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Rotavirus is a nonenveloped, double-stranded, RNA virus belonging to the Reoviridae 
family and is the major etiological agent of viral gastroenteritis in young children and 
young animals. Remarkable progress in the understanding of the rotavirus cycle has been 
made in the last 10 years. The knowledge of viral replication thus far acquired is based on 
structural studies, the expression and coexpression of individual viral proteins, silencing 
of individual genes by siRNAs, and the effects that these manipulations have on the 
physiology of the infected cell. The functions of the individual rotavirus proteins have been 
largely dissected; however, the interactions between them and with cell proteins, and the 
molecular mechanisms of virus replication, are just beginning to be understood. These 
advancements represent the basis for the development of effective vaccination and 
rational therapeutic strategies to combat rotavirus infection and diarrhea syndromes. In 
this paper, we review and try to integrate the new knowledge about rotavirus entry, 
replication, and assembly, and pose some of the questions that remain to be solved. 
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INTRODUCTION 

Viral infections are responsible for a high degree of morbidity and mortality around the world. Thorough 
knowledge of the mechanisms of virus spread, target entry, replication strategy, and pathogenesis are 
quintessential to the control of the disease. A number of animal virus infections result in lysis of the host 
cell, which is usually due to disturbances in cell function induced by viral genome expression and viral 
protein synthesis. A progressive change in membrane permeability to both monovalent and divalent cations, 
and then to macromolecules of increasing size, is observed. These changes are linked to a disruption of 
membrane integrity preceding cell death. The nature of the cell membrane modifications at the molecular 
level and the identity of the viral products responsible for these modifications are fundamental aspects in 
understanding the mechanisms of cell permeabilization and lysis by viral infections[1].  

Finely, synchronized changes in the concentration of Ca
2+

 ions in the cytoplasm ([Ca
2+

]cyto) modulate 
a variety of intracellular functions both in physiological conditions and pathological states. Intracellular 
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[Ca
2+

] is regulated by interactions among transporters, pumps, channels , and binding proteins. This is a 
complex concert of events that requires the intervention of multiple pathways and mechanisms controlling 
influx and efflux. Calcium influx into the cytoplasm is due to either Ca

2+
 release from intracellular stores 

of the endoplasmic reticulum (ER) via IP3 or ryanodine-sensitive channels, or Ca
2+

 influx across the 
plasma membrane through a variety of Ca

2+
-permeable channels. Calcium efflux from the cytoplasm is 

the result of Ca
2+

 uptake by Ca
2+

 pumps of the ER (SERCA pump) and other transport mechanisms in 
other organelles, and extrusion by the Ca

2+
-ATPase and other transporters, such as Na

+
/Ca

2+
 exchange 

located at the plasma membrane[2,3].  
Among pathological processes, viral infections depend on disturbances of Ca

2+
 balance. Changes in 

Ca
2+

 homeostasis of the cells can be observed and Ca
2+

 may act as a messenger in the chain of events that 
leads to disease[4]. Perhaps the best characterized virus from this point of view is rotavirus and this was 
previously reviewed[5]. 

Rotavirus is a nonenveloped, double-stranded, RNA virus belonging to the Reoviridae family and is 
the major etiological agent of viral gastroenteritis in young children and young animals[6]. These viruses 
induce acute diarrhea and dehydration, which often require hospitalization. The prevalence of infection is 
similar in all countries; however, in developing countries, these infections represent an important cause of 
mortality in young children. Rotaviruses are responsible for around 500,000 deaths per year worldwide. 
Therefore, development of effective vaccination and therapeutic strategies to combat these viruses is of 
immediate concern. These require a basic understanding of the molecular mechanisms of virus 
replication. Two new rotavirus vaccines have recently been licensed that would diminish rotavirus disease 
among all children. However, vaccine efficacy in developing countries where disease prevention is 
required remains to be fully evaluated[7].  

Rotaviruses primarily infect the mature enterocytes of the tip of the intestinal villi of the jejunum and 
ileum[8]. Furthermore, it may cause extraintestinal infections[9,10,11]. Pathophysiology of rotavirus 
diarrhea is the result of many factors where changes in ionic homeostasis lead to dysfunction of the 
enterocyte, increased secretion, altered motility, cell death, and reduction of the absorptive surface of the 
intestine and hence malabsorption[8,12,13,14,15]. Disruption of the infected enterocytes may serve also 
to release virus progeny and products of viral synthesis, and a further amplification of the disease.  

Rotavirus infection of the host cell is characterized by a number of Ca
2+

-dependent virus-cell 
interactions[5]. During the replication cycle, from entry to the release of newly formed particles, the 
forming virions transit through different cellular compartments, each one characterized by a distinct 
[Ca

2+
] that is determinant for the replication process. In this paper, we review various aspects of the 

rotavirus replication cycle, focusing on the role of Ca
2+

 in entry and assembly of the new particles, and 
provide new elements on Ca

2+
 homeostasis changes during infection.  

ROTAVIRUS ENTRY  

Rotavirus entry into the host cell is a complex multistep process in which different domains of the 
rotavirus surface proteins interact with different cell surface molecules, which act as putative receptors on 
the plasma membrane.  

Rotavirus Structure  

The mature, infectious, rotavirus particle, 100 nm in diameter (including the spikes), is an icosahedral, 
triple-layered particle (TLP) containing a genome formed by 11 segments of double-stranded RNA that 
code for six structural (VP1, VP2, VP3, VP4, VP6, and VP7) and six nonstructural (NSP1–NSP6) 
proteins (Fig. 1)[16,17]. The most internal layer of the capsid, formed by the autoassembling VP2, 
encloses minor proteins (VP1 and VP3) and the genome. The intermediate layer is constituted by VP6 
organized in 260 trimers.  
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FIGURE 1. Schematic depiction of the structure of mature rotavirus particle (TLP). The 
three concentric capsid protein layers are colored such that red represents VP4 spikes, yellow 

is the VP7 layer forming the outer layer, blue is the VP6 layer, and green is the VP2 layer. 
The dsRNA segments (brown) are packed inside the core associated to the RNA polymerase 
complex (VP1 and VP3, red balls). No inference to stoichiometry is made. 

The outer layer contains two proteins, VP7 and VP4, which are involved in the interactions with a 
putative receptor(s) on the plasma membrane of the host cell and in cell penetration. This layer consists of 
260 trimers of the glycoprotein VP7, the major constituent of the layer, and 60 spikes of VP4 that 
protrude from the VP7 layer[18,19]. Each spike is composed of VP4 dimers; however, a third flexible 
molecule of VP4 seems to be inserted at its base[17,20,21].  

VP4 contains 776 amino acids and has been implicated in viral attachment, neutralization, virulence, 
host range, and immunity[22,23]. An efficient infectivity of rotavirus in cell culture requires trypsin 
cleavage of VP4 into two fragments, VP8* (28 kDa, aa 1–247) and VP5* (60 kDa, aa 248–776), both of 
which remain associated with the virion[24,25]. This hydrolysis seems to occur in physiological 
conditions, since rotavirus released in the gut has naturally cleaved VP4, probably by endogenous trypsin 
present in the tract[26]. VP5* contains a hydrophobic region (aa 385–404) that is homologous to the 
fusogenic region of the glycoprotein of α-viruses[27].  

VP4 spikes on virions have “head”, “body”, “stalk”, and “foot” regions, formed by VP8* and 
VP5*[20,28]. VP8* forms the “head” of the spikes and binds sialic acid in some rotavirus strains. 
Together with the N-terminus of VP8*, VP5* forms the spike “body”. The body is linked by an 
asymmetric stalk to a “foot”, which is formed by the carboxyl terminus of VP5* and buried beneath the 
VP7 shell. The rotavirus particles grown without trypsin have flexible and disordered VP4 spikes. The 
treatment of these viruses with extracellular trypsin results in only a partial recovery of spike structure 
and enhancement of infectivity[29]. A second rearrangement of VP4 has been proposed, leading to 
reorganization where each subunit folds back on itself, translocating a potential membrane-interaction 
peptide from one end of the spike to the other. This rearrangement may resemble the conformational 
changes of membrane fusion proteins of enveloped viruses[20].  

Calcium stabilizes the outer layer linked to the trimerization of VP7[30,31,32]. Decreasing the 
concentration of free Ca

2+
 solubilized the outer layer proteins VP4 and VP7 of TLP, generating a double-

layer particle (DLP). This treatment greatly reduces the specific infectivity of the virus. All rotavirus 
serogroups show a similar dependence of rotavirus structure stability on Ca

2+
. The critical concentration 
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of Ca
2+

 for solubilization of the external layer varies from 900 nM for the bovine strain RF to 20 nM for 
the simian strain SA11[33]. The use of reassortant rotavirus indicated that this phenotype is linked to 
VP7. The prolines 279 and 75 appear to be essential for the conformation of the calcium binding site on 
VP7[34]. The inverse process can be observed in vitro where restitution of Ca

2+
 in the medium at acidic 

pH allows the reassembly of native or recombinant outer shell proteins on the DLP and a significant 
recovery of specific infectivity, yielding particles as infectious as authentic purified virions[35,36]. VP4 
must be added before VP7 to obtain a high level of infectivity[36]. 

Rotavirus Receptors 

Rotaviruses exhibit cell-specific tropisms consistent with the existence of surface receptor(s) that 
mediates virus attachment and/or entry through interactions with its external proteins, VP4 and VP7. 
However, the identity of the rotavirus cellular receptor(s) remains controversial. The sensitivity of 
rotavirus infection to neuraminidase treatment of the host cell led us to think that sialic acid (SA) residues 
on the cell surface were required for efficient binding and infectivity[37,38]. However, analysis of a 
larger number of animal rotavirus strains showed that, like human rotaviruses, most strains are SA 
independent[39]. Binding of SA-dependent strains to cells seems to be initially mediated by VP8*[40,41], 
whereas that of SA-independent ones appears to be mediated directly by VP5*[42]. The binding of SA-
dependent and SA-independent rotaviruses to glycoconjugates (glycoproteins, glycolipids, and 
glycosphingolipids) has implicated several molecules as putative rotavirus receptors[43]. Rotavirus VP4 
binds to SA with a broad specificity and a low affinity. This is consistent with an initial interaction 
mediating cell attachment prior to further interactions that would determine host range and cell type 
specificity[44]. 

Other types of cell proteins have been implicated in rotavirus entry and may serve as coreceptors or 
entry factors[45,46,47]. The cellular integrins α2β1, α4β1, α4β7, and hsc70 have been involved in the 
interaction with VP5*, whereas integrins αxβ2 and αvβ3 can bind rotaviruses through the other external 
protein VP7[48,49,50,51,52,53,54,55,56,57,58,59,60].  

Rotavirus Penetration 

After attachment, viruses generally gain access to the cytoplasm by crossing the plasma membrane or the 
endosomal membrane, in the case of direct entry or endocytosis, respectively. Enveloped viruses can 
penetrate the cell without disrupting the membrane by fusion of its lipid-containing envelope with either 
the plasmalemma (e.g., HIV, Sendai, herpes) or the endosomal membrane (e.g., Semliki Forest virus, 
influenza). In these cases, the binding of the viral membrane protein to the cell receptor, or the acidic 
medium within the endosome, triggers a conformational change in a viral protein, resulting in the 
exposition of a fusion region to interact with the target membrane. The mechanisms of entry of naked 
viruses without a lipid envelope, such as rotavirus, are not well established. Since a fusion process does 
not really occur, a disruption of the membrane and/or formation of a pore have to be postulated. In the 
case of rotavirus entry, the TLP must lose its external layer and the large transcriptionally active subviral 
particle, DLP, be translocated across the plasma or endosomal membrane into the cytoplasm of the target 
cell. How and where VP4 and VP7 mediate TLP uncoating and DLP entry remain controversial.  

