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Abstract

Lipoproteins play a key role in regulating plasma and tissue levels of cholesterol. Apolipoprotein 

B (apoB)-containing lipoproteins, including chylomicrons, very-low density lipoprotein (VLDL) 

and low-density lipoprotein (LDL), serve as carriers of triglycerides and cholesterol and deliver 

these metabolites to peripheral tissues. In contrast, high-density lipoprotein (HDL) mediates 

Reverse Cholesterol Transport (RCT), a process by which excess cholesterol is removed from the 

periphery and taken up by hepatocytes where it is metabolized and excreted. Anti-atherogenic 

properties of HDL have been largely ascribed to apoA-I, the major protein component of the 

lipoprotein particle. The inflammatory response associated with atherosclerosis and ischemia-

reperfusion (I-R) injury has been linked to the development of mitochondrial dysfunction. Under 

these conditions, an increase in reactive oxygen species (ROS) formation induces damage to 

mitochondrial structural elements, leading to a reduction in ATP synthesis and initiation of the 

apoptotic program. Recent studies suggest that HDL-associated apoA-I and lysosphingolipids 

attenuate mitochondrial injury by multiple mechanisms, including the suppression of ROS 

formation and induction of autophagy. Other apolipoproteins, however, present in lower 

abundance in HDL particles may exert opposing effects on mitochondrial function. This chapter 

examines the role of HDL-associated apolipoproteins and lipids in the regulation of mitochondrial 

function and bioenergetics.
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Introduction

HDL serves a prominent anti-atherogenic function by mediating RCT. RCT is initiated by 

the association of apoA-I in lipid-poor HDL particles with the ATP-binding cassette 

transporter A1 (ABCA1) on macrophages and other target cells (1). This interaction allows 

HDL to act as an acceptor for cholesterol. Lipid-poor HDL can subsequently be converted to 

a “mature” HDL particle via the action of the HDL-associated enzyme lecithin-cholesterol 

acyltransferase (LCAT). LCAT activation converts HDL from a nascent discoidal to a mature 

spherical form and thus increases the cholesterol carrying capacity of the particle. Mature 

HDL is thought to mediate cholesterol efflux via an interaction with the ABCG1 transporter 
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(1). The subsequent binding of apoA-I containing HDL particles to the scavenger receptor 

B1 (SRB1) on hepatocytes permits the unloading of cholesterol which is ultimately secreted 

as bile (2, 3). By this mechanism, HDL is thought to attenuate inflammatory injury and 

reduce atheroma formation (4).

In addition to apoA-I, HDL also serves as a carrier for other exchangeable apolipoproteins, 

regulatory proteins and anti-oxidant enzymes. Recent proteomic analyses have revealed that 

more than 85 proteins may associate with HDL particles (5). This observation suggests that 

HDL subspecies exist that subserve a variety of cellular functions (5). Indeed, it is now 

appreciated that HDL possesses prominent anti-inflammatory and anti-oxidant properties 

that are independent of its ability to efflux cholesterol (6-8). Paraoxonase 1 (PON1) and 

platelet-activating factor acetylhydrolase (PAF-AH) are esterases that bind to helical regions 

of apoA-I (9). These enzymes are important anti-oxidant enzymes that catalyze the 

hydrolysis of oxidized phospholipids (10). Data also suggest that the HDL-associated 

lysosphingolipid sphingosine 1-phosphate exerts anti-inflammatory effects. Thus, both 

protein and lipid components of HDL may help to maintain cellular homeostasis. The 

observation that circulating levels of HDL inversely correlate with mitochondrial DNA 

damage in humans suggest a specific role for HDL in maintaining mitochondrial integrity 

(11).

