Table VI.
The estimated AUC and its 95% CIs on MammaPrint datasets by different methods.
Train set | Test set | PW | SW | MM | MVN | LR | Ridge | LASSO |
---|---|---|---|---|---|---|---|---|
Glas78 | Buyse307 | 0.72 (0.65, 0.78) | 0.65 (0.57, 0.73) | 0.48 (0.39, 0.57) | 0.56(0.47, 0.65) | 0.55 (0.45, 0.64) | 0.70 (0.62, 0.77) | 0.69 (0.61, 0.76) |
Glas84 | 0.70 (0.55, 0.83) | 0.62 (0.43, 0.78) | 0.65 (0.48, 0.81) | 0.61(0.45, 0.75) | 0.59 (0.42, 0.75) | 0.65 (0.46, 0.83) | 0.62 (0.44, 0.80) | |
Glas78 | 0.91 (0.84, 0.97) | 0.99 (0.98, 1.00) | 0.51 (0.39, 0.64) | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | 0.98 (0.95, 1.00) | |
Glas84 | Buyes307 | 0.69 (0.61, 0.76) | 0.64 (0.56, 0.72) | 0.55 (0.46, 0.64) | 0.57 (0.48, 0.65) | 0.57 (0.49, 0.66) | 0.69 (0.62, 0.76) | 0.64 (0.56, 0.73) |
Glas78 | 0.77 (0.66, 0.86) | 0.67 (0.55, 0.79) | 0.50 (0.37, 0.63) | 0.60 (0.48, 0.73) | 0.56 (0.43, 0.70) | 0.81 (0.71, 0.90) | 0.79 (0.68, 0.89) | |
Glas84 | 0.94 (0.87, 0.98) | 0.99 (0.96, 1.00) | 0.65 (0.51, 0.78) | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | 0.95 (0.89, 0.99) | 0.86 (0.71, 0.96) | |
Buyse307 | Glas78 | 0.80 (0.69, 0.89) | 0.74 (0.62, 0.85) | 0.49 (0.36, 0.63) | 0.71 (0.59, 0.82) | 0.76 (0.64, 0.87) | 0.82 (0.72, 0.91) | 0.82 (0.72, 0.90) |
Glas84 | 0.71 (0.56, 0.83) | 0.57 (0.38, 0.75) | 0.64 (0.48, 0.78) | 0.61 (0.46, 0.76) | 0.57 (0.39, 0.73) | 0.68 (0.52, 0.83) | 0.56 (0.41, 0.71) | |
Buyse307 | 0.76 (0.69, 0.82) | 0.88 (0.83, 0.91) | 0.55 (0.46, 0.63) | 0.91 (0.88, 0.94) | 0.92 (0.87, 0.96) | 0.82 (0.76, 0.87) | 0.82 (0.75, 0.87) |
AUC, area under the receiver operating characteristic curve; PW, pairwise; SW, stepwise; MM, min–max; MVN, multivariate normal; LR, logistic regression; LASSO, Least Absolute Shrinkage and Selection Operator.
The cases using re-substitution are italicized.