Entry Pathways  

Two pathways have been proposed for rotavirus entry into the host cell: direct penetration through the cell 
membrane and receptor-mediated endocytosis.  
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Electron microscopy studies do not permit us to distinguish between the two pathways. Numerous 
ultrastructural observations reveal images of rotavirus particles within coated pits, coated vesicles, and 
endosomes during entry[61,62,63,64]. Also, images suggestive of direct entry have been described[64]. 
However, the difficulty stands in assessing which of these lead to productive penetration[65,66]. 

The strongest evidence in favor of a direct entry is the observation of a change of membrane 
permeability during rotavirus entry measured as an efflux of intracellular-space markers from prelabeled 
MA104 cells[66]. This result has been interpreted as the reversible destabilization of the membrane 
during direct entry through the plasma membrane. The capacity of rotavirus particles to induce from 
without the formation of syncytia between cells has also been used as an argument in favor of the direct 
route, since syncytium formation and rotavirus penetration shared similar requirements[67,68,69]. 
However, these two processes may not be necessarily related.  

General metabolic inhibitors (sodium azide, dinitrophenol) and lysosomotropic agents (ammonium 
chloride, chloroquine) had little effect on the entry of infectious virus into cells , suggesting that the entry 
of rotavirus is independent of low endosomal pH[61,66,70] and of the operation of the endosomal 
H

+
/ATPase sensitive to bafilomycin[71,72]. This led to the thought that rotaviruses do not utilize the 

endocytosis pathway for productive penetration, but rather a direct route through the plasma membrane. 
However, more recent studies of our group revealed that if bafilomycin A1 is maintained in the medium 
during entry and replication, it can inhibit infection[73], suggesting the involvement of the clathrin-
dependent pathway. On the other hand, another group showed that rotaviruses were able to enter cells 
where clathrin- or caveolin-mediated endocytosis had been inhibited[74]. Cells treated with methyl-β-
cyclodextrin, a drug that sequesters cholesterol from membranes, and cells expressing a dominant-
negative mutant of the large GTPase dynamin, which is known to function in several membrane scission 
events, were not infected by rotaviruses[74]. These findings indicate that cholesterol and dynamin play a 
role in the entry of rotaviruses, and support the intervention of an endocytic pathway independent of 
clathrin and caveolin, and perhaps dependent on pH. 

Permeabilizing Capacity of Outer Layer Proteins 

Both pathways of virus entry, the direct penetration and receptor-mediated endocytosis, would entail the 
transient permeabilization (or disruption) of the plasma or endosomal membrane to permit the 
translocation of DLP into the cytoplasm. The permeabilizing capacity of TLPs is revealed in conditions 
that are not likely to be found in the extracellular space.  

In fact, purified intact TLPs did not induce membrane permeabilization measured as the leakage of 
entrapped fluorophore from liposomes and membrane vesicles, or the entry of ethidium bromide into 
intact cells[62,75,76]. The permeabilizing activity of rotaviruses could be evidenced only when lowering 
the Ca2+ concentration in the medium below the micromolar level that solubilized the outer proteins, VP4 
and VP7. In addition, trypsinization of outer proteins is also required for the effect[33,62,76]. The 
permeabilizing activity has been associated to VP5*. Recombinant VP5 or its fragments (residues 248 to 
474 or 265 to 474) containing an internal hydrophobic domain were able to permeabilize large 
unilamellar vesicles[77]. Moreover, VP5 seems to mediate size-selective membrane permeabilization, 
inducing the release of 376-Da carboxyfluorescein (CF), but not 4-kDa fluorescein isothiocyanate-dextran 
from preloaded liposomes[78]. However, at this point, it is not known whether permeabilization to CF 
induced by the expressed and purified VP5, and VP5* from a trypsinized and solubilized TLP, are 
identical phenomena.  

On the other hand, expression of these truncated forms of VP5 induced an increase of Ca
2+

 
permeability in cell cultures[79]. It was speculated that two discrete domains within VP5 are required for 
pore formation: an N-terminal basic domain that permits VP5 to associate peripherally with membranes, 
and an internal hydrophobic domain that is essential for altering membrane permeability[79]. 
Nevertheless, vesicle permeabilization to CF by exogenous purified VP5 (or VP5 peptides) and 
permeability to Ca

2+
 of a cell expressing the endogenous VP5 protein may not be necessarily related. 
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In addition to the effect of VP5*, solubilized peptide(s) of VP7 were also able to permeabilize 
membrane vesicles loaded with CF. This was observed only when pseudoparticles containing 
recombinant VP2, VP6, and VP7 (in the absence of VP4) were treated with EGTA to solubilize VP7 and 
then further hydrolyzed with trypsin[80]. This indicates that VP7 contains a domain sensitive to trypsin, 
but not accessible to hydrolysis when VP7 is in situ on the particle. The permeabilizing effect of the two 
proteins can be evidenced using purified TLP. In Fig. 2, we can observe that trypsinized TLPs are able to 
induce CF leakage on addition of EGTA to solubilize the outer capsid proteins. When TLPs grown in a 
medium containing trypsin are decapsidated in the presence of aprotinin (to protect proteins from 
contaminant trypsin), a first phase of permeabilization occurs, probably due to the action of solubilized 
VP5*. A second phase can be obtained by the addition of trypsin in a concentration high enough to 
overcome the inhibition by aprotinin. This phase may correspond to the effect of VP7 peptides generated 
by trypsin hydrolysis of the previously solubilized protein. The two phases were observed when the TLPs 
were retrypsinized in situ before outer layer solubilization with EGTA to assert that all VP4 were 
hydrolyzed into VP5* and VP8*.  

 

FIGURE 2. CF release induced by rotavirus. Purified TLPs grown in the presence of trypsin 

were added at t ime zero to a cuvette containing CF-loaded vesicles (70 mM) from pig jejunum 
suspended in standard assay medium (100 mM sorbitol and 200 mM Tris HCI in 20 mM HEPES-
10 mM Tris [pH 7.4]). Blue trace: TLPs were added to the cuvette containing 1 mM Ca

2+
 to 

maintain TLP structure and trypsin (0.01 mg/ml) to hydrolyze VP4 on TLP in situ. The action of 

trypsin was blocked after 5 min by the addition of aprotinin (0.03 mg/ml) , and then EGTA (10 
mM) was added to solubilize the outer layer of TLP and elicit membrane permeabilization. After 
a plateau was reached, excess trypsin (0.1 mg/ml) was added to hydrolyze the solubilized 
proteins (VP5*, VP8*, and VP7). Red trace: TLPs were added to the cuvette containing 

aprotinin (0.03 mg/ml) to block any action of contaminant trypsin and EGTA (10 mM) to 
solubilize the outer layer of TLP and elicit membrane permeabilization. After a plateau was 
reached, excess trypsin (0.1 mg/ml) was added to hydrolyze the solubilized proteins (VP5*, 

VP8*, and VP7). In both traces, the first  phase of permeabilization can be ascribed to the effect 
of VP5*, whereas the second phase can be attributed to fragments of VP7 and perhaps those of 
VP5* and/or VP8* (see text). Traces normalized to maximal permeabilization (CF fluorescence) 

obtained with digitonin (200 g/ml). 
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A Molecular Model for VP4-Membrane Interactions 

The molecular interactions between outer layer proteins and the membrane lipids have not been 
elucidated. However, a model for the architecture of the VP4 spike and rotavirus entry has been proposed, 
based on the study of the VP4 structure by electron cryomicroscopy, 3D reconstruction, difference map 
analysis to localize the binding sites for neutralizing monoclonal antibodies, and crystallography of VP4 
and VP5*. In this model, VP8* and VP5* mediate receptor binding, membrane permeabilization, and 
uncoating during transfer across the lipid bilayer[20,21,28].  

According to this model, during rotavirus entry, VP4 would transit through three distinct 
conformations that would correspond to different steps[20]: a first trypsin cleavage between VP8* and 
VP5* produces a first rearrangement rigidifying the spike by dimeric interactions in the external portion 
of two VP4 subunits. This interaction would present the VP8* core for cell surface ligand binding, 
whereas the third VP4 molecule remains flexible. An unknown entry-associated event triggering a second 
transition to the trimeric conformation has been proposed based on crystal structure. In this transition, 
disruption of the dimers releases VP8* from VP5* and exposes the hydrophobic domain of VP5*, which 
may insert into the host cell membrane.  

The resulting translocation of the potential membrane-interaction loop towards the foot could disrupt 
a cellular membrane. This disruption may in turn create a breach that allows a DLP to enter the 
cytoplasm, or it could lower the local calcium concentration, leading to virion uncoating and subsequent 
entry events. The foldback transition could also alter interactions with receptors or directly trigger virion 
uncoating[20]. Although this work represents an important contribution to the understanding of the 
architecture of the VP4 spike in the particle, its support of a direct entry mechanism through the plasma 
membrane is rather speculative. However, it is still compatible with an endocytosis model in which Ca

2+
 

plays a role in the molecular changes during virus entry, as we detail below. 

A Ca2+-Dependent Endocytosis Model 

Based on the characteristics of permeability capacities of rotavirus particles and outer layer proteins, a 
Ca

2+
-dependent endocytosis model has been proposed. This represents an alternative hypothesis for 

rotavirus entry, where the critical step for virus uncoating and membrane permeabilization is the decrease 
in Ca

2+
 concentration in the endosome[5,73]. In this model (Fig. 3), the binding of rotavirus to its receptor 

would induce the formation of an endocytic vesicle, isolating the TLP within an intracellular 
compartment. A progressive decrease in Ca

2+
 concentration in this vesicle from the extracellular 

concentration (~1 mM) to the intracellular level (~100 nM) would occur by simple diffusion through 
activated Ca

2+
 channels, or by activation of transport mechanisms, as has been reported in other 

systems[81]. Also, the exposition of VP5 may form a pore and permit Ca
2+

 flux into the cytoplasm[79]. 
This efflux from the endosome to the cytoplasm seems to be accelerated by the electrical gradient 
generated by the operation of the vesicular H

+
 pump sensitive to bafilomycin[73]. This view is further 

supported by the inhibition of rotavirus entry by increasing the extracellular calcium reservoir by addition 
of 10 mM CaEGTA[73]. It is interesting to point out that neutralizing monoclonal antibodies against VP7 
inhibited outer layer solubilization induced by low Ca

2+
 concentration. This effect was not observed with 

antibodies directed to VP8 or VP5[82]  
Once the endosomal Ca

2+
 concentration equilibrates with that of the cytoplasm, below the critical level 

for stability of the outer capsid, the virus sheds its outer proteins and these in turn lyse the vesicle 
membrane, permitting the DLP to pass into the cytoplasm[62]. Both VP5* and VP7 would, either by 
themselves or in concert, act in the destabilization and disruption of the membrane. VP5, upon interaction 
with the membrane, might induce a breach[20] or a pore[77], favoring Ca

2+
 diffusion from the endosome to 

the cytoplasm. The involvement of VP7 would imply its hydrolysis by proteases after solubilization. This 
may be effected by trypsin associated to the rotavirus capsid, and its activation by solubilization of outer 
capsid proteins or by endosomal proteases[83]. The decrease in Ca

2+
 concentration within the endosomal  
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FIGURE 3. Hypothetical model of rotavirus entry by endocytosis. 
After rotavirus particles bind to receptors on the cell surface, they are 
endocytosed into vesicles together with extracellular fluid containing 

Ca
2+

 in the 1 mM range. Once inside the endocytic vesicle, Ca
2+

 is 
transported into the cytoplasm driven by the large concentration 
gradient (from 1 to 100 nM). The exposition of VP5 may form a pore 
and permit Ca

2+
 flux into the cytoplasm. The electrical gradient (positive 

inside) generated by the v-type H
+
 pump provides an additional force 

for Ca
2+

 extrusion out of the endosome. Once Ca
2+

 has dropped to a 
critical concentration, the virus uncoats and the external solubilized 

proteins, VP5* and perhaps VP7, permeabilize and lyse the endosomal 
membrane. In this way, the DLP gains access to the cytoplasm and 
replication is activated. 

vesicle in this model would be equivalent to the decrease in pH for other enveloped and nonenveloped 
viruses[1]. The Ca

2+
 dependence of the structure of the rotavirus particle, the characteristics of the 

membrane permeabilization by solubilized outer proteins, and the Ca
2+

 gradients of the cell compartments 
are fully consistent with this hypothesis.  