Hypercholesterolemia is a major, cardiovascular risk factor which contributes to the 

pathogenesis of atherosclerosis, metabolic syndrome and diabetes. Chylomicrons, VLDL 

and LDL are apoB-containing lipoproteins that serve an important function by delivering 

cholesterol and triglycerides to peripheral cells. These particles, however, are susceptible to 

oxidative modification and may adopt pro-atherogenic properties. The uptake of oxidized 

LDL (oxLDL) by intimal macrophages is a well-characterized component of atherosclerotic 

plaque formation (12, 13). Mitochondria are principal sites of ROS formation in the cell and 

are also targets for redox injury (11, 14-18). An increase in plasma cholesterol and 

triglycerides has been implicated in the development of mitochondrial dysfunction (19). 

Lysophosphatidylcholine (lysoPC), a pro-inflammatory lipid associated with oxLDL, 

induces mitochondrial ROS formation and increases permeability in intact cells and isolated 

mitochondria (20-22). These responses are also induced by I-R injury. An increase in 

oxidant formation thus damages mitochondrial structural elements and impairs respiration 

by reducing oxidative phosphorylation and ATP formation (23). Irreversible damage occurs 

upon dissipation of mitochondrial membrane potential (ΔΨm) and opening of the 

mitochondrial permeability transition pore (mPTP). HDL possesses anti-inflammatory and 

anti-oxidant properties that protect mitochondria from injury. The goal of this chapter will 

be to discuss mechanisms by which HDL-associated proteins and lipids modulate 

mitochondrial function and improve cell survival.

Mitochondrial Structure and Function

The mitochondrion is an energy producing organelle that generates ROS and heat as 

byproducts of oxidative phosphorylation (24). Mitochondria are found in all tissues but are 

most abundant in those with high metabolic requirements, such as cardiac and skeletal 

muscle (25). The mitochondrion is a double membraned organelle that contains its own 
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maternally-inherited DNA (26, 27). The oxidative phosphorylation complexes; Complex I 

(NADH: ubiquinone oxidoreductase), Complex II (succinate dehydrogenase), Complex III 

(CoQH2-cytochrome c reductase), Complex IV (cytochrome c oxidase), and Complex V 

(ATP synthase), are encoded by both the nuclear and mitochondrial genomes. Mitochondria 

utilize both electron and proton gradients in order to produce energy, in the form of ATP, 

while consuming oxygen. Electrons enter the electron transport chain at Complexes I and II 

and are then passed to Complex III via the Q cycle on coenzyme Q (28). Electrons are 

shuttled to Complex IV where cytochrome c is reduced. As oxygen is consumed at Complex 

IV, cytochrome c is reoxidized, and water is formed. As the electrons are shuttled through 

the complexes, hydrogen ions are pumped from the mitochondrial matrix by Complexes I, 

III, and IV into the intramembrane space, thus establishing a protomotive force. As the 

protons flow down the gradient from the intermembrane space back into the mitochondrial 

matrix, ATP is produced at Complex V (27, 29).

The measurement of mitochondrial respiration can be performed using an oxygen electrode 

in isolated organelles. Chance and Williams defined the different states of mitochondrial 

respiration by measuring oxygen consumption in the presence of various mitochondrial 

substrates (30). Under control conditions, mitochondria remain in state 3.5 respiration, 

where there is a generous supply of substrates for the electron transport chain and ADP for 

ATP production. Using the oxygen electrode, State 3 respiration was defined as the amount 

of oxygen consumed in the presence of pyruvate, succinate and ADP. State 4 respiration 

represents oxygen consumption after ADP has been fully converted to ATP. Currently, 

extracellular flux analysis represents state-of-the-art technology for the measurement of 

mitochondrial function in whole cells rather than isolated mitochondria. Endogenous 

substrates required for respiration are found within the cell. Under these conditions, 

inhibitors of the mitochondrial complexes can be administered to cells in order to determine 

different indices of mitochondrial function including: basal and maximal mitochondrial 

respiration; oxygen consumption required for ATP production; proton leak; and non-

mitochondrial oxygen consumption (31). Development of this technology has revolutionized 

the field of mitochondrial biology (31, 32).

