
Novel transcriptional activity and extensive allelic imbalance in 
the human MHC region

Elizabeth Gensterblum1, Weisheng Wu2, and Amr H Sawalha1,3

1Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, 
Michigan 48109, USA

2BRCF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan 48109, USA

3Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 
Michigan 48109, USA

Abstract

The MHC region encodes HLA genes and is the most complex region in the human genome. The 

extensively polymorphic nature of the HLA hinders accurate localization and functional 

assessment of disease risk loci within this region. Using targeted capture sequencing and 

constructing individualized genomes for transcriptome alignment, we identified 908 novel 

transcripts within the human MHC region. These include 593 novel isoforms of known genes, 137 

antisense strand RNAs, 119 novel long intergenic noncoding RNAs, and 5 transcripts of 3 novel 

putative protein-coding human endogenous retrovirus genes. We revealed allele-dependent 

expression imbalance involving 88% of all heterozygous transcribed single nucleotide 

polymorphisms throughout the MHC transcriptome. Among these variants, the genetic variant 

associated with Behçet’s disease in the HLA-B/MICA region, which tags HLA-B*51, is within 

novel long intergenic noncoding RNA transcripts that are exclusively expressed from the 

haplotype with the protective but not the disease risk allele. Further, the transcriptome within the 

MHC region can be defined by 14 distinct coexpression clusters, with evidence of coregulation by 

unique transcription factors in at least 9 of these clusters. Our data suggest a very complex 

regulatory map of the human MHC, and can help uncover functional consequences of disease risk 

loci in this region.
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Introduction

The human major histocompatibility complex (MHC) is a highly complex polymorphic 

genomic region containing many important immune-related genes. This region includes the 

human leukocyte antigen (HLA) genes involved in both self-tolerance and antigen 

presentation. Polymorphisms within HLA genes have been associated with over 100 

autoimmune diseases and cancers, and allelotyping of translated genes has been the focus of 

extensive research (1–3). Intergenic variants within the MHC region, which may serve a role 

in gene regulation, have also been associated with several immune-related diseases (4, 5). 

However, the role of these intergenic variants is often not clear because regulation within the 

MHC is incompletely understood. The MHC contains a complex regulatory network 

including cis-acting and trans-acting regulation bridging inside and outside the MHC region 

(6, 7). Due to both the high rate of polymorphism and the complex regulatory networks 

within the MHC, the functional effects of specific disease-associated variants are difficult to 

elucidate.

Long intergenic noncoding RNAs (lincRNAs) have been extensively implicated in 

transcriptional regulation by recruitment of regulatory proteins. These proteins proceed to 

regulate gene expression by epigenetic modification, such as DNA methylation and 

chromatin modification (8, 9). Recruitment of transcription factors by lincRNAs has also 

been described (10). However, many lincRNAs are weakly expressed, and therefore may not 

be detected by RNA sequencing that spans the entire transcriptome.

Sequence-specific enrichment by magnetic bead pulldown has previously been used to 

sequence HLA genes for allelotyping, and to elucidate regulatory regions of individual genes 

(2, 4). We performed targeted enrichment of the entire MHC region in primary human 

monocytes using sequence-specific capture probes, followed by high throughput sequencing 

of DNA and RNA (CaptureSeq) (11), to allow for deep sequencing coverage of the MHC 

region. We targeted the entire MHC, including both intergenic regions and known splice 

variants. We identified genetic variants, then constructed personalized genomes to accurately 

align RNA sequences. After enrichment and alignment to personalized genomes, we were 

able to detect lowly expressed transcripts, and by including all genomic regions, we were 

able to identify novel intergenic transcripts. We also comprehensively assessed allelic 

expression imbalance and revealed extensive allele-specific expression throughout the entire 

MHC, indicating that polymorphism is a mechanism of complex transcriptional regulation in 

this region.