ROTAVIRUS ASSEMBLY 

Replication of rotaviruses takes place in the cytoplasm with a final stage of morphogenesis within the ER. 
One could describe three phases of replication: (1) translation and synthesis of viral proteins; (2) 
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replication of the dsRNA, genome packaging, and DLP assembly; and (3) budding of DLP into the ER for 
the acquisition of the outer layer. These steps are represented in Figs. 4 and 5. The knowledge on viral 
replication thus far acquired is based on structural studies, the expression and coexpression of individual 
viral proteins, silencing of individual genes by siRNAs, and the effects that these manipulations have on 
the physiology of the infected cell. In particular, the siRNA technique is beginning to provide elements 
for the dissection of the maze of viral protein interactions in the process of replication and morphogenesis 
of rotavirus. A summary of these findings is presented in Table 1.  

 

FIGURE 4. Ultrastructure of rotavirus-infected MA104 cell. DLPs can be observed emerging from the viroplasm (V) and budding 
into the RER, acquiring ER membrane. These membrane-enveloped particles (MEP) can be seen near the viroplasm or in proximity 

to the RER membrane. Towards the center of dilated cisternae, TLP s devoid of enveloping membrane can be observed.   

Translation and Synthesis of Viral Proteins 

Once the DLP reaches the cytoplasm after the loss of the outer capsid layer, transcription is activated. 
This transition may be linked to the low Ca

2+
 concentration in the endosome or cytoplasm as 

hypothesized above[84]. It is known that the DLPs and no TLPs are the transcriptionally competent 
subviral particles, producing 11 capped (+) RNAs[85]. The dsRNA segments are transcribed within the 
structure of the DLP by VP1, which has been identified as an RNA-dependent RNA polymerase (RdRp) 
and capped by VP3, which has guanyltransferase and methyltransferase activities[86,87,88,89]. The 
synthesized mRNAs exit the DLP through 12 aqueous channels (type I) that pass through both the VP2 
and VP6 layers[90,91].   
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FIGURE 5. Schematic representation of the steps of rotavirus replication. (1) Trypsinized TLP binds to one or more receptors 

on cell surface. (2) Conformational changes on virus permitting penetration by a direct route to the cytoplasm, or (3) by Ca
2+

-
dependent endocytosis. (4) Solubilization of the outer protein layer generating DLP that reaches the cytoplasm; activation of 
transcriptase in DLP and synthesis of mRNA. (5) Translation of mRNA in polysomes and ER-bound ribosomes; synthesis of 
viral proteins. (6) Accumulation of viral proteins and mRNA, and nucleation of viroplasm. (7) Assembly of core replication 

intermediates (core RIs) and (–) RNA synthesis. (8) Assembly of DLP. (9) Secondary transcription from DLP and 
amplification of protein synthesis. (10) Binding of DLP to NSP4 and budding into the ER. (11) Acquisition of the membrane 
envelope together with VP7, NSP4, and perhaps VP4. (12) Removal of membrane lipids and NSP4, and accumulation of 
mature TLP. (13) Release of viral progeny through cell lysis or, alternatively, by (14) traffic of immature TLP (without VP4) 

to rafts containing VP4, and acquisition of VP4 and eventual release at apical membrane without lysis. 

The mRNAs are translated in polysomes generating the 12 viral proteins (six structural and six 
nonstructural) with a concomitant shut-off of cellular protein synthesis. The nonstructural protein NSP3 
has been implicated in both processes. Rotavirus mRNAs lack a poly(A) tail, but have instead a consensus 
sequence at their 3' ends that binds NSP3, acting as a functional homologue of poly(A)-binding protein 
(PABP). NSP3 also interacts with the cell-initiation factor eIF4GI. It is widely believed that these 
interactions lead to the translation of rotaviral mRNAs, impairing at the same time the translation of 
cellular mRNAs[92,93,94]. However, recent reports suggest that NSP3 is neither required for the 
translation of viral mRNAs nor essential for virus replication in cell culture[95,96]. Using RNA 
interference to block NSP3 expression in infected cells, it was shown that the synthesis of viral proteins 
was not decreased and the yield of viral progeny was increased, which correlated with an increased 
synthesis of viral RNA. Silencing of NSP3 expression re-established the cellular protein synthesis. 
Therefore, this protein might play a role in the shut-off of cellular protein synthesis[95,96]. Silencing of 
other viral proteins, such as VP2, NSP2, and NSP5, also restored the synthesis of cellular proteins through 
an undefined mechanism[96].  
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TABLE 1A  
Effect of Silencing the Expression of Individual Viral Proteins on Infectivity, Protein Synthesis, 

Morphogenesis, and Physiology of Infected Cell  

 siRNA 

Irrelevant 

siRNA 

VP2 

siRNA 

VP4 

siRNA 

VP7 

siRNA 

NSP1 

siRNA 

NSP2 

siRNA 

NSP3 

siRNA 

NSP4 

siRNA 

NSP5 

Infectivity  100% ND Reduced to 1–

25%[131 ,133,157]  

Reduced to 1–

30%[98 ,129,131,  

132,133]  

No effect [98]  Reduced to 

10%[98 ]  

Threefold 

increased[95] 

Reduced to 1–

25%[129 ,131,132,  

133] 

Reduced to 20–

28%[107 ]  

Particles  No effect  on TLP /DLP 

relationship (CsCL, 

PAG E,  

EM)[98 ,129,132,157 ]  

ND Spikeless TLP  

(CsCL, PAG E,  

EM)[157 ]  

Reduction of TLP , 

accumulation of  

DLP (CsCL, 

PAG E)[98 ]  

No effect  ND ND Reduction of TLP  and 

DLP, accumula tion o f 

empty partic les  

(CsCL, 

PAG E)[129,132 ]  

ND 

Protein  synthes is Shut-of f o f cellular pro tein 

synthesis; redistribution 

of PABP from  cytoplasm 

to nucleus[96] ; 

phosphorylation of 

eIF2a[96 ]  

Inhibits synthesis 

of the  other v iral  

proteins, while  the 

cellular protein 

synthesis was 

restored[96]; 

inhibition  of 

phosphorylation of 

eIF2a[96 ]  

No effect  on 

synthesis of other 

v iral proteins[131] ; 

decreased viral 

protein association 

to raf ts[133]  

No effect  on 

synthesis or 

distribution o f o ther 

v iral proteins[129,  

131].  

Did not a ffect  

synthesis of other 

v iral proteins[98]  

Inhibits synthesis 

of the  other v iral  

proteins[98];  

cellular protein 

synthesis 

restored[96]; 

inhibition  of 

phosphorylation of 

eIF2a[96 ]  

Synthesis of  v iral 

proteins was not 

decreased, while 

the cellular prote in 

synthesis was 

restored[95]; 

inhibited 

redistribution of  

PABP from  

cytoplasm to 

nucleus[98] 

Af fected the 

intracellular 

accumulation[129]  

Reduced 

synthesis of v iral 

proteins[107];  

cellular protein 

synthesis 

restored[96]; 

inhibition  of 

phosphorylation 

of eIF2a[96]  

Morph ogenesis  VP1 , VP2 , VP3 , VP6 , 

NSP2,  NSP5 mRNA, 

dsRNA in v iroplasm 

associated to ER ; DL P 

assemble in v iroplasms 

and bud into  the  ER ; 

formation  of  M EP in ER 

and maturat ion to TL P;  

redistribution of  ERGIC 

53 from  tubulovesicular 

structure to more dif fuse 

staining in  juxtanuclear 

region[95,98,107 ,129,  

131,132,133,157 ]  

Reduced number 

and size of 

v iroplasms[96] 

Viroplasm in  

c losed apposition 

to ER ; DL P 

budding, NEVP, 

Virions (in 

EM)[157 ];  normal 

v iroplasm and DLP 

budding into  the 

ER[133] ; 

accumulation of  

nonenveloped 

imma ture partic les 

within the ER; 

partic les aggregate 

forming 

paracrystalline 

array (EM)[133] ; 

decreased 

association of TL P 

to raf ts[133]  

No effect  on 

viroplasms, no 

reduction of 

quantity o f o ther 

v iral proteins[129] ; 

inhibition  of ou ter-

capsid morpho-

genesis[98]; 

reduced 

association of TL P 

with raf ts, reducing 

the t iter to 60 % 

and quantity  of 

total  v iral proteins 

to 30 %,  without  

reduction of 

quantity o f 

associated viral 

proteins[133];  

accumulation of  

MEP in  ER  

(EM)[129,133 ]  

No impact  on the  

formation  of  

v iroplasms[98] 

Inhibits v iroplasm  

formation , geno me 

replication, and  

virion assembly[98]  

ND Smaller  v iroplasms 

(IF)[132] ; v iroplasms 

not associated with  

ER, no  budding o f 

DLP (EM); free DLP in  

the cytoplasm 

(EM)[129,133 ];  

affected the cellu lar 

distribution o f several 

v iral 

proteins[129,132] ; 

reduced the 

association of TL P 

with raf ts, reducing 

the t iter 30 % and  

quantity o f associated 

viral proteins to  

55%[133 ]  

Reduced 

number and size 

of v iroplasms 

and altered 

intracellular 

distribution o f 

other v iroplasm-

associated 

proteins; 

reduced 

synthesis of v iral 

(+)RNA and  

dsRNA[107]  

Physio log ical  and  

bioche mica l 

effects  

Increase of plasma  

membrane Ca
2+

 

permeability,  [Ca
2+

]cyto , 

and 
45

Ca
2+

 pools, and 

decrease of agonist-

releasable Ca
2+

 

pools[131];  cytopathic 

effect [95];  prevents the  

formation  of  SGs [96]  

ND No effect  on the 

increase of plasma 

membrane Ca
2+

 

permeability,  

[Ca
2+

]cyto, and  
45

Ca
2+

 pools, and 

the decrease of 

agonist-releasable 

Ca
2+

 pools[131]  

Partially reduced 

increased Ca
2+

 

permeability o f 

plasma me mbrane, 

[Ca
2+

]cyto, and  
45

Ca
2+

 pools and 

the decrease of 

agonist-releasable 

Ca
2+

 pools[131]  

ND ND Delayed cytopathic 

effect [95]  

Inhibited  the  increase 

of Ca
2+

 permeabil ity o f 

plasma me mbrane, 

[Ca
2+

]cyto, and  
45

Ca
2+

 

pools, but  not  the 

decrease of agonist-

releasable Ca
2+

 

pools[131]  