Under normal physiological conditions, some electrons may spill off of the electron 

transport chain and react with oxygen to form superoxide anion. Complexes I and III are the 

principal sources of ROS during oxidative phosphorylation (33). At low levels of production, 

ROS can act as signaling molecules. When produced in excess, however, ROS induce 

peroxidation of cellular lipids and proteins, damage mitochondrial and nuclear DNA and 

impair cell division. It follows that mitochondrial oxidative phosphorylation is significantly 

impaired. Bioenergetic dysfunction ensues and is associated with dissipation of ΔΨm and 

opening of the mPTP (34). mPTP induction subsequently leads to mitochondrial swelling 

and cell death (24, 33). The antioxidant enzyme manganese superoxide dismutase is present 

in mitochondria and reduces superoxide to hydrogen peroxide, thus minimizing injury. The 

ability of the mitochondria to clear ROS thus increases cell survival. Schriner and colleagues 

reported that overexpression of mitochondrially targeted catalase in cardiac and skeletal 

muscle resulted in an increase in murine longevity (35). Mitochondrial DNA damage in 

myocytes, as assessed by 8-hydroxyguanosine (8-OhdG) formation, increased with age but 

was attenuated by catalase overexpression in these mice (35). Atherosclerosis and I-R injury 
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are common cardiovascular disorders that are associated with the development of 

mitochondrial dysfunction. Defects in electron transport and oxidative phosphorylation 

enhance ROS formation resulting in mitochondrial injury and the induction of apoptosis via 
the cleavage of caspase 9. In a mouse model of myocardial infarction, ROS production 

damages both mitochondrial DNA and proteins, resulting in decreased enzymatic activities 

of mitochondrial Complexes I, III and IV (36). Further, coronary I-R injury is associated 

with opening of the mPTP leading to cell death (37). Ongoing studies are assessing the 

effects of mitochondrially-targeted antioxidant therapies on the development and 

progression of cardiovascular disease (38).

Mitochondrial Clearance

Cells utilize a mitochondrial clearance mechanism termed autophagy in order to avoid cell 

death secondary to injurious stimuli. The term autophagy was coined by Christian De Duve 

in the 1960s and is derived from the Greek words auto (self) and phagy (eating) (24, 39, 40). 

Today, we know that there are three main types of autophagy: 1) macroautophagy (usually 

termed autophagy); 2) chaperone mediated autophagy; and 3) microautophagy (41). 

Autophagy was first characterized as a response to nutrient starvation and was found to be 

associated with inactivation of the mammalian target of rapamycin (mTOR) (24, 39, 40). 

Autophagy breaks down macromolecules and recycles their components not only to preserve 

cellular energy but also to clear damaged proteins and mitochondria (24, 39, 40). More than 

30 AuTophagy-related Genes (ATG) are conserved from yeast to mammals and participate 

in autophagy at different steps throughout the process (42, 43).

Mitochondria can be cleared through macroautophagy, but have also been shown to utilize 

different ATG proteins to selectively remove damaged mitochondria via mitophagy (44). As 

noted above, mitochondria contain their own genome which lacks compact chromatin 

structure and, compared to nuclear DNA, have a less effective replication and repair system 

(45). Further, since mitochondria are the primary cellular producer of ROS, and the 

mitochondria contains highly reactive iron sulfur clusters, mitochondria are 10-20 times 

more likely to accumulate DNA damage compared to nuclear DNA. Mitophagy is controlled 

either in conjunction with general macroautophagy or selectively through specific 

mitophagy genes. AMPK is activated in response to decreased intracellular ATP, and then 

phosphorylates the Atg1 homologs ULK1 and ULK2 to activate both general 

macroautophagy and mitophagy (46). AMPK or ULK1 deficient hepatocytes exhibit 

accumulation of p62, ubiquitin aggregates and abnormal mitochondria (46). In the context of 

atherosclerosis and I-R injury, mitochondria are damaged and are more likely to produce 

ROS and less ATP. Mitophagy plays an important role in attenuating apoptosis or necrosis 

by clearing damaged mitochondria. This prevents the release of cytochrome c, apoptosis-

inducing factor (AIF) and other apoptotic factors that can cause the cell to swell and burst. 