Materials and Methods

Probe Design

Sequence-specific capture probes were designed to target the complete reference genomic 

sequence of the MHC region (chr6:28.5 Mb-33.5 Mb, hg19), as well as splice sites for 

known transcripts the region contains. By including intergenic and intronic genomic regions, 

sequences that overlap with previously unannotated regions could be captured and 

subsequently sequenced; moreover, the same set of probes were designed to enable us to 

capture both DNA and RNA. This pool of 75 base long capture probes was designed to 

Gensterblum et al. Page 2

J Immunol. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target 35,895 sequences throughout the region. For the main reference allele, probes directly 

overlapped 75.9% of the genome, with 88% estimated total sequence coverage. However, 

because the MHC region is highly polymorphic, the seven alternative reference haplotypes 

for the MHC were used in addition to the reference allele to design probes targeting all 

reference genomic sequences in this region. In total, this region, including all alternative 

haplotypes, was 65.4% covered by the probes, and had a 75.7% estimated net coverage. Of 

the total target region, including alternate haplotypes, 10% was not covered due to shared 

homology with other parts of the genome, while 14.2% was not covered because of 

incomplete sequence information in the alternative haplotypes.

Isolation of Primary Monocyte DNA and RNA

Peripheral blood mononuclear cells (PBMCs) isolated from 12 healthy individuals were 

initially collected by density gradient centrifugation and immediately stored in liquid 

nitrogen. Cells were thawed, treated with 25 U/mL benzonase, and incubated at 37°C in 

RPMI/10% heat inactivated fetal bovine serum for 90 minutes. Thawed PBMCs had a 

minimum viability of 90%, with an average viability of 98.1% ± 3.6%, measured by tryphan 

blue staining. Primary monocytes were then isolated from thawed peripheral blood 

mononuclear cells via negative selection using the Pan Monocyte Isolation Kit, following the 

manufacturer’s instructions (Miltenyi Biotec Inc., San Diego California). The remaining 

monocyte-depleted PBMCs were flushed from the magnetic column, and DNA was isolated 

using the DNeasy Blood and Tissue Kit (Qiagen, Hilden Germany). RNA was isolated from 

primary monocytes using the Direct-zol RNA Isolation Kit (Zymo Research, Irvine 

California), and then DNase treated using the TURBO DNA-free kit (Invitrogen, Carlsbad 

California). The purity of the isolated monocytes was measured by flow cytometry using the 

iCyt Synergy SY3200 cell sorter (Sony Biotechnology, Inc, San Jose California), staining 

with APC/Cy7 anti-CD14 (BioLegend, San Diego California). Monocyte purity was found 

to be greater than 90%.

DNA and RNA Sequencing

RNA integrity and concentration was verified using the Agilent Bioanalyzer (RIN> 8) 

(Agilent Technologies, Santa Clara California). A minimum of 500ng RNA was processed 

per sample. RNA was ribo-depleted using the NEBNext rRNA Depletion Kit (Human/

Mouse/Rat) (New England Biolabs, Ipswich Massechusetts), and sequencing libraries were 

prepared for every DNA and RNA sample. Sequence-specific magnetic bead capture was 

performed on DNA and RNA libraries according to the manufacturer’s instructions, using 

the custom-designed probes (SeqCap EZ Choice XL Library System, Roche Nimblegen, 

Inc, Madison Wisconsin). Samples were multiplexed, four samples per capture reaction. All 

post-capture gDNA libraries were sequenced in one lane, while all post-capture cDNA 

libraries were sequenced in another. All samples were sequenced with the Illumina HiSeq 

2500, with paired, 125 bp reads.

Developing Individualized Genotypes

DNA reads were quality trimmed using Trimmomatic, then aligned to the hg19 reference 

sequence using the Burrows-Wheeler aligner (BWA MEM) (12). Duplicate sequences were 

then removed using Picard, and indels were processed using GATK (13–15). From these 
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aligned reads, SAMtools was used to generate an mpileup file, then VarScan mpileup2snp 

was used to identify SNPs (16, 17). For each individual, SNPs were called based on 

variation from the reference genome (hg19), and all called SNPs have a total read depth of at 

least 8 and a maximum variant calling p value of 0.01. For all heterozygous SNPs, each 

allele also has a minimum variant-supporting read depth of 2, a minimum average variant-

supporting read base quality of 20, and a minimum allele frequency of 0.2. From these 

identified and quality filtered SNPs, individualized lists of variants were created for each 

sample. On average, 23,575 heterozygous variants were identified in the MHC region per 

individual. The average read depth on heterozygous variants identified in all samples was 

417 ± 95.2 with an average variant-supporting read base quality of 230.6 ± 11.7.