ND 

TABLE 1B 
Effect of Silencing the Expression of Individual Viral Proteins on Expression and Distribution of 

Viral Proteins in Rotavirus-Infected Cells 

 siRNA Irrelevant siRNA VP4 siRNA VP7 siRNA 

NSP2 

siRNA NSP4 siRNA NSP5 

VP2  Colocalizes with NSP2 and  VP6  in 

v iroplasm[132]  

ND No distribution  changes[129]  ND Colocalizes with NSP2[132 ] in  smaller 

v iroplasms and diffuse  in cytoplasm [129,132]  

Colocalizes with remnant  NSP5 and  NSP2 in  smaller 

v iroplasms and NSP2  dif fuse in  cytoplasm[107 ]  

VP4  Perinuclear ring-like or semicircular 

structures and a fi lamentous  array 

distribution[129 ];  VP4 part ially  

colocalize with ERG IC53 (perinuclear 

VP4)[107 ]  

ND No distribution  changes (granular, 

perinuclear, cytoplasm)[129]  

ND Most of  the  perinuclear structures 

disappeared, while the  f ilamen tous signal o f 

VP4  remained more apparent[129 ]  

Perinuclear ring-like or semicircular structures 

disappeared leaving a finely  punctated  pattern ; 

filamen tous array distribution  is ma intained [107]  

VP6  Colocalizes with NSP5 in periphery of 

v iroplasm[132]  

ND Change in the  distribut ion wi th a 

large proportion not  associated with  

v iroplasms[98]; no  distribut ion 

changes (granular, perinuclear)[129]  

ND Colocalizes with VP2 in  smaller  v iroplasms 

and perhaps with di ffuse form in 

cytoplasm[132];  for ms fi laments  that  appear to  

extend to the periphery o f the  cell instead o f 

being localized to  v iroplasms[129]   

Forms fila ments that  appear to  extend to the 

periphery of the  cell instead  of  being localized to 

v iroplasms[107] 

VP7  Perinuclear pattern  of d istribution , 

probably due to i ts homogeneous 

distribution along  the  ER  

membrane[107] ; dis tribution  of  mature  

VP7  (on TL P) s imilar  to  tha t of  VP4 : 

partially colocalize with  ERG IC53 

(perinuclear) and no colocalization with  

c is-golgi[133] 

ND ND ND More dif fuse, al though st ill perinuclear pa ttern 

of distribu tion[129 ]  

More dif fuse perinuclear s ignal[107 ]  

NSP2  Colocalizes with NSP5 in  

v iroplasm[132].  

ND ND ND Colocalizes with NSP5 in  smaller v iroplasms 

and dif fuse in cytoplasm [132] .  

ND 

NSP4  ND ND ND ND ND Perinuclear ring-like or semicircular structures 

disappeared leaving a more dispersed f inely 

punctated pat tern[107]  

NSP5  Colocalizes with NSP2 in  

v iroplasm[132]  

No distribution  changes[157]  Normal distribut ion; d id not  i mpede 

viroplasm format ion[98]  

Diffuse in  

cytoplasm[98]  

Colocalizes with NSP2 in  smaller v iroplasms 

and dif fuse in cytoplasm [132]  

ND 

Abbreviations to Table 1A and 1B: MEP, membrane-enveloped particle; SG, stress granule; NEVP, nonenveloped 
viral particle; ND, not determined; other abbreviations described in text.  
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DsRNA Replication and DLP Assembly 

Once a critical mass of viral proteins and viral mRNA are synthesized, they accumulate in viroplasms that 
correspond to discrete, large, electron-dense cytoplasmic inclusions. In these structures, rotavirus protein 
assembly, viral genome packaging, replication, and the formation of DLP seem to take place[97,98]. In 
these specialized inclusions, structural and nonstructural proteins (VP1, VP2, VP3, and VP6; NSP2, 
NSP5, and NSP6) are accumulated[99,100]. Coexpression, localization, and RNA interference 
experiments have implicated both NSP2 and NSP5 in the nucleation of viroplasms, recruitment of 
proteins of the core, and virus replication[97,98,101,102,103,104,105,106,107,108,109].   

NSP5 is a phosphoprotein rich in Ser and Thr residues, which undergoes O-linked 
glycosylation[110,111]. Upon interaction with NSP2, NSP5 gets hyperphosphorylated, which would 
render the protein insoluble, favoring its localization into punctate viroplasm-like structures 
(VLS)[97,103,105,112,113,114,115]. However, expression of the fusion protein NSP5-EGFP led to the 
formation of VLS without the intervention of NSP2. It might be possible that the EGFP moiety 
reproduced conformational changes elicited by NSP2 to precipitate NSP5-EGFP and form VLS. 
Interestingly, this phenomenon is calcium regulated[116]. Therefore, viroplasm formation may be 
dependent on the changes in cytoplasmic Ca

2+
 concentration induced by infection[5,117]. NSP2 is a 35-

kDa basic protein that exhibits nucleoside triphosphatase activity (NTPase) and affinity for ssRNA[118]. 
These properties have been suggested to play a role in genome packaging.  

Viroplasms are the putative sites of core and DLP assembly (Fig. 4), and RNA replication (minus-
strand synthesis). The current view is that the first replication intermediate (precore RI) is formed by one 
copy of VP1 (RdRp) and VP3 each, associated with one segment of (+) mRNA. Each precore RI 
associates with five dimers of VP2, one octamer of NSP2, and a dimer of NSP5, forming the core 
replication intermediate. In turn, the core would self-assemble by the polymerization of 12 of these 
complexes[90,119,120,121]. The self-assembly capacity of VP2 has been observed with the expression of 
VP2 alone, resulting in the production of particles called pseudocores that have the same geometry as 
viral cores[122]. The (+) RNAs synthesized by the DLP in the viroplasm serve as templates for the 
synthesis of the (–) RNAs to generate dsRNA genome segments. The dsRNA replication takes place at 
the same time as the packaging of the 11 genome segments, produced at equimolar levels, into newly 
formed cores[123,124]. The question remains as to how a virus with a segmented genome can integrate a 
single copy of each one of those segments into its particle. Concurrently with dsRNA synthesis , the VP6 
layer assembles on the core to form DLP[90,121]. It has been shown that VP6 expressed alone in the 
baculovirus system assembles in trimers and tubules[125,126,127]. However, interaction of VP6 with 
VP2 on the core leads to the formation of chimeric, empty, DLP (VLP2,6)[128]. In the viroplasm of 
infected cells, the acquisition of the VP6 layer is thought to depend on the previous assembly of the core.   

Viroplasms are dynamic structures, topographically heterogeneous. The interior domain contains VP1 
and VP2, and the nonstructural proteins NSP2 and NSP5. This area is also the site of synthesis of (+) 
RNA, consistent with being the site of progeny core formation and genome packaging into the sing le-
layer particles[102]. The exterior domain is rich in VP6, most probably unassembled, since the amount of 
DLP seen by electron microscopy (EM) in the periphery of the viroplasm is rather small.  The exterior 
domain also contains NSP4, which may play a function in recruiting unassembled VP6 for the 
morphogenesis of cores to DLP[102,129,130]. 

Silencing the expression of NSP4 causes modifications in the replication and morphogenesis of 
rotaviruses, including profound changes in the distribution of VP6 from viroplasm to cytoplasm and 
aggregation into filamentous arrays; a severe reduction in the numbers of viroplasms, DLP, and TLP; and 
a loss of the spatial relationship of the viroplasm with the ER (Table 1)[129,131,132,133]. Therefore, 
NSP4 as an integral protein of the ER may organize the elements of the viroplasm and the generation of 
DLP, as well as the entry of DLP into the ER for the acquisition of the outer protein layer of the capsid 
(see below).   
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Morphogenesis of Viral Particles in the Endoplasmic Reticulum  

A particular characteristic of rotavirus morphogenesis is the maturation of the particles in the ER, one of 
the main cell calcium reservoirs. The stability of the mature TLP structure is not compatible with the low 
calcium concentration found in the cytoplasm[33,134]. Therefore, one may think that the rotavirus takes 
advantage of the high calcium concentration of the ER for the acquisition of the outer protein layer. This 
is a complex process involving numerous steps. 

The DLP subviral particles assembled in viroplasms bind to the ER to bud into this compartment (Fig. 
4). NSP4 acts as a receptor for the DLP[135,136,137]. Its cytoplasmic C-terminal domain interacts with 
VP6 on DLP[138,139,140]. During the budding process, DLPs acquire a transitory membrane envelope 
derived from the ER (Fig. 4). These membrane-enveloped particles (MEP) contain NSP4 and VP7, which 
are integral membrane proteins in the ER[141]. Then, the particle matures by a selective retention of the 
external capsid protein VP7 and perhaps VP4 (see below), and the elimination of NSP4 and the 
membrane lipids.  

Based on an accumulated body of evidence, the picture of the final assembly of rotavirus in the ER 
begins to be clarified. The interplay of at least three factors appears to direct this process: the folding of 
VP7 and NSP4, the ER Ca

2+
 concentration, and the function of ER chaperones.  

The high Ca
2+

 concentration in the ER is important not only for the assembly of the external layer of 
the capsid, but also for the removal of the transient envelope. Dissipation of the ER Ca

2+
 gradient during 

infection affects the maturation of rotavirus, stopping the process at the MEP stage[142,143]. In these 
conditions, VP7 is excluded from the heteroligomeric complexes of NSP4, VP7, and VP4[143], and it is 
not recognized by conformation-specific monoclonal antibodies[142]. Furthermore, it has been shown 
that VP7 that was expressed by a recombinant herpes simplex virus-1, or contained in purified rotavirus 
particles, lost reactivity with a neutralizing monoclonal antibody upon chelation of calcium by 
EGTA[31]. Immunoelectron microscopy experiments in infected MA104 cells suggest that, in the 
absence of Ca

2+
, VP7 did not assemble onto virus particles and remained in the cytoplasm outside the 

ER[144]. The significance of this finding remains to be assessed. During infection, calcium depletion in 
the ER impaired the N-glycosylation of VP7 and NSP4 without inhibiting viral protein synthesis. In 
addition, synthesized VP7 appeared to be misfolded, since it was not recognized by conformation-specific 
antibodies[142]. These effects are somewhat similar to those of tunicamycin, a glycosylation inhibitor, 
suggesting that the first event of replication affected by ER Ca

2+
 emptying may be the glycosylation of 

VP7 and NSP4[145,146]. However, glycosylation of VP7 does not seem to be essential for TLP 
assembly, since the SA11 clone 28 where VP7 is not glycosylated undergoes normal morphogenesis 
producing a high virus yield[147,148]. 