Mitochondrial turnover is thus essential for cell survival.

Mitochondria isolated from rodent hearts have an average half-life of 16-18 days (47). In 

rodents exposed to hypoxic conditions, it was shown that mitochondrial half-life is reduced 

and is associated with a decrease in cardiac cytochrome c content. Further, there was an 

increase in mitochondrial biogenesis suggesting that formation of new mitochondria is an 
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important response to I-R injury (48). It is well known that starvation can induce both 

macroautophagy and mitophagy, but more recent data suggest that autophagy and mitophagy 

can be initiated by ischemia (44, 49, 50). The induction of autophagy is essential for the 

protective effects of ischemic pre- and post- conditioning in the heart (51-53). Parkin, pink1 

and related proteins play an important role in mitophagy and mitochondrial turnover (54). In 

parkin- and pink1-deficient mice, there is an exacerbation of I-R injury, suggesting that the 

clearance of damaged mitochondria is an essential component of ischemic pre-conditioning 

(55, 56). Since mitochondrial biogenesis and turnover are tightly regulated and have major 

effects on outcomes, further treatments for heart disease should utilize these pathways in 

drug discovery.

Mitochondria and Cell Survival Mechanisms

Cardiac ischemia arises in response to unstable angina and acute myocardial infarction (57). 

Upon reperfusion, significant injury occurs at the level of the mitochondrion (57-59). Due to 

the high energy demands of the heart, I-R injury significantly impairs mitochondrial 

respiration. This is associated with increased ROS formation, uncoupling of oxidative 

phosphorylation and opening of the mPTP (60). mPTP opening is associated with 

dissipation of the ΔΨm, calcium influx and the release of pro-apoptotic factors (59, 61). 

Ischemic pre-conditioning and post-conditioning have been shown to preserve mitochondrial 

function thus reducing myocardial reperfusion injury (62-64). These conditioning protocols 

are characterized by brief disruption of blood flow prior to sustained ischemia and 

reperfusion and result in the activation of two major cell survival pathways (62-64). The 

Reperfusion Injury Salvage Kinase (RISK) pathway is comprised of the pro-survival kinases 

phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and extracellular regulated 

kinase 1/2 (ERK1/2) (58, 65-68). These enzymes phosphorylate multiple substrates in the 

cell that converge to inhibit opening of mPTP (65, 69-72). Glycogen synthase kinase 3 beta 

(GSK3β) appears to be an important target for RISK-dependent cardiomyocyte survival (65, 

73). Phosphorylation of GSK3β reduces its enzymatic activity. Inactive GSK3β attenuates 

mitochondrial injury by increasing Bcl-2 anti-apoptotic activity, inhibiting the translocation 

of pro-apoptotic Bax to the outer mitochondrial membrane and preventing mPTP induction 

via stabilization of the mPTP regulatory protein cyclophilin D (69, 74). The Survivor 

Activating Factor Enhancement (SAFE) cascade is an alternate pathway for mitochondrial 

preservation (58, 75). TNFα activates the SAFE pathway by binding to TNF receptor type 2 

(TNFR2) (58, 76). TNFR2 engagement results in the activation of Janus kinase (JAK) which 

phosphorylates the signal transducer and activator of transcription 3 (STAT3) (58). The 

SAFE pathway has been shown to reduce infarct size in animals undergoing I-R injury by a 

mechanism involving STAT3 phosphorylation and inhibition of mPTP opening (77). While 

the RISK and SAFE pathways preserve mitochondrial function by increasing the activity of 

specific signaling intermediates, data suggest that crosstalk between these pathways occurs, 

with stabilization of the mPTP as a final common outcome (62, 75).