RNA Alignment and Assembly

RNA sequencing reads were quality trimmed using Cutadapt, then aligned to the human 

reference genome (hg19, chromosome 6, RefSeq transcriptome annotation) using GSNAP 

(18, 19). Alternate haplotypes for chromosome 6 in the reference genome were not used for 

alignment, to prevent errors from multi-mapped reads. RNA reads were aligned in a SNP-

tolerant manner, meaning that variants that were called from the DNA sequencing alignment 

were not included in the mismatch penalty scores for RNA reads. Reads that successfully 

aligned to the target region were assembled into transcripts using StringTie, guided by the 

Ensembl transcriptome annotation (20).

Identification of Novel Transcripts

During RNA assembly, transcripts were annotated using an Ensembl reference. To identify 

novel transcripts, we followed the following workflow (Figure S1). All transcripts that were 

successfully annotated using the Ensembl reference during alignment were excluded. Using 

CuffCompare, the remaining transcripts were annotated using Gencode Comprehensive v25 

(hg19) as a reference (21, 22). All transcripts were assigned class codes based on their 

relation to transcripts in the reference. All transcripts that were assigned the class codes I 

(intronic), J (novel isoform), U (intergenic), and X (antisense) were identified as novel, 

while transcripts containing all other class codes were defined as not novel. The remaining 

novel transcripts were annotated with CuffCompare using the human lincRNA catalog (23). 

The transcripts that were found to be novel using all three references were next filtered to 

include only transcripts with an FPKM of 0.1 in two or more samples.

The coding potential of each novel transcript was analyzed using the Coding Potential 

Analysis Tool (CPAT) (24). The sequence of each novel transcript was determined using 

genomic coordinates determined by StringTie and the sequence of the reference genome, 

and these sequences were used to determine coding potential for each transcript. Transcripts 

with a coding probability of 0.364 or greater were defined as putatively coding, while all 

others were defined as noncoding. All novel transcripts were categorized based on their 

Gencode annotation class codes and by these coding predictions.

Predicted Function of Coding Genes

Of the five putative coding transcripts that did not share exons with known genes, structure 

and function were predicted using IntFOLD3. Using the open reading frame predicted by 
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CPAT, the putative amino acid sequence was determined from the transcript sequences using 

A plasmid Editor (ApE). Using the IntFOLD3 pipeline, we predicted the tertiary structure of 

the novel peptides, guided by sequence homology with known proteins (25). In addition, 

putative ligand binding domains and gene ontology term annotation were predicted using the 

FunFOLD pipeline, which is integrated into IntFOLD3.

Retroviral Element Sequence Alignment

The five novel putative coding intergenic transcripts described were categorized based on 

their alignment to retroviral sequences. The predicted open reading frames of each of the 

five transcripts were translated into a protein sequence. Two transcripts that were isoforms of 

the same gene shared an open reading frame, so four protein sequences were generated. 

These sequences were aligned to the human proteome using protein-protein BLAST with the 

non-redundant protein sequences database(26). Each of these four sequences aligned to 

known retroviral elements (E Value < 1 × 10−10). Sequence alignments were visualized 

using MView(27).

Allele Specific Expression

Allele specific expression of aligned transcript and genomic reads at each heterozygous SNP 

was assessed using GATK ASEReadCounter under the default settings, which includes a 

read downsampling step (13, 14). Only alignments with base quality and mapping quality no 

lower than 20 were used. The read counts for each transcript were then normalized to 

genomic allele-specific read counts derived from DNA reads using GATK ASEReadCounter 

under the default settings. The DNA allelic imbalance (AI) ratio was first calculated for both 

the reference and alternate allele of each variant as follows: . 

Read counts for both alleles of each variant was then calculated from the following formula: 

.

SNPs containing allelic imbalance were defined by a chi-squared test p value less than 0.05, 

calculated based on the normalized read counts. Relative allelic imbalance for all expressed 

heterozygous SNPs was calculated as the reference SNP expression: total expression ratio. 

Heterozygous SNPs and relative reference allele expression for all individuals were merged 

based on SNP position and reference allele. Allele specific expression at rs76546355 was 

also confirmed using the program bam-readcount (28).

Co-expression Analysis

Co-expression networks were assigned using the R package WGCNA(29). This package 

clusters every sequenced transcript based on the normalized read counts (FPKM) in all 

twelve samples, using a weighted correlation network analysis. For initial quality filtering, 

all transcripts that were missing from more than one half of all samples were removed from 

analysis; 320 transcripts were removed. Samples were then clustered according to 

transcription patterns to remove any outlier samples; however, no outlier samples were 

observed. From this filtered set of 2753 genes, a co-expression network was created, with a 

soft-thresholding power of 7, a dendrogram cut height of 0.25, and a minimum cluster size 
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of 30 transcripts. All transcripts were categorized within an expression dendrogram, then 

successfully assigned to a co-expression cluster. A total of fourteen clusters were defined. 