The following steps to produce mature rotavirus particles are poorly known, and involve the removal 
of NSP4 and lipids from the membrane-enveloped subviral particles. This process seems to be directed by 
VP7 since the silencing of this protein or prolonged 1,4-dithiothreitol treatment (DTT), which affects 
disulfide bond formation and VP7 folding, did not block the budding of DLP into the ER, but arrested 
maturation at the MEP stage in this compartment[129,133,149]. However, NSP4, which has a 
destabilizing activity on liposomes and microsomes, might play a role in the removal of the transient 
membrane envelope[150]. These steps might also be related to the intervention of the Ca

2+
-dependent ER 

chaperones and oligosaccharide residues in the correct folding of VP7 and NSP4[151,152,153]. 
Glycosylated NSP4 seems to interact with calnexin and with protein disulfide isomerase (PDI) as a 
chaperone. On the other hand, VP7 does not interact with calnexin, but its correct folding is dependent on 
the enzymatic action of PDI. Interestingly, rotavirus infection or the expression of NSP4 alone induced 
the up-regulation of BiP (GRP78) and endoplasmin (GRP94), two ER resident glucose-regulated 
proteins[154]. Recent studies where the expression of ER chaperones was silenced show that GRP78, 
PDI, calnexin, calreticulin, but not GRP94 or ERP57, caused a reduction in the yield of infectious virus of 
about 50%[155]. These results suggest that these chaperones are involved in the quality control of 
rotavirus morphogenesis.   
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In conclusion of this point, it is tempting to propose that any condition that impairs the proper folding 
of VP7 would exclude the protein from being assembled onto the DPL and hence cause the lack of 
removal of the lipid membrane. Particles inside MEP in this case would resemble DLP with VP4 
attached, but not VP7. The events that lead to selective removal of lipids remain to be investigated.  

A recent report has shown that the expressed NSP4-EGFP or NSP4 in infected cells was initially 
localized in the ER, but later associated to a vesicular compartment throughout the cytoplasm. NSP4-
EGFP or NSP4 in this compartment did not colocalize with ER, ERGIC, Golgi, endosomal, or lysosomal 
markers but colocalized with the autophagosomal marker LC3 and was dependent on intracellular 
calcium levels[156]. The role of this compartment, and the fate and function of NSP4 associated to it, is 
not known. 

The how and where the spike protein VP4, a cytoplasmic synthesized protein, is assembled onto the 
viral particle is a matter of debate. The classical view is that VP4 binds to the DLP as it buds into the ER. 
However, VP4 did not seem to be essential in this process since the silencing of VP4 expression did not 
inhibit DLP budding into the ER or lipid membrane removal, and led to the formation of spikeless 
TLPs[157]. The hypothesis of the acquisition of VP4 on the particle in the ER is supported by a series of 
evidence: (1) VP4 has been detected on TLPs and permeabilized MEP in the ER by immunoelectron 
microscopy[158]; (2) the C-terminal domain of NSP4 has a binding site for VP4[159,160]; (3) VP4 can 
form heteroligomeric complexes with NSP4 and VP7, and it is found in MEP[143]; (4) there is extensive 
colocalization between the ER proteins, NSP4 and VP7, and VP4[130]. On the other hand, an alternative 
model of rotavirus assembly that utilizes an untypical trafficking pathway has been 
proposed[161,162,163,164]. In this case, VP4 would assemble after VP7. Once VP7-coated particles 
leave the ER, they would be transported to the apical cell surface interacting with cytoplasmic VP4 in 
lipid rafts bound to cytoskeletal elements and in transit to the plasma membrane for an apical release 
without cell lysis[162,165,166]. However, a number of results are not consistent with the hypothesis that 
VP4 assembles after VP7 in a post-ER cytoplasmic compartment: (1) electron cryomicroscopy 
reconstructions show a VP4 domain buried beneath the VP7 layer that has to interact with VP6 before 
acquiring VP7[17,19]; (2) in in vitro recoating experiments, it was evidenced that VP4 has to assemble 
onto DLP before VP7 to reconstitute infectious rotavirus particles[36]; (3) when VP4 was silenced by 
siRNA, viral particles accumulated in the ER of infected cells were organized in unusual paracrystalline 
arrays, indicating that the absence of VP4 alters TLP structure inside the ER[133]. Nevertheless, the 
mechanisms of rotavirus assembly might differ in polarized intestinal-like cells.  

The high Ca
2+

 concentration inside the ER is also required for the stabilization of already mature viral 
particles accumulated in this compartment. Ca

2+
 depletion of the ER at the end of the infection period 

disassembled the outer layer inside the ER, inducing a reduction of infectious TLPs[134]. The loss of 
infectious capacity suggests that the viral particles in this compartment are mature and infectious, already 
containing VP7 and VP4. 

VIRUS INFECTION AND CA2+ HOMEOSTASIS 

In addition, infection by itself induces changes in calcium homeostasis of the cell that may be 
advantageous to virus replication[117,142]. Among these perturbations, we have measured a progressive 
increase in plasma membrane Ca

2+
 permeability, which leads to an elevation of cytosolic Ca

2+
 

concentration and enhancement of sequestered Ca
2+

 pools in the ER[5,117,142]. This effect is likely due 
to the activation of SERCA pumps (Fig. 6).  

NSP4 appears to be responsible for the many effects of infection on Ca
2+

 homeostasis. The 
intracellular expression of NSP4-EGFP fusion protein in mammalian cells elevates basal intracellular 
calcium levels[148,167] and induces a large increase in plasma membrane Ca

2+
 permeability similar to 

that brought about by infection[148].  
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FIGURE 6. Changes in Ca
2+

 homeostasis induced by rotavirus infection. It  is hypothesized that NSP4 synthesized in the 
ER travels to the plasma membrane to form a channel or activate a cellular Ca

2+
 pathway. This induces a progressive 

increase in plasma membrane Ca
2+

 permeability, which leads to an elevation of cytosolic Ca
2+

 concentration and 

enhancement of sequestered Ca
2+

 pools in the ER. This effect is likely due to the activation of SERCA pumps. Ca
2+

 may be 
buffered in the ER by chaperones and viral proteins (VP7), reducing the free Ca

2+
 pools releasable by agonists. The 

elevation of cytosolic Ca
2+

 concentration may be responsible for cell death induced by infection.  

Rotavirus infection also leads to a progressive depletion of agonist-releasable ER pools. However, 
this effect does not seem to lead to ER Ca

2+
 depletion since the 

45
Ca

2+
 uptake is increased[168]. Taking 

another approach, it was recently shown that the silencing of VP7 expression partially inhibited the 
increase of Ca

2+
 permeability in infected cells, whereas the silencing of NSP4 completely blocked this 

effect[131]. However, the silencing of VP7 also reduced the synthesis of NSP4 in Cos 7 cells and 
impaired the assembly of viral particles within the ER[131]. This may suggest that reduction of Ca

2+
 

permeability in VP7-silenced cells is caused by the reduction of NSP4 synthesis.  
Therefore, NSP4 expressed during infection appears to be responsible for the changes in Ca

2+
 

homeostasis. NSP4 may increase Ca
2+

 permeability directly by forming a plasma membrane Ca
2+

 channel. 
The viral protein would traffic from the ER to the plasma membrane, where this channel would become 
active by unknown mechanisms such as conformational changes, oligomerization, and/or proteolysis. 
Supporting this view, a truncated form of recombinant NSP4 expressed in Vero cells corresponding to the 
transmembrane segment of the molecule (aa 1–89) was able to escape the ER via a brefeldin A–sensitive 
pathway and reach the plasma membrane[169]. On the other hand, the full-length, glycosylated NSP4 
molecule has been recently detected in plasma membrane rafts interacting with caveolin, in rotavirus-
infected or NSP4-EGFP–expressing cells[170]. In this case, the trafficking of NSP4 involved a Golgi-
bypassing transport as judged from its endo-H sensitivity. However, the inhibitory effect of brefeldin A 
on the increase of permeability elicited by infection supports the involvement of a Golgi-dependent 
pathway[168]. It is interesting to note that the full-length NSP4 molecule was secreted via a brefeldin A–
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sensitive pathway in Caco2 cells[171]. Whether NSP4 secretion, localization at the plasma membrane, 
and the increase in Ca

2+
 permeability are related phenomena remains to be investigated.  

Within our hypothesis, NSP4 would be acting as a viroporin[172]. These viral proteins have a 
hydrophobic transmembrane domain that interacts with the lipid bilayer, forming hydrophilic pores by 
oligomerization, giving rise to enhanced passage of ions and small molecules[172,173]. NSP4 has a 
hydrophobic domain that spans the membrane and it has been shown to undergo oligomerization under 
certain conditions[160,174,175]. The topology of NSP4 at a putative site in the plasma membrane 
remains to be elucidated. The mechanisms of Ca

2+
 passage induced by this protein in rotavirus-infected 

cells are currently under investigation. 

CONCLUDING REMARKS 

Although the last 10 years have seen remarkable progress in the understanding of the rotavirus cycle, 
thanks to the application of new potent techniques, a number of important questions still remain 
unanswered. The binding to the membrane seems to be a multistep process, with the participation of 
sequential or parallel-specific receptor-viral protein interactions. However, the succession of events that 
leads to virus entry is not yet known, nor the route of productive penetration. Evidence for the Ca

2+
 

dependent of endocytosis model of entry, as well as for the direct pathway model, is still insufficient and, 
at most, indirect. The dynamics and macromolecular organization of the viroplasm and the assembly of 
the core need more studies. The mechanism by which a virus with a segmented genome can integrate a 
single copy of each one of the segments into its particle is particularly intriguing. At this point, the site of 
the acquisition of VP4 on the outer layer of TLP remains controversial. The role of NSP4 in coordinating 
viroplasm structure, DLP budding into the ER, and TLP maturation appears pivotal to rotavirus 
replication and assembly. Equally, the participation of NSP4 in Ca

2+
 homeostasis changes during 

infection and pathogenesis is still of utmost interest. Is NSP4 a viroporin and a virotoxin? Another 
unsolved theme is the mechanism of viral progeny release and cell death. Finally, the achievement of a 
reverse genetics system for rotavirus promises to provide light on the many obscure aspects of the 
rotavirus cycle and pathogenesis[176]. 

ACKNOWLEDGMENTS  

The authors wish to thank Maria Elena Chemello for constructive comments on the manuscript. Work in 
the authors’ laboratory is supported by LOCTI program financed by TOTAL Venezuela S.A., Helmerich 
Paine Venezuela, and Laboratorios Chacao.  

REFERENCES 

1. Carrasco, L. (1995) Modification of membrane permeability by animal viruses . Adv. Virus Res. 45, 61–112. 

2. Carafoli, E. (2002) Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. U. S. A. 99, 1115–1122. 

3. Berridge, M.J., Bootman, M.D., and Lipp, P. (1998) Calcium--a life and death signal. Nature 395, 645–648. 

4. Chami, M., Oules, B., and Paterlini-Brechot, P. (2006) Cytobiological consequences of calcium-signaling alterations 

induced by human viral proteins. Biochim. Biophys. Acta 1763, 1344–1362. 
5. Ruiz, M.C., Cohen, J., and Michelangeli, F. (2000) Role of Ca(2+) in the replication and pathogenesis of rotavirus 

and other viral infections. Cell Calcium 28, 137–149. 

6. Kapikian, A.Z., Hoshino, Y., and Chanock, R.M. (2001) Rotaviruses. In Fields Virology. Vol. 2. 4th ed. Knipe, D.M. 

and Howley, P.M., Eds. Lippincott/Williams & Wilkins, Philadelphia. pp. 1787–1833. 

7. Glass, R.I., Bresee, J., Jiang, B., Parashar, U., Yee, E., and Gentsch, J. (2006) Rotavirus and rotavirus vaccines. Adv. 
Exp. Med. Biol. 582, 45–54. 

8. Greenberg, H.B., Clark, H.F., and Offit, P.A. (1994) Rotavirus pathology and pathophysiology . Curr. Top. Microbiol. 

Immunol. 185, 255–283. 