HDL And ApoA-I Preserve Mitochondrial Function

Lipid peroxides present in oxLDL have been shown to stimulate ROS formation and impair 

oxygen consumption at Complexes I, II/III, and IV of the respiratory chain, resulting in 
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mitochondrial dysfunction (78, 79). The HDL-associated protein PON1 performs an 

important antioxidant function by hydrolyzing cholesteryl esters and phospholipids in 

oxidized lipoproteins (79). PON1 may thus preserve mitochondrial function due to its ability 

to degrade oxidized lipid species. In contrast to this indirect effect of HDL-associated 

PON1, a direct role for apoA-I and the lysosphingolipid sphingosine 1-phosphate (S1P) in 

mediating cardiomyocyte survival has been reported (78-81). Infarct size in apoA-I−/− mice 

undergoing coronary artery ligation/reperfusion is significantly increased compared to 

lesions in wildtype mice (82). This correlated with a reduction in Coenzyme Q (CoQ) in 

mitochondria isolated from apoA-I−/− mice. CoQ deficiency was associated with a 

significant reduction in electron transfer from Complex II to Complex III (82). In related 

studies, it was shown that exogenous administration of CoQ restored mitochondrial CoQ 

levels and attenuated infarct size in apoA-I−/− mice (82). These results suggested that apoA-I 

plays a key role in maintaining the coupling of electron transport proteins.

Data suggest that HDL, similar to ischemic pre-conditioning and post-conditioning, prevents 

mitochondrial injury via activation of RISK and SAFE survival cascades (83). The SAFE 

pathway influences mitochondrial function in several ways. First, STAT3-mediated nuclear 

transcription results in up-regulation of anti-apoptotic Bcl-2 and the antioxidant genes 

manganese superoxide dismutase and metallothionein while inhibiting pro-apoptotic 

Bax/Bad expression (62, 84). STAT3 has also been shown to regulate the electron transport 

chain and mitochondrial respiration (84, 85). STAT3 gains access to the mitochondrion with 

the assistance of the chaperone protein GRIM-19 (86). At this locus, STAT3 inhibits 

Complex I and II respiration and the release of cytochrome c (84). It is proposed that STAT3 

ultimately protects mitochondria by reversibly uncoupling electron flow between respiratory 

complexes, reducing ROS formation and preventing mPTP induction (84, 87-89). 

Administration of apoA-I to rodents prior to coronary artery occlusion attenuates 

morphologic changes associated with ischemic injury and reduces infarct size (83). 

Consistent with known targets of the RISK and SAFE signaling cascades, apoA-I treatment 

increased the phosphorylation of Akt and GSK3β. The infarct-sparing response to apoA-I 

was significantly reduced in animals treated with inhibitors of Akt, ERK1/2 and JAK/STAT 

(83). These data suggested that the inhibitory effect of apoA-I on myocardial infarct size was 

due to activation of both RISK and SAFE survival pathways, resulting in attenuation of 

mitochondrial injury.

HDL-Associated Sphingosine 1-Phosphate Influences Mitochondrial 

Function

The lipid composition of HDL plays an important role in determining the function of the 

lipoprotein particle (90, 91). Lipid species maintain the structural integrity of HDL and 

regulate the activities of HDL-associated proteins (92). Data suggest that the 

lysosphingolipid S1P of HDL plays an important role in cardioprotection. While S1P is 

synthesized in hematopoietic and endothelial cells, HDL serves as its principal carrier in 

plasma (93-95). S1P has been shown to act as an inducer of both the RISK and SAFE 

pathways (80, 96, 97). Cardiomyocyte responses to S1P actions are mediated by multiple 

receptor isoforms (S1P1, S1P2 and S1P3) (80, 98-100). Addition of HDL or purified S1P to 
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neonatal rat cardiac cardiomyocytes activates S1P2 receptors resulting in STAT3 

phosphorylation. In contrast, HDL that is depleted of S1P fails to support STAT3 

phosphorylation (96). HDL treatment was shown to activate Akt and ERK1/2 pathways via 
distinct S1P receptors in mouse cardiomyoctyes exposed to hypoxia-reoxygenation (98). 