The genomic localization of each cluster was visualized using Circos(30).

Transcription Factor Binding Site Enrichment Analysis

Transcription factor binding site enrichment analysis was performed for each of the fourteen 

co-expression clusters using GenomeRunner Web(31), which compares the genomic 

coordinates of each transcript to the genomic positions of known transcription factor binding 

sites, using a database that includes the non-cell specific binding patterns of 161 

transcription factors, measured via transcription factor ChIP-seq distributed by ENCODE. 

The coordinates for the promoter region of each gene in each coexpression cluster was used 

as input, defined as the 1500bp preceding transcriptional start sites. As a background for 

enrichment analysis, we included the promoter region of every gene within the MHC region, 

as annotated by the UCSC known genes list, and also included the novel genes that we have 

described. The UCSC known gene list contains an aggregation of gene annotations from 

across the RefSeq, GenBank, CCDS, Rfam, and tRNAscan-SE databases. Transcription 

factor enrichment was calculated for each co-expression cluster individually, and a cluster 

was called enriched for a specific transcription factor when an increased frequency of the 

target was observed in the cluster compared to the background (OR>1, chi-square p<0.05). 

Nine of the fourteen co-expression clusters were enriched for specific transcription factors.

HLA Typing

HLA allelotypes for each sample were determined using BWAkit. This pipeline calls types 

by aligning reads to each HLA gene using the BWA-MEM algorithm, and comparing the 

exons of each gene to alleles defined by IMGT/HLA. The called types (Table S1) are 

defined as the alleles that have minimal exonic mismatch with the individual’s sequence.

Sanger Sequencing

Allele-specific expression was validated by Sanger sequencing for the target variant 

rs76546355. RNA was saved from each individual before sequence-specific capture and was 

converted into cDNA using the Verso cDNA Synthesis Kit (Thermo Fisher Scientific Inc, 

Waltham, Massachusetts). This cDNA was then amplified via PCR, using primers that flank 

the target SNP (forward primer: TGCTTGCCTGTTGTGAGATG, reverse primer: 

AAGCAACAGTAATTTGGATCTTCC). The proportion of each allele represented in this 

PCR product was estimated using a Sanger sequencing trace file for each sample.

Results

Targeted genome and transcriptome sequencing in the human MHC region

We performed deep targeted genome and transcriptome sequencing of the human MHC 

region (Chromosome 6 (hg19): 28.5 Mb-33.5 Mb) in primary human monocytes. 

Constructing individualized genomes for aligning RNA sequencing reads generated by deep 

targeted transcriptome sequencing improved transcript alignment and characterization in is 

this complex polymorphic region. DNA sequence reads aligned against the reference 

genome human MHC region with a mean read depth of 334.8 ± 84.3 in all samples (Figure 
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S2). Genetic polymorphisms in each sample were identified and an individualized MHC 

genome in each sample was constructed. A total of 65,289 genetic variants relative to the 

reference genome were identified, including 62,449 genetic variants that are heterozygous in 

at least one sample.

Targeted RNA sequencing was performed following ribosomal RNA depletion, allowing for 

high density coverage with an average 36.3 million alignments to the MHC region, and a 

mean read depth of 594.5 ± 87.2 per gene in this region in all samples. RNA sequence 

alignment was performed in an individualized SNP-tolerant mode using DNA sequencing 

data from each sample to allow alignment to polymorphic loci identified in each 

corresponding sample. This strategy significantly enhanced successful alignment of 

transcript reads to the polymorphic MHC region, which coupled with highly dense targeted 

RNA sequencing, allowed for accurate identification of known and novel transcripts in the 

MHC region, including transcripts with low expression levels.

Identification and classification of novel transcripts within the MHC region

We identified a total of 3,072 transcripts aligned to the human MHC region in human 

primary monocytes. Of these, 908 transcripts were identified as novel transcripts that were 

present in at least 2 independent samples (Table S2). This includes 517 and 76 novel coding 

and noncoding transcript isoforms of known genes, respectively. In addition, we identified 

137 novel anti-sense strand transcripts, 119 lincRNA transcripts, 54 intronic noncoding 

RNA transcripts, and 5 transcripts of three novel coding genes (Figure 1).