Ruiz et al.: Rotavirus Entry and Replication TheScientificWorldJOURNAL (2009) 9, 1476–1497 
 

 1492 

9. Crawford, S.E., Patel, D.G., Cheng, E., Berkova, Z., Hyser, J.M., Ciarlet, M., Finegold, M.J., Conner, M.E., and 

Estes, M.K. (2006) Rotavirus viremia and extraintestinal viral infection in the neonatal rat model.  J. Virol.  80, 4820–

4832. 
10. Blutt, S.E. and Conner, M.E. (2007) Rotavirus: to the gut and beyond! Curr. Opin. Gastroenterol. 23, 39–43. 

11. Blutt, S.E., Matson, D.O., Crawford, S.E., Staat, M.A., Azimi, P., Bennett, B.L., Piedra, P.A., and Conner, M.E. 

(2007) Rotavirus antigenemia in children is associated with viremia. PLoS Med. 4, e121. 

12. Burke, B. and Desselberger, U. (1996) Rotavirus pathogenicity . Virology 218, 299–305. 

13. Kapikian, A.Z. and Chanock, R.M. (1990) Rotaviruses. In Virology. Fields, B.N. and Knipe, D.M., Eds. Raven Press, 
New York. pp. 1353–1404. 

14. Michelangeli,  F. and Ruiz, M.C. (2003) Physiology and pathophysiology of the gut in relation to viral diarrhea. In 

Viral Gastroenteritis. Vol. 9. Dusselberger, U. and Gray, J., Eds. Zuckerman, A.J. and Mushahwar, I.K., Series Eds. 

Perspectives in Medical Virology. Elsevier, Amsterdam. pp. 23–50.  

15. Lundgren, O. and Svensson, L. (2001) Pathogenesis of rotavirus diarrhea. Microbes Infect. 3, 1145–1156. 
16. Prasad, B.V.V., Wang, G.J., Clerx, J.P., and Chiu, W. (1988) Three-dimensional structure of rotavirus. J. Mol. Biol. 

199(2), 269–275. 

17. Li, Z., Baker, M.L., Jiang, W., Estes, M.K., and Prasad, B.V. (2009) Rotavirus architecture at subnanometer 

resolution. J. Virol. 83, 1754–1766. 

18. Shaw, A.L., Rothnagel, R., Zeng, C.Q., Lawton, J.A., Ramig, R.F., Estes, M.K., and Prasad, B.V. (1996) Rotavirus 
structure: interactions between the structural proteins. Arch. Virol. Suppl. 12, 21–27. 

19. Yeager, M., Berriman, J.A., Baker, T.S., and Bellamy, A.R. (1994) Three-dimensional structure of the rotavirus 

haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 13, 1011–1018. 

20. Dormitzer, P.R., Nason, E.B., Prasad, B.V., and Harrison, S.C. (2004) Structural rearrangements in the membrane 

penetration protein of a non-enveloped virus. Nature 430, 1053–1058. 
21. Yoder, J.D. and Dormitzer, P.R. (2006) Alternative intermolecular contacts underlie the rotavirus VP5* two- to three-

fold rearrangement. EMBO J. 25, 1559–1568. 

22. Estes, M.K. (1996) Rotaviruses and their replication. In Fields Virology.  Vol. 2. 3rd ed. Fields, B.N., Knipe, P.M., 

Howley, P.M., Chanock, R.M., Melnick, J.L., Monath, T.P., Roizman, B., and Straus, S.E., Eds. Lippincott -Raven, 

Philadelphia. pp. 1625–1655. 
23. Prasad, B.V.V., Burns, J.W., Marietta, E., Estes, M.K., and Chiu, W. (1990) Localization of VP4 neutralization sites 

in rotavirus by three-dimensional cryo-electron. Nature 343, 476–479. 

24. Estes, M.K., Graham, D.Y., and Mason, R.B. (1981) Proteolytic enhancement of rotavirus infectivity: molecular 

mechanisms. J. Virol. 39, 879–888. 

25. Clark, S.M., Roth, J.R., Clark, L., Barnett, B.B., and Spendlove, R.S. (1981) Trypsin enhancement of rotavirus 
infectivity: mechanism of enhancement . J. Virol. 39, 816–822. 

26. Ludert, J.E., Krishnaney, A.A., Burns, J.W., Vo, P.T., and Greenberg, H.B. (1996) Cleavage of rotavirus VP4 in vivo.  

J. Gen. Virol. 77, 391–395. 

27. Mackow, E.R., Shaw, R.D., Matsui, S.M., Vo, P.T., Dang, M.N., and Greenberg, H.B. (1988) The rhesus rotavirus 

gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus 
neutralization and identification of a putative fusion region. Proc. Natl. Acad. Sci. U. S. A. 85, 645–649. 

28. Tihova, M., Dryden, K.A., Bellamy, A.R., Greenberg, H.B., and Yeager, M. (2001) Localization of membrane 

permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry . J. Mol. 

Biol. 314, 985–992. 

29. Crawford, S.E., Mukherjee, S.K., Estes, M.K., Lawton, J.A., Shaw, A.L., Ramig, R.F., and Prasad, B.V. (2001) 
Trypsin cleavage stabilizes the rotavirus VP4 spike. J. Virol. 75, 6052–6061. 

30. Shirley, J.A., Beards, G.M., Thouless, M.E., and Flewett, T.H. (1981) The influence of divalent cations on the 

stability of human rotavirus. Arch. Virol. 67, 1–9. 

31. Dormitzer, P.R. and Greenberg, H.B. (1992) Calcium chelation induces a conformational change in recombinant 

herpes simplex virus-1-expressed rotavirus VP7. Virology 189, 828–832. 
32. Dormitzer, P.R., Greenberg, H.B., and Harrison, S.C. (2000) Purified recombinant rotavirus VP7 forms soluble, 

calcium-dependent trimers. Virology 277, 420–428. 

33. Ruiz, M.C., Charpilienne, A., Liprandi, F., Gajardo, R., Michelangeli, F., and Cohen, J. (1996) The concentration of 

Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain. J. Virol. 70, 4877–4883. 

34. Gajardo, R., Vende, P., Poncet, D., and Cohen, J. (1997) Two proline residues are essential in the calcium-binding 
activity of rotavirus VP7 outer capsid protein. J. Virol. 71, 2211–2216. 

35. Chen, D. and Ramig, R.F. (1993) Rescue of infectivity by in vitro transcapsidation of rotavirus single-shelled 

particles. Virology 192, 422–429. 

36. Trask, S.D. and Dormitzer, P.R. (2006) Assembly of highly infectious rotavirus particles recoated with recombinant 

outer capsid proteins. J. Virol. 80, 11293–11304. 
37. Willoughby, R.E. and Yolken, R.H. (1990) SA11 rotavirus is specifically inhibited by an acetylated sialic acid . J. 

Infect. Dis. 161, 116–119. 

38. Bass, D.M., Mackow, E.R., and Greenberg, H.B. (1991) Identification and partial characterization of a rhesus 

rotavirus binding glycoprotein on murine enterocytes. Virology 183, 602–610. 



Ruiz et al.: Rotavirus Entry and Replication TheScientificWorldJOURNAL (2009) 9, 1476–1497 
 

 1493 

39. Ciarlet, M., Crawford, S.E., and Estes, M.K. (2001) Differential infection of polarized epithelial cell lines by sialic 

acid-dependent and sialic acid-independent rotavirus strains. J. Virol. 75, 11834–11850. 

40. Fiore, L., Greenberg, H.B., and Mackow, E.R. (1991) The VP8* of VP4 is  the rhesus rotavirus hemagglutinin .  
Virology 181, 553–563. 

41. Fuentes Panana, E.M., Lopez, S., Gorziglia, M., and Arias, C.F. (1995) Mapping the hemagglutination domain of 

rotaviruses. J. Virol. 69, 2629–2632. 

42. Zarate, S., Espinosa, R., Romero, P., Mendez, E., Arias, C.F., and Lopez, S. (2000) The VP5 domain of VP4  can 

mediate attachment of rotaviruses to cells. J. Virol. 74, 593–599. 
43. Ciarlet, M., Ludert, J.E., Iturriza-Gomara, M., Liprandi, F., Gray, J.J., Desselberger, U., and Estes, M.K. (2002) Initial 

interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 

genotype, not species of origin. J. Virol. 76, 4087–4095. 

44. Dormitzer, P.R., Sun, Z.Y., Blixt, O., Paulson, J.C., Wagner, G., and Harrison, S.C. (2002) Specificity and affinity of 

sialic acid binding by the rhesus rotavirus VP8* core. J. Virol. 76, 10512–10517. 
45. Lopez, S. and Arias, C.F. (2004) Multistep entry of rotavirus into cells: a Versaillesque dance.  Trends Microbiol. 12,  

271–278. 

46. Lopez, S. and Arias, C.F. (2006) Early steps in rotavirus cell entry . Curr. Top. Microbiol. Immunol. 309, 39–66. 

47. Ciarlet, M. and Estes, M.K. (2001) Interactions between rotavirus and gastrointestinal cells . Curr. Opin. Microbiol. 4,  

435–441. 
48. Coulson, B.S., Londrigan, S.L., and Lee, D.J. (1997) Rotavirus contains integrin ligand sequences and a disintegrin-

like domain that are implicated in virus entry into cells. Proc. Natl. Acad. Sci. U. S. A. 94, 5389–5394. 

49. Hewish, M.J., Takada, Y., and Coulson, B.S. (2000) Integrins alpha2beta1 and alpha4beta1 can mediate SA11 

rotavirus attachment and entry into cells. J. Virol. 74, 228–236. 

50. Londrigan, S.L., Hewish, M.J., Thomson, M.J., Sanders, G.M., Mustafa, H., and Coulson, B.S. (2000) Growth of 
rotaviruses in continuous human and monkey cell lines that vary in their expression of integrins J. Gen. Virol. 81(Pt 

9), 2203–2213. 

51. Graham, K.L., Halasz, P., Tan, Y., Hewish, M.J., Takada, Y., Mackow, E.R., Robinson, M.K., and Coulson, B.S. 

(2003) Integrin-using rotaviruses bind alpha2beta1 integr in alpha2 I domain via VP4 DGE sequence and recognize 

alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry . J. Virol. 77, 9969–9978. 
52. Londrigan, S.L., Graham, K.L., Takada, Y., Halasz, P., and Coulson, B.S. (2003) Monkey rotavirus binding to 

alpha2beta1 integrin requires the alpha2 I domain and is facilitated by the homologous beta1 subunit . J. Virol. 77,  

9486–9501. 

53. Graham, K.L., Takada, Y., and Coulson, B.S. (2006) Rotavirus spike protein VP5* binds alpha2beta1 integrin on the 

cell surface and competes with virus for cell binding and infectivity . J. Gen. Virol. 87, 1275–1283. 
54. Graham, K.L., Fleming, F.E., Halasz, P., Hewish, M.J., Nagesha, H.S., Holmes, I.H., Takada, Y., and Coulson, B.S. 

(2005) Rotaviruses interact with alpha4beta7 and alpha4beta1 integrins by binding the same integrin domains as 

natural ligands. J. Gen. Virol. 86, 3397–3408. 

55. Fleming, F.E., Graham, K.L., Taniguchi, K., Takada, Y., and Coulson, B.S. (2007) Rotavirus-neutralizing antibodies 

inhibit virus binding to integrins alpha 2 beta 1 and alpha 4 beta 1. Arch. Virol. 152, 1087–1101. 
56. Ciarlet, M., Crawford, S.E., Cheng, E., Blutt, S.E., Rice, D.A., Bergelson, J.M., and Estes, M.K. (2002) VLA-2 

(alpha2beta1) integrin promotes rotavirus entry into cells but is not  necessary for rotavirus attachment . J. Virol. 76,  

1109–1123. 

