentioned studies conducted with the help 
of socioemotional cognitive task-based fMRI, we observed the same 
weaknesses in whole-brain resting-state functional connectivity, but 

only when analyzing temporal dynamics. The extracted RSNs do not 
have the same pattern of temporal dynamics, that is, the influence 
of one RSN on another varies between the two cohorts: the causal 
connectivity between the salience-executive and ventral attention 
networks (in the direction of ventral attention → salience-executive) is 
significantly weaker in the HFA population, but only in their post-task 
resting state. This impaired temporal neurodynamics suggests failing 
bridging of the emotional states regulated in the ventral attentional 
to the decision-making-oriented salience-executive control system. 
This may therefore be described as a more rigid system in terms of 
the emotional-executive bridge, which can be seen as an endogenous 
to exogenous (self to other) dynamic process failure as suggest by 
the literature (Di Martino, Shehzad, et al., 2009; Ebisch et al., 2011; 
Menon & Uddin, 2010; Uddin, Supekar, Ryali, & Menon, 2011; Uddin, 
Supekar, Lynch, et al., 2013). Finally, in our study, the differences in 
temporal neurodynamics were only found in the second resting-state 
session. An 1-back working memory task-based scan was performed 

F IGURE  2 Visualization of the weaker neurodynamic pattern in adolescent with HFA (in the post-task resting state). Visualization of the two 
RSNs, salience executive in blue and ventral attention in orange, where the causal dynamics is weaker in HFA for the second (post-task) resting-
state scan, in the direction from ventral attention to salience executive. The scheme above shows the different cortices involved in these two 
networks and the overlapping areas. Solid lines and dashed lines describe direct cortico-cortical physical link and indirect connections (through 
white matter and/or basal ganglia), respectively. The pars opercularis is a part of the ventrolateral PFC which is shown with the double line. On 
the bottom part, anatomical visualization of the two abovementioned RSNs (from group IC contrast maps) are displayed (threshold at z > 2.6,  
i.e., p < .01). BA, Brodmann area; PFC, prefrontal cortex
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in between the two resting-state scan sessions. We therefore hy-
pothesize that abnormal temporal neurodynamic patterns in HFA 
were triggered by the working memory task, involving not only work-
ing memory, but also attentional and emotional (in terms of face and 
emotion recognition) processes. This could be explained by a reduced 
cognitive flexibility (or more rigidity) in the post-task resting-state 
connectivity in ASD, reducing the between-networks dynamics, show-
ing a more brain state dependency of connectivity pattern in autism 
compared to controls, as shown recently in literature (Barttfeld et al., 
2012; Chen et al., 2016; Douw, Wakeman, Tanaka, Liu, & Stufflebeam, 
2016; Uddin et al., 2015).

4.1 | Limitations

One of the main challenges in applying G-causality upon fMRI BOLD 
signals is the problem of the hemodynamic response function (HRF) 
changes. Inter-regional HRF variation has been argued to affect G-
causality analysis (David et al., 2008). But the Granger causality method 
implemented in MVGC software, used in our study, has been proven to 
be robust to changes in HRF properties (Seth, Chorley, & Barnett, 2013). 
A second limitation with our technique is the relatively long sample in-
tervals (TR) of classic fMRI protocols (usually ranging from 1 s to 3 s). 
Indeed, our TR of 2 s is substantially longer than typical interneuron de-
lays. However, since we examine changes (of differences) in G-causality 
rather than attempting to find a ground truth G-causality pattern that 
limitation is not significant (Barnett & Seth, 2014).

Finally, even though our statistical analyses are properly controlled 
for multiple comparisons and for type I error (false positive), cautious 
interpretation of the results is in order. Especially misses (type II error, 
or false negative) could have occurred for the results of similar spatial 
network connectivity (miss of spatial differences).

4.2 | Methodological recommendations

For future application, we state that neurodynamics provide alterna-
tive strategies when ICA analysis does not yield differences for a cross-
sectional analysis. Also, conversely, where ICA does show differences in 
functional connectivity between two populations (or more), we advise 
not to use Granger causality analysis on temporal trends of ICs, but rather 
on raw ROI signals (with same ROI location for both groups). Finally, our 
findings show that tasks prior to resting-state acquisition scan can have 
an effect on the results of an effective connectivity analysis.

5  | CONCLUSION

We find no significant differences in resting-state brain connectivity 
between high-functioning adolescents with ASD and the control group 
at the whole- brain level. However, the extracted RSNs do not have the 
same pattern of temporal dynamics, that is, the influence of one RSN on 
another is different between the two cohorts. In particular, the causal 
connectivity between the salience-executive and the ventral attention 
networks (in the direction of ventral attention → salience-executive) is 

significantly weaker in the HFA population in the second resting-state 
scan, after challenging sensitive functions for HFA adolescents. These 
two networks link cortices coding for face/object recognition and emo-
tional processing with cortices of executive cognitive functions (atten-
tion, control, working memory, behavior). We hypothesize that changes 
in neurodynamics at rest in HFA are subtly triggered by challenging the 
cognitive state prior to the resting state. And these changes seem to 
appear in the dynamic connectivity between the networks functionally 
related to the previous cognitive task.

NOTES

Sample sizes for the groups have been calculated using previous 
fMRI studies on ASD with significant results of lower functional 
connectivity in working memory network, and ToM network in the 
autism cohorts (Kana et al., 2015; Koshino et al., 2008). Those stud-
ies had 13 TDC/13 ASD and 11 TDC/11 ASD, respectively. Post 
hoc power analyses using the significant results from the two pa-
pers lead to a power of 90% and 83%, respectively. Hence, using 
13/13 patients/controls is sufficient and powerful enough for find-
ing similar effect sizes.

Inclusion criteria were predetermined. For further analysis (such 
as group comparison) we had post hoc exclusion criteria such as a too 
large framewise displacement and/or bad registration to the standard 
brain (quality check after preprocessing the data).

Data were not anonymized and no blinding was performed during 
the analysis.

Finally, no informed consent for personal data sharing has been 
collected in this study. Therefore, the fMRI data are not publicly 
available.
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