Evidence for extensive cis allele-specific expression within the human MHC

Next, we evaluated the extent of allele-specific expression imbalance in MHC region 

transcripts that overlap with heterozygous single nucleotide polymorphisms identified using 

DNA sequencing. We show that 88% of heterozygous transcribed SNPs within the MHC 

region are associated with significant allele-dependent transcriptional imbalance, with 43% 

demonstrating extreme allele-dependent expression (>95% expression on either the 

reference or alternative allele) (Figure 2A). Indeed, allelic imbalance is observed in over 

69% of all heterozygous SNPs identified in our study within the MHC region (Table S3 and 
S4). This remarkably extensive allele-specific expression pattern was non-stochastic and 

consistent across independent samples in heterozygous SNPs that are present in two or more 

samples (Figure 2B and 2C). While the overall number of heterozygous SNPs with evidence 

of allelic expression imbalance was highest in the HLA class II gene region within the 

MHC, the frequency of transcribed SNPs with allelic imbalance relative to all transcribed 

SNPs was consistent throughout the HLA regions within the MHC (Figure 3 and Table S5).

To demonstrate allelic imbalance in a disease relevant locus in the MHC region, we 

examined the expression of novel transcripts that overlap with and include the SNP 

rs76546355 (rs116799036) localized between HLA-B and MICA. This genetic variant tags 

the most robust genetic association in Behçet’s disease (5). We show that rs76546355, 

previously thought to be intergenic, is expressed within four lincRNA transcripts we 

identified between HLA-B and MICA. Importantly, these four transcripts are exclusively 

expressed from the haplotype with the disease protective allele in this SNP. There was no 
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expression of these transcripts from the haplotype with the disease risk allele in 

heterozygous individuals (Figure 4). These data suggest evidence for haploinsufficiency 

involving the expression of novel lincRNAs, induced by a disease risk variant within the 

MHC region in a complex polygenic disease.

Co-expression patterns and transcription factor binding analyses identify transcriptional 
clusters in the human MHC transcriptome

We characterized the expression patterns of the transcripts within the MHC using a co-

expression network analysis. We defined a co-expression network including all aligned 

transcripts, based on the normalized read counts across all twelve samples, using a weighted 

correlation network analysis (WGCNA) (29). Based on this network, the transcripts were 

grouped into fourteen co-expression clusters, which do not localize to specific genomic 

regions within the MHC (Figure 5). Nevertheless, co-expression remains highly aggregated 

within individual clusters, and there is a high degree of separation between each cluster 

within the network (Figure S3).

We further described transcription factor binding site enrichment in each cluster (Table S6). 

Of the fourteen co-expression clusters, nine were enriched for specific transcription factors 

(OR>1, p<0.05). For these clusters, the transcription factor binding sites most significantly 

enriched were TCF3 (OR: 2.17, p: 8.06 × 10−7), ESR1 (OR: 2.72, p: 2.21 × 10−5), RFX5 

(OR: 1.68, p: 4.27 × 10−5), SMARCA4 (OR: 2.56, p: 2.10 × 10−4), GATA1 (OR:2.08, p: 

2.25 × 10−4), IKZF1 (OR: 4.80, p: 6.92 × 10−4), GRp20 (OR: 2.57, p: 2.39 × 10−3), CEBPD 

(OR: 1.52, p: 5.44 × 10−3), and SMARCA4 (OR: 3.68, p: 6.74 × 10−3), respectively. The 

enrichment of these specific transcription factor binding sites suggests that these nine 

clusters may show co-expression due to transcription factor-dependent co-regulation.

Identification of novel retroviral genes with the human MCH

We identified 3 novel genes with an open reading frame that are predicted to be protein 

coding within the human MHC region, and demonstrate gene expression at the mRNA level. 

Using protein function and structure prediction algorithms, two of the three coding genes we 

identified are predicted with very high and moderate certainty to be novel endogenous 

retroviral pol and gag genes, respectively (Figure 6). The structure and function of the third 

gene could not be predicted. The predicted amino acid sequences of all three genes were 

aligned to the human proteome using protein-protein Blast(26). Based on the homology 

between each novel sequence and the HERVs to which it is aligned, we predict that these 

genes are retroviral pol, gag, and gag proteins, respectively (Table S7).