S1P1 binding resulted in activation of ERK1/2, while S1P3 induced Akt activation. Under 

these conditions, levels of phosphorylated GSK3β, a known inhibitor of mPTP opening, 

were increased (98). This response was inhibited by S1P receptor blockers and the PI3K 

inhibitor wortmannin, suggesting that S1P reduces cardiomyocyte injury by activating the 

RISK pathway (98). Numerous in vivo studies support a role for S1P in the activation of 

RISK and SAFE signaling cascades in the context of I-R injury and heart failure (80, 98, 

101-103).

Cardioprotective responses to HDL and S1P are ultimately mediated at the level of the 

mitochondrion. Administration of HDL to mice undergoing I-R injury reduces infarct size in 

a concentration-dependent manner (104). This response was associated with STAT3 

phosphorylation and inhibition of mPTP opening in isolated cardiomyocytes. Protective 

effects at the level of the mitochondrion were abolished in TNFα−/− and cardiomyocyte-

specific STAT3−/− mice, suggesting that STAT3 mediates the activation of the SAFE 

pathway (105). Forkhead box O-1 (FOXO-1) is a transcription factor that is known to 

increase ROS formation and apoptosis in the non-phosphorylated state (106). While the 

RISK pathway and PI3K/Akt activation are associated with the inactivation of FOXO-1, data 

suggest that the SAFE survival pathway also modulates FOXO-1 activity (100, 106). S1P 

stimulated the nuclear phosphorylation/inactivation of FOXO-1 in a manner that was 

blocked by both a JAK/STAT3 and PI3K inhibitor (100). These observations suggest that the 

S1P-dependent phosphorylation of FOXO-1 may represent a point of convergence for the 

RISK and SAFE survival cascades.

Finally, data show that S1P regulates Complex IV assembly and cellular respiration in 

mitochondria through an interaction with mitochondrial prohibitin-2 (PHB2) (107, 108). 

PHB2 is a scaffold protein which functions to stabilize the structure of the inner 

mitochondrial membrane (109). Disruption of S1P-PHB2 binding abolishes the 

cardioprotective response of cardiomyocytes to ischemic pre-conditioning. Under this 

condition, a reduction in oxidative phosphorylation was associated with opening of mPTP 

and mitochondrial injury (59, 72). These data, therefore, suggest that S1P and PHB2 

stabilize Complex IV and reduce ROS formation while also supporting oxidative 

phosphorylation (107).

HDL and Autophagy Induction

Mitochondrial damage induced by I-R injury releases apoptotic factors that damage 

neighboring mitochondria. It has been proposed that autophagy serves a cytoprotective role 

by clearing damaged mitochondria and limiting potentially deleterious effects on 

neighboring organelles (110, 111). Ischemia initiates autophagy by inducing the de-

phosphorylation and inactivation of mTOR which normally acts as a suppressor of 

autophagy (112, 113). An increase in the ratio of AMP/ATP concurrently induces AMP-

activated protein kinase (AMPK) and stimulates autophagy via multiple mechanisms. The 
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vacuolar protein sorting-34 (Vps34) is a class III PI-3 kinase that initiates phagophore 

formation through its association with beclin1 (113). This pre-autophagosomal structure 

engulfs cytoplasmic components, including damaged mitochondria. 