57. Zarate, S., Espinosa, R., Romero, P., Guerrero, C.A., Arias, C.F., and Lopez, S. (2000) Integrin alpha2beta1 mediates 

the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278, 50–54. 
58. Guerrero, C.A., Mendez, E., Zarate, S., Isa, P., Lopez, S., and Arias, C.F. (2000) Integrin alpha(v)beta(3) mediates 

rotavirus cell entry . Proc. Natl. Acad. Sci. U. S. A. 97, 14644–14649. 

59. Zarate, S., Romero, P., Espinosa, R., Arias, C.F., and Lopez, S. (2004) VP7 mediates the interaction of rotaviruses 

with integrin alphavbeta3 through a novel integrin-binding site. J. Virol. 78, 10839–10847. 

60. Zarate, S., Cuadras, M.A., Espinosa, R., Romero, P., Juarez, K.O., Camacho-Nuez, M., Arias, C.F., and Lopez, S. 
(2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J. Virol. 77, 7254–7260. 

61. Ludert, J.E., Michelangeli, F., Gil, F., Liprandi, F., and Esparza, J. (1987) Penetration and uncoating of rotaviruses in 

cultured cells. Intervirology 27, 95–101. 

62. Ruiz, M.C., Abad, M.J., Charpilienne, A., Cohen, J., and Michelangeli, F. (1997) Cell lines susceptible to infection 

are permeabilized by cleaved and solubilized outer layer proteins of rotavirus. J. Gen. Virol. 78, 2883–2893. 
63. Quan, C.M. and Doane, F.W. (1983) Ultrastructural evidence for the cellular uptake of rotavirus by endocytosis . 

Intervirology 20, 223–231. 

64. Suzuki, H., Kitaoka, S.,  Konno, T., Sato, T., and Ishida, N. (1985) Two modes of human rotavirus entry into MA 104 

cells. J. Virol. 85, 25–34. 

65. Bass, D.M., Baylor, M., Chen, C., and Upadhyayula, U. (1995) Dansylcadaverine and cytochalasin d enhance 
rotavirus infection of murine l cells. Virology 212, 429–437. 

66. Kaljot, K.T., Shaw, R.D., Rubin, D.H., and Greenberg, H.B. (1988) Infectious rotavirus enters cells by direct cell 

membrane penetration, not by endocytosis. J. Virol. 62, 1136–1144. 



Ruiz et al.: Rotavirus Entry and Replication TheScientificWorldJOURNAL (2009) 9, 1476–1497 
 

 1494 

67. Falconer, M.M., Gilbert, J.M., Roper, A.M., Greenberg, H.B., and Gavora, J.S. (1995) Rotavirus-induced fusion from 

without in tissue culture cells. J. Virol. 69, 5582–5591. 

68. Gilbert, J.M. and Greenberg, H.B. (1997) Virus-like particle-induced fusion from without in tissue culture cells: role 
of outer-layer proteins VP4 and VP7. J. Virol. 71, 4555–4563. 

69. Gilbert, J.M. and Greenberg, H.B. (1998) Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for 

rotavirus-like particle-induced fusion from without. J. Virol. 72, 5323–5327. 

70. Keljo, D.J. and Smith, A.K. (1988) Characterization of binding of simian rotavirus SA-11 to cultured epithelial cells. 

J. Pediatr. Gastroenterol. Nutr. 7, 249–256. 
71. Cuadras, M.A., Arias, C.F., and Lopez, S. (1997) Rotaviruses induce an early membrane permeabilization of MA104 

cells and do not require a low intracellular Ca2+ concentration to initiate their replication cycle. J. Virol. 71, 9065–

9074. 

72. Liprandi, F., Moros, Z., Gerder, M., Ludert, J.E., Pujol, F.H., Ruiz, M.C., Michelangeli, F., Charpilienne, A., and 

Cohen, J. (1997) Productive penetration of rotavirus in cultured cells induces coentry of the translation inhibitor 
alpha-sarcin. Virology 237, 430–438. 

73. Chemello, M.E., Aristimuno, O.C., Michelangeli, F., and Ruiz, M.C. (2002) Requirement for vacuolar H+-ATPase 

activity and Ca2+ gradient during entry of rotavirus into MA104 cells. J. Virol. 76, 13083–13087. 

74. Sanchez-San Martin, C., Lopez, T., Arias, C.F., and Lopez, S. (2004) Characterization of rotavirus cell entry . J. Virol. 

78, 2310–2318. 
75. Nandi, P., Charpilienne, A., and Cohen, J. (1992) Interaction of rotavirus particles with liposomes . J. Virol. 66, 3363–

3367. 

76. Ruiz, M.C., Alonso Torre, S.R., Charpilienne, A., Vasseur, M., Michelangeli, F., Cohen, J., and Alvarado, F. (1994) 

Rotavirus interaction with isolated membrane vesicles. J. Virol. 68, 4009–4016. 

77. Denisova, E., Dowling, W., LaMonica, R., Shaw, R., Scarlata, S., Ruggeri, F., and Mackow, E.R. (1999) Rotavirus 
capsid protein VP5* permeabilizes membranes. J. Virol. 73, 3147–3153. 

78. Dowling, W., Denisova, E., LaMonica, R., and Mackow, E.R. (2000) Selective membrane permeabilization by the 

rotavirus VP5* protein is abrogated by mutations in an internal hydrophobic domain. J. Virol. 74, 6368–6376. 

79. Golantsova, N.E., Gorbunova, E.E., and Mackow, E.R. (2004) Discrete domains within the rotavirus VP5* direct 

peripheral membrane association and membrane permeability . J. Virol. 78, 2037–2044. 
80. Charpilienne, A., Abad, M.J., Michelangeli,  F., Alvarado, F., Vasseur, M., Cohen, J., and Ruiz, M.C. (1997) 

Solubilized and cleaved VP7, the outer glycoprotein of rotavirus, induces permeabilization of cell membrane vesicles . 

J. Gen. Virol. 78, 1367–1371. 

81. Gerasimenko, J.V., Tepikin, A.V., Petersen, O.H., and Gerasimenko, O.V. (1998) Calcium uptake via endocytosis 

with rapid release from acidifying endosomes. Curr. Biol. 8, 1335–1338. 
82. Ludert, J.E., Ruiz, M.C., Hidalgo, C., and Liprandi, F. (2002) Antibodies to rotavirus outer capsid glycoprotein VP7 

neutralize infectivity by inhibiting virion decapsidation. J. Virol. 76, 6643–6651. 

83. Benureau, Y., Huet, J.C., Charpilienne, A., Poncet, D., and Cohen, J. (2005) Trypsin is associated with the rotavirus 

capsid and is activated by solubilization of outer capsid proteins. J. Gen. Virol. 86, 3143–3151. 

84. Cohen, J., Laporte, J., Charpilienne, A., and Scherrer, R. (1979) Activation of rotavirus RNA polymerase by calcium 
chelation. Arch. Virol. 60, 177–186. 

85. Charpilienne, A., Lepault, J., Rey, F., and Cohen, J. (2002) Identification of rotavirus VP6 residues located at the 

interface with VP2 that are essential for capsid assembly and transcriptase activity . J. Virol. 76, 7822–7831. 

86. Chen, D., Luongo, C.L., Nibert, M.L., and Patton, J.T. (1999) Rotavirus open cores catalyze 5'-capping and 

methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 265, 120–130. 
87. Liu, M., Mattion, N.M., and Estes, M.K. (1992) Rotavirus VP3 expressed in insect cells possesses guanylyltransferase 

activity . Virology 188, 77–84. 

88. Valenzuela, S., Pizarro, J., Sandino, A.M., Vasquez, M., Fernandez, J., Hernandez, O., Patton, J., and Spencer, E. 

(1991) Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. J. 

Virol. 65, 3964–3967. 
89. Koonin, E.V., Gorbalenya, A.E., and Chumakov, K.M. (1989) Tentative identification of RNA-dependent RNA 

polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases . FEBS Lett. 252, 42–

46. 

90. Pesavento, J.B., Crawford, S.E., Estes, M.K., and Prasad, B.V. (2006) Rotavirus proteins: structure and assembly . 

Curr. Top. Microbiol. Immunol. 309, 189–219. 
91. Lawton, J.A., Estes, M.K., and Prasad, B.V. (1997) Three-dimensional visualization of mRNA release from actively 

transcribing rotavirus particles. Nat. Struct. Biol. 4, 118–121. 

92. Vende, P., Piron, M., Castagne, N., and Poncet, D. (2000) Efficient translation of rotavirus mRNA requires 

simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3' end. J. 

Virol. 74, 7064–7071. 
93. Piron, M., Delaunay, T., Grosclaude, J., and Poncet, D. (1999) Identification of the RNA-binding, dimerization, and 

eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J. Virol. 73, 5411–5421. 

94. Piron, M., Vende, P., Cohen, J., and Poncet, D. (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI 

and evicts the poly(A) binding protein from eIF4F. EMBO J. 17, 5811–5821. 



Ruiz et al.: Rotavirus Entry and Replication TheScientificWorldJOURNAL (2009) 9, 1476–1497 
 

 1495 

95. Montero, H., Arias, C.F., and Lopez, S. (2006) Rotavirus nonstructural prot ein NSP3 is not required for viral protein 

synthesis. J. Virol. 80, 9031–9038. 

96. Montero, H., Rojas, M., Arias, C.F., and Lopez, S. (2008) Rotavirus infection induces the phosphorylation of 
eIF2{alpha} but prevents the formation of stress granules. J. Virol. 82(3), 1496–1504. 

97. Fabbretti, E., Afrikanova, I.,  Vascotto, F., and Burrone, O.R. (1999) Two non-structural rotavirus proteins, NSP2 and 

NSP5, form viroplasm-like structures in vivo. J. Gen. Virol. 80(Pt 2), 333–339. 

98. Silvestri, L.S., Taraporewala, Z.F., and Patton, J.T. (2004) Rotavirus replication: plus-sense templates for double-

stranded RNA synthesis are made in viroplasms. J. Virol. 78, 7763–7774. 
99. Patton, J.T. (1995) Structure and function of the rotavirus RNA-binding proteins. J. Gen. Virol. 76, 2633–2644. 

100. Estes, M.K. and Cohen, J. (1989) Rotavirus gene structure and function. Microbiol. Rev. 53, 410–499. 

101. Taraporewala, Z.F. and Patton, J.T. (2004) Nonstructural proteins involved in genome packaging and replication of 

rotaviruses and other members of the Reoviridae. Virus Res. 101, 57–66. 

102. Patton, J.T., Silvestri, L.S., Tortorici, M.A., Vasquez-Del Carpio, R., and Taraporewala, Z.F. (2006) Rotavirus 
genome replication and morphogenesis: role of the viroplasm. Curr. Top. Microbiol. Immunol. 309, 169–187. 

103. Arnoldi, F., Campagna, M., Eichwald, C., Desselberger, U., and Burrone, O.R. (2007) Interaction of rotavirus 

polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. J. Virol. 81, 2128–2137. 

104. Campagna, M., Eichwald, C., Vascotto, F., and Burrone, O.R. (2005) RNA interference of rotavirus segment 11 

mRNA reveals the essential role of NSP5 in the virus replicative cycle. J. Gen. Virol. 86, 1481–1487. 
105. Eichwald, C., Vascotto, F., Fabbretti, E., and Burrone, O.R. (2002) Rotavirus NSP5: mapping phosphorylation sites 

and kinase activation and viroplasm localization domains. J. Virol. 76, 3461–3470. 