Discussion

Variation within the MHC contributes to genetic risk of immune and inflammatory disease. 

However, this region is characterized by complex variation patterns that complicate 

identifying causal variants and their direct effects on disease etiology (32). Moreover, these 

complex variation patterns play a role in the complex alternative splicing and gene 

regulation networks that have been described in this region (7, 33). Quantification of MHC 

transcription by RNA sequencing has been limited by both the high rate of polymorphism 
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and the high rate of splice variants, resulting in limitations in RNA sequence alignment (18). 

Using individualized genomes to map RNA sequencing reads, we accurately measured gene 

and splice variant expression within the MHC, which can be used to further elucidate the 

functional effects of variations relevant to disease.

Sequence variation can affect the expression of transcripts by interfering with cis-regulation, 

such as altering promoter or enhancer activity, altering DNA methylation patterns, or 

altering the sequence of regulatory RNAs. Variants linked to these cis-effects (cis-eQTL) 

affect expression in an allele-specific manner. Haplotype-specific gene expression within the 

HLA, and allelic imbalance linked to cis eQTLs in autoimmunity have been previously 

described (4, 34). Our findings suggest extensive allele-specific expression throughout the 

MHC, which involves 88% of all transcribed SNPs in this region.

Many lincRNA transcripts are expressed at low levels, rendering them undetectable without 

sequence enrichment. By targeting the MHC region using sequence-specific capture probes, 

we identified novel noncoding transcripts throughout the region. As lincRNAs have been 

implicated in transcriptional regulation, this suggests a far more complex regulatory network 

within the MHC than what has been previously described. Variation within the MHC further 

affects the patterns of transcription regulation, due to allelic imbalance as we demonstrate.

The genetic association of polygenetic diseases within the HLA is complex, and often the 

identification of causal genetic variants is complicated by the extensive linkage 

disequilibrium within this region. While specific amino acid residues and classical HLA 

allelotypes have been considered to contribute to disease pathogenesis in several immune-

mediated diseases, our data highlight the importance of including regulatory effects of these 

disease-associated polymorphisms to better understand the functional role of genetic variants 

within the HLA.

When we compare the expression patterns of all transcripts across all twelve sequenced 

individuals, a pattern of co-expression develops. While the co-expression of genes does not 

intrinsically imply co-regulation, regulation by the same transcription factors is one 

mechanism by which co-expression can occur. After quantifying the enrichment of the 

transcription factors binding to the promoter regions of the transcripts in each cluster, we 

found that nine of the fourteen clusters were enriched for specific transcription factors. This 

suggests that regulation by these transcription factors may play a role in the expression 

patterns of the transcripts in each cluster. Some of the enriched transcription factors 

identified play a role in specific immunological processes. For example, one of these co-

expression clusters was found to be enriched for RFX5, a transcription factor that activates 

MHC class II expression by enhancing CIITA activity(35). Another transcription factor, 

enriched in a different cluster, CEBPD is directly involved in promoting macrophage 

activation, M1 macrophage polarization, and pro-inflammatory cytokine production in 

macrophages(36). The transcription factor GATA1 is involved in dendritic cell 

differentiation and survival(37). These enriched transcription factors each have a unique role 

in monocyte differentiation, suggesting that they have a role not only in determining co-

expression patterns of transcripts, but in downstream determination of cellular phenotypes.
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We found five novel putative coding transcripts, identifying three novel human endogenous 

retroviral elements (ERVs). ERVs comprise 8% of the human genome(38). Though 

mutations have silenced the expression of the majority of these elements, approximately 7% 

of all known ERVs are transcriptionally active(39). Moreover, mutations in these elements 

have been linked to diseases, including cancer(33) and multiple sclerosis (40). Translated 

ERVs have been shown to play a role in lymphocyte activation, and transcribed ERVs play a 

role in transcriptional regulation (41). The exact function of these novel ERVs, and their 

precise effects on transcription and immune function, has yet to be fully elucidated.