Phosphatidylethanolamine (PE) and microtubule-associated protein light chain-3 (LC3 I) 

interact to form the conjugated product LC3 II. LC3 II and the adaptor protein p62 are 

recruited to yield the mature autophagosome (112). The autophagosome then fuses with 

lysosomes where ingested products are digested. Inhibitors of autophagy promote ROS 

formation and aggravate mitochondrial injury in response to I-R (114). They have also been 

shown to negate cell survival mechanisms associated with ischemic pre-conditioning. It 

follows that autophagy contributes to the cytoprotection associated with pre-conditioning 

(52, 115). A role for S1P in the inhibition of mTOR and activation of autophagy has been 

reviewed (116, 117). It follows that inhibitors of S1P formation also prevent the induction of 

autophagy (118). As the principal carrier of S1P, HDL may induce autophagy as a cell 

survival mechanism. In support of this, it was shown that HDL inhibits mTOR activity, 

stimulates the expression of LC3 II and stimulates the formation of autophagosomes (119).

Alternate Apolipoproteins and Mitochondrial Function

In addition to apoA-I and apoB, other apolipoproteins (i.e., apoJ, apoM, apoC and apoO) 

serve as regulatory molecules for cholesterol homeostasis (120). Recent data also suggest a 

role for these apolipoproteins in the regulation of mitochondrial function. ApoJ, also known 

as clusterin, is a glycoprotein expressed ubiquitously during development and in adults and 

is associated with small, dense HDL3 particles (121-123). Due to the presence of disulfide 

bonds, apoJ possesses antioxidant properties that inhibit ROS-dependent injury and preserve 

mitochondrial function (24). In the H9c2 cardiomyocyte cell line, it was shown that apoJ 

protects against ROS-induced apoptosis by activating Akt and GSK-3β, thus suggesting a 

role in the activation of the RISK survival cascade (124).

ApoM is apolipoprotein that accounts for approximately 5% of the protein content of HDL. 

A major function of apoM is to attenuate atherosclerosis by stimulating the formation of 

small, dense preβ-HDL particles that play an important role in RCT (125-128). ApoM 

protects mitochondrial function by virtue of its ability to bind to S1P and facilitate its 

incorporation into HDL (101, 127, 129, 130). The relationship between apoM and S1P-

mediated cardioprotection has been evaluated in a murine model of I-R injury (131). Over-

expression of apoM in mice was accompanied by a significant reduction in myocardial 

infarct size and leukocyte accumulation (131). The underlying mechanism of apoM-S1P-

induced cardioprotection was due to inhibition of cardiomyocyte cell-cell coupling (131). 

The passage of death signals through gap junctions was reduced, resulting in attenuation of 

I-R-induced cardiomyocyte injury (131).

ApoC is an exchangeable apolipoprotein associated with HDL as well as apoB-containing 

lipoproteins. Three structurally distinct isoforms (apoC-I, apoC-II and apoC-III) have been 

identified that exert differential effects on lipid metabolism, ROS formation, mitochondrial 

function and cell death. (132). Panin and colleagues have tested effects of these apoC 

isoforms on oxidative phosphorylation in rat liver mitochondria (133). Using palmitoyl 

carnitine as a substrate for oxidative phosphorylation, it was shown that apoC-III, but neither 
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apoC-I nor apoC-II, inhibited State 3 respiration (133). At higher concentrations of apoC-III, 

the rate of oxygen consumption was reduced ~70%, and oxidative phosphorylation was 

completely blocked (133). These data were the first to show an inhibitory effect of ApoC-III 

on mitochondrial function. Other data support a role for apoC-I in the development of 

mitochondrial injury in human aortic smooth muscle cells (134). Enrichment of HDL with 

apoC-I was shown to induce cell death in a neutral sphingomyelinase (N-SMAS) dependent 

manner, with the production of ceramide from N-SMAS stimulating the release of 

cytochrome c from the mitochondria, the cleavage of caspase 3 and apoptosis. The increased 

cell death of the aortic smooth muscle cells incubated with ApoC-I may account for the 

unstable plaque formation seen in patients with hypercholesterolemia (134). Interestingly, 

apoC-I enrichment of HDL was associated with a reduction in HDL-associated apoA-I, 

suggesting that loss of apoA-I and its cytoprotective effects is a component of apoC-I 

mediated apoptosis (134).

Apoliprotein O is a 198 amino acid protein which is found in association with HDL, LDL 

and VLDL particles (135). ApoO is up-regulated by metabolic stress in the diabetic heart 

where it is thought to play a role in reducing myocardial injury by preventing macrophage 

lipid accumulation (135). ApoO and the related apoO-like protein have also been shown to 

stabilize the inner mitochondrial membrane and the cristea (136-138). In contrast to this 

report, over-expression of apoO was shown to impair cardiac function and degrade 

mitochondrial structure in cardiomyocytes of hypercholesteroleic mice (139). This 

observation suggested a pathogenic role for apoO in obesity. To further understand the 

pathogenic mechanism of apoO, Turkeih and colleagues developed a stable cardiac myoblast 

cell line that overexpressed apoO. These cells were characterized by an increase in 

mitochondrial respiration, fatty acid uptake and metabolism, ROS formation and apopotosis 

compared to control cells (139). It was suggested that an increase in apoO expression 

promotes the transition from mitochondrial dysfunction to the development of overt 

cardiomyopathy (139). Further research is required to delineate the role of apoO in diverse 

cardiovascular pathologies.

Conclusion

While HDL plays an important anti-atherogenic role by mediating RCT, it is also an active 

signaling particle that possesses anti-inflammatory, anti-oxidant and anti-apoptotic 

properties. HDL-associated proteins and lipids play an important role in the preservation of 

mitochondrial function. The anti-oxidant enzyme PON1 prevents damage to respiratory 

complexes by degrading oxidized lipids such as lysoPC (140). ApoA-I also protects 

mitochondria by multiple mechanisms. Through an interaction with CoQ, apoA-I stabilizes 

complex II and inhibits ROS-mediated damage to respiratory complexes (82). ApoA-I and 

the HDL- associated lipid S1P also protect mitochondria via the activation of RISK and 

SAFE survival pathways (83). Akt, ERK1/2 and JAK/STAT3 are critical mediators of these 

cell survival cascades. The cytoprotective response to S1P is due to an interaction with 

cellular S1P receptors, resulting in activation of JAK/STAT3 signaling. Binding of apoA-I to 

ABCA1 is also reported to activate STAT3 signaling and attenuate inflammatory injury 

(141). It has been proposed that phosphorylated FOXO-1 and GSK3β are final, common 

effectors of these pathways and improve cell survival by attenuating mitochondrial ROS 

White et al. Page 9

Adv Exp Med Biol. Author manuscript; available in PMC 2018 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formation, mPTP induction and apoptosis (100, 142). Autophagy represents an additional 

survival mechanism activated by apoA-I. Under these conditions, ROS-dependent injury 

may be reduced via the effective clearance of damaged mitochondria.

The ability of HDL to preserve mitochondrial function may be attenuated under pathological 

conditions. A reduction in circulating HDL concentration is associated with a number of 

inflammatory disorders (143, 144). Under these conditions, depletion of apoA-I, PON1, 

apoM and apoJ from HDL particles may result in a loss of function (143, 145-148). A 

decrease in apoM may ablate the protective effects of S1P on mitochondrial function. This 

response may augment the vascular leakage observed in patients with sepsis (149). 

Lipoprotein oxidation is also associated with a reduction in S1P levøs and accumulation of 

pro-inflammatory lysoPC in HDL particles (150). With respect to apoJ, a decrease in its 

association with HDL has been implicated in the development of insulin resistance and an 

increase in apoptosis (151). Finally, an increase in the incorporation of apoC in the HDL 

particle may increase mitochondrial injury and apoptosis. Under these conditions, HDL 

function may be further degraded by the displacement of apoA-I by apoC. These 

observations suggest that raising circulating HDL concentration as well as its functional 

properties represents an important therapeutic strategy to minimize mitochondrial injury.
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