In summary, we performed deep sequencing of both the genome and the transcriptome, 

targeting the MHC region with sequence-specific capture probes in human monocytes. We 

accurately identified and quantified the expression of 908 novel transcripts in this region, 

including 123 transcripts aligning to regions previously thought to be intergenic. In addition, 

we uncovered extensive allele-specific expression imbalance within the MHC region, which 

appears to be non-stochastic, suggesting complex cis-acting transcriptional regulation 

throughout the human MHC. This allelic imbalance can have functional consequences upon 

disease risk loci within the MHC region.
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Figure 1. 
A flow chart (A) and pie chart (B) depicting and summarizing the filtering categories used to 

classify novel transcripts identified in this study. The categories for intronic, novel isoforms, 

antisense, and intergenic transcripts were defined via a CuffCompare annotation using the 

Comprehensive Gencode Resease 25 annotation (hg19) reference transcriptome. Coding 

potential of novel transcripts was predicted using CPAT.
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Figure 2. 
(A) Frequency distribution histogram of instances of allele-specific expression. The average 

relative expression (proportion of reads containing the reference allele) was calculated for all 

transcribed heterozygous SNPs identified in our study. Each bin spans a relative expression 

range of 0.05. (B) Variants in which the average relative expression of the reference allele is 

greater than 0.5, and in which the average relative expression is less than 0.5 (C). The 

relative expression of the reference allele in each SNP with allelic imbalance (binomial 

p<0.05) in two or more samples is represented on the Y axis. The reference allele is defined 

by the genotype of the reference genome, which is consistent across all samples. Relative 
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expression ranges from 0 (red) to 1 (blue). The allelic imbalance of specific SNPs is shown 

to be highly consistent across individuals.
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Figure 3. 
Histogram depicting the number of SNPs with allelic expression imbalance (A), and 

frequency of SNPs with allelic expression imbalance relative to all heterozygous SNPs 

detected in the MHC region (B). Each bin spans 5,000 base pairs.
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Figure 4. 
(A) The genetic variant rs76546355 (rs116799036) which explains the most robust genetic 

association for Behçet’s disease and previously thought to be in a non-transcribed genetic 

region is expressed within four lincRNA transcripts between HLA-B and MICA. (B) RNA 

sequencing revealed that these lincRNA transcripts are exclusively expressed from the DNA 

strand with the disease protective allele (allele G), and no expression was detected from the 

disease risk allele (allele A). RT PCR followed by Sanger sequencing confirmed expression 

of the novel lincRNA transcripts in this locus, and allele expression imbalance in 

rs76546355 (a representative chromatogram of seven heterozygous samples is shown) (C).
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Figure 5. 
All unique transcripts plotted according to genomic position within the MHC region 

(chr6:28.7Mb-33.5Mb (hg19)). Chromosome six position (labelled in Mb) is plotted on the 

outer ideogram, and each MHC class is marked by color. The MHC class I is shown in red, 

MHC class II is green, and MHC class III is blue. Each aligned transcript, including novel 

transcripts, were grouped into co-expression clusters using the normalized read counts from 

each sequenced individual (n=12). Every transcript is plotted according to position, and 

colored according to cluster identity (red, dark red, orange, yellow, lime green, green, light 

blue, dark blue, purple, magenta, pink, black, grey, and brown). Multiple isoforms of the 

same gene can be found in the same co-expression cluster, but this is not a requirement and 

is never the case across all isoforms of a gene. There is no localization of transcripts within 

individual co-expression clusters based on genomic position. Nine of the fourteen clusters, 

however, were enriched for specific transcription factors, the most significantly enriched 

transcription factor for each cluster is listed.
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Figure 6. 
Genomic position (hg19) and predicted protein structure of the three novel protein-coding 

genes identified in this study. (A) One protein-coding novel transcript (blue) contained 

within the intronic region of the gene XXbac-BPG308J9.3. (B) and (C) depicts novel protein 

coding transcripts (blue) in intergenic regions, near HLA-A and HLA-DRA, respectively. 

Each of these transcripts shares homology with endogenous retroviral elements. (D) The 

Predicted protein structure of transcript A (prediction p value= 1.17 × 10−4). This structure 

shares homology with an endogenous retroviral pol protein, and no predicted ligands are 

available. (E) The predicted protein structure of transcript C (prediction p value= 0.037). 

This structure shares homology with a retroviral gag protein, and is predicted to bind to a 

leucine residue (predicted active site amino acids are shown in green). In both D and E 
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coloring is based on secondary structure: alpha helices are purple, 3–10 helices are blue, 

beta sheets are yellow, beta bridges are tan, turns are cyan, and coils are white.
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