106. Chnaiderman, J., Barro, M., and Spencer, E. (2002) NSP5 phosphorylation regulates the fate of viral mRNA in 

rotavirus infected cells. Arch. Virol. 147, 1899–1911. 

107. Lopez, T., Rojas, M., Ayala-Breton, C., Lopez, S., and Arias, C.F. (2005) Reduced expression of the rotavirus NSP5 
gene has a pleiotropic effect on virus replication. J. Gen. Virol. 86, 1609–1617. 

108. Jiang, X., Jayaram, H., Kumar, M., Ludtke, S.J., Estes, M.K., and Prasad, B.V. (2006) Cryoelectron microscopy 

structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication. J. Virol. 80,  

10829–10835. 

109. Berois, M., Sapin, C., Erk, I., Poncet, D., and Cohen, J. (2003) Rotavirus nonstructural protein NSP5 interacts with 
major core protein VP2. J. Virol. 77, 1757–1763. 

110. Afrikanova, I., Miozzo, M.C., Giambiagi, S.,  and Burrone, O. (1996) Phosp horylation generates different forms of 

rotavirus NSP5. J. Gen. Virol. 77(Pt 9), 2059–2065. 

111. Poncet, D., Lindenbaum, P., L'Haridon, R., and Cohen, J. (1997) In vivo and in vitro phosphorylation of rotavirus 

NSP5 correlates with its localization in viroplasms. J. Virol. 71, 34–41. 
112. Afrikanova, I., Fabbretti, E., Miozzo, M.C., and Burrone, O.R. (1998) Rotavirus NSP5 phosphorylation is up -

regulated by interaction with NSP2. J. Gen. Virol. 79(Pt 11), 2679–2686. 

113. Eichwald, C., Rodriguez, J.F., and Burrone, O.R. (2004) Characterization of rotavirus NSP2/NSP5 interactions and 

the dynamics of viroplasm formation. J. Gen. Virol. 85, 625–634. 

114. Torres-Vega, M.A., Gonzalez, R.A., Duarte, M., Poncet, D., Lopez, S., and Arias, C.F. (2000) The C-terminal domain 
of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6 . J. Gen. Virol.  

81, 821–830. 

115. Mohan, K.V., Muller, J., Som, I., and Atreya, C.D. (2003) The N- and C-terminal regions of rotavirus NSP5 are the 

critical determinants for the formation of viroplasm-like structures independent of NSP2. J. Virol. 77, 12184–12192. 

116. Sen, A., Sen, N., and Mackow, E.R. (2007) The formation of viroplasm-like structures by the rotavirus NSP5 protein 
is calcium regulated and directed by a C-terminal helical domain. J. Virol. 81, 11758–11767. 

117. Michelangeli, F., Ruiz, M.C., del Castillo, J.R., Ludert, J.E., and Liprandi, F. (1991) Effect of rotavirus infection on 

intracellular calcium homeostasis in cultured cells. Virology 181, 520–527. 

118. Taraporewala, Z., Chen, D., and Patton, J.T. (1999) Multimers formed by the rotavirus nonstructural protein NSP2 

bind to RNA and have nucleoside triphosphatase activity . J. Virol. 73, 9934–9943. 
119. Gallegos, C.O. and Patton, J.T. (1989) Characterization of rotavirus replication intermediates: a model for the 

assembly of single-shelled particles. Virology 172, 616–627. 

120. Patton, J.T., Kearney, K., and Taraporewala, Z.F. (2003) Rotavirus genome replication: role of the RNA-binding 

proteins. In Viral Gastroenteritis. Dusselberger, U. and Gray, J., Eds. Elsevier, Amsterdam. pp. 165–183. 

121. Pesavento, J.B., Lawton, J.A., Estes, M.E., and Venkataram Prasad, B.V. (2001) The reversible condensation and 
expansion of the rotavirus genome. Proc. Natl. Acad. Sci. U. S. A. 98, 1381–1386. 

122. Lawton, J.A., Zeng, C.Q., Mukherjee, S.K., Cohen, J., Estes, M.K., and Prasad, B.V. (1997) Three-dimensional 

structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications 

for the architecture of the VP2 capsid layer. J. Virol. 71, 7353–7360. 

123. Patton, J.T. and Gallegos, C.O. (1990) Rotavirus RNA replication: single-stranded RNA extends from the replicase 
particle. J. Gen. Virol. 71(Pt 5), 1087–1094. 

124. Patton, J.T. (1990) Evidence for equimolar synthesis of double-strand RNA and minus-strand RNA in rotavirus-

infected cells. Virus Res. 17, 199–208. 



Ruiz et al.: Rotavirus Entry and Replication TheScientificWorldJOURNAL (2009) 9, 1476–1497 
 

 1496 

125. Gorziglia, M., Larrea, C., Liprandi, F., and Esparza, J. (1985) Biochemical evidence for the oligomeric (possibly 

trimeric) structure of the major inner capsid polypeptide (45K) of rotaviruses . J. Gen. Virol. 66, 1889–1900. 

126. Ready, K.F., Buko, K.M., Whippey, P.W., Alford, W.P., and Bancroft, J.B. (1988) The structure of tubes of bovine 
rotavirus nucleocapsid protein (VP6) assembled in vitro. Virology 167, 50–55. 

127. Estes, M.K., Crawford, S.E., Penaranda, M.E., Petrie, B.L., Burns, J.W., Chan, W.K., Ericson, B., Smith, G.E., and 

Summers, M.D. (1987) Synthesis and immunogenicity  of the rotavirus major capsid antigen using a baculovirus 

expression system. J. Virol. 61, 1488–1494. 

128. Tosser, G., Labbe, M., Bremont, M., and Cohen, J. (1992) Expression of the major capsid protein VP6 of the group C 
rotavirus and synthesis of chimeric single-shelled particles by using recombinant baculoviruses. J. Virol. 66, 251–257. 

129. Lopez, T., Camacho, M., Zayas, M., Najera, R., Sanchez, R., Arias, C.F., and Lopez, S. (2005) Silencing the 

morphogenesis of rotavirus. J. Virol. 79, 184–192. 

130. Gonzalez, R.A., Espinosa, R., Romero, P.,  Lopez, S., and Arias, C.F. (2000) Relative localization of viroplasmic and 

endoplasmic reticulum-resident rotavirus proteins in infected cells. Arch. Virol. 145, 1963–1973. 
131. Zambrano, J.L., Diaz, Y., Pena, F., Vizzi, E., Ruiz, M.C., Michelangeli, F., Liprandi, F., and Ludert, J.E. (2008) 

Silencing of rotavirus NSP4 or VP7 expression reduce alterations in Ca2+ homeostasis induced by infection in 

cultured cell. J. Virol. 82, 5815–5824. 

132. Silvestri, L.S., Tortorici, M.A., Vasquez-Del Carpio, R., and Patton, J.T. (2005) Rotavirus glycoprotein NSP4 is a 

modulator of viral transcription in the infected cell. J. Virol. 79, 15165–15174. 
133. Cuadras, M.A., Bordier, B.B., Zambrano, J.L., Ludert, J.E., and Greenberg, H.B. (2006) Dissecting rotavirus particle-

raft interaction with small interfering RNAs: insights into rotavirus transit through the secretory pathway . J. Virol. 80, 

3935–3946. 

134. Ruiz, M.C., Aristimuno, O.C., Diaz, Y., Pena, F., Chemello, M.E., Rojas, H., Ludert, J.E., and Michelangeli,  F. 

(2007) Intracellular disassembly of infectious rotavirus particles by depletion of Ca2+ sequestered in the endoplasmic 
reticulum at the end of virus cycle. Virus Res. 130, 140–150. 

135. Au, K.S., Chan, W.K., Burns, J.W., and Estes, M.K. (1989) Receptor activity of rotavirus nonstructural glycoprotein 

NS28. J. Virol. 63, 4553–4562. 

136. Meyer, J.C., Bergmann, C.C., and Bellamy, A.R. (1989) Interaction of rotavirus cores with the nonstructural 

glycoprtein NS28. Virology 171, 98–107. 
137. Tian, P., Ball, J.M., Zeng, C.Q., and Estes, M.K. (1996) Rotavirus protein expression is important for virus assembly 

and pathogenesis. Arch. Virol. Suppl. 12, 69–77. 

138. O'Brien, J.A., Taylor, J.A., and Bellamy, A.R. (2000) Probing the structure of rotavirus NSP4: a short sequence at the 

extreme C terminus mediates binding to the inner capsid particle. J. Virol. 74, 5388–5394. 

139. Taylor, J.A., O'Brien, J.A., Lord, V.J., Meyer, J.C., and Bellamy, A.R. (1993) The RER-localized rotavirus intracellular 
receptor: a truncated purified soluble form is multivalent and binds virus particles. Virology 194, 807–814. 

140. Taylor, J.A., Meyer, J.C., Legge, M.A., O'Brien, J.A., Street, J.E., Lord, V.J., Bergmann, C.C., and Bellamy, A.R. 

(1992) Transient expression and mutational analysis of the rotavirus intracellular receptor: the C-terminal methionine 

residue is essential for ligand binding. J. Virol. 66, 3566–3572. 

141. Poruchynsky, M.S. and Atkinson, P.H. (1991) Rotavirus protein rearrangements in purified membrane-enveloped 
intermediate particles. J. Virol. 65, 4720–4727. 

142. Michelangeli, F., Liprandi, F., Chemello, M.E., Ciarlet, M., and Ruiz, M.C. (1995) Selective depletion of stored 

calcium by thapsigargin blocks rotavirus maturation but not the cytopathic effect . J. Virol. 69, 3838–3847. 

143. Poruchynsky, M.S., Maass, D.R., and Atkinson, P.H. (1991) Calcium depletion blocks the maturation of rotavirus by 

altering the oligomerization of virus-encoded proteins in the ER. J. Cell Biol. 114, 651–656. 
144. Ahmadian, S. and Shahrabadi, M.S. (1999) Morphological study of the role of calcium in the assembly of the 

rotavirus outer capsid protein VP7. Biotech. Histochem. 74, 266–273. 

145. Petrie, B.L., Estes, M.K., and Graham, D.Y. (1983) Effects of tunicamycin on rotavirus morphogenesis and 

infectivity . J. Virol. 46, 270–274. 

146. Sabara, M., Balbiuk, L.A., Gilchrist, J., and Misra, V. (1982) Effect of tunicamycin on rotavirus assembly and 
infectivity . J. Virol. 43, 1082–1090. 

147. Estes, M.K., Graham, D.Y., Ramig, R.F., and Ericson, B.L. (1982) Heterogeneity in the structural glycoprotein (VP7) 

of simian rotavirus SA11. Virology 122, 8–14. 

148. Diaz, Y., Chemello, M.E., Pena, F., et al. (2008) Expression of nonstructural rotavirus protein NSP4 mimicks Ca2+ 

homeostasis changes induced by rotavirus infection in cultured cells. J. Virol. 82(22), 11331–11343. 
149. Svensson, L., Dormitzer, P.R., von Bonsdorff, C.H., Maunula, L., and Greenberg, H.B. (1994) Intracellular 

manipulation of disulfide bond formation in rotavirus proteins during assembly . .J. Virol. 68, 5204–5215. 

150. Tian, P., Ball, J.M., Zeng, C.Q., and Estes, M.K. (1996) The rotavirus nonstructural glycoprotein NSP4 possesses 

membrane destabilization activity . J. Virol. 70, 6973–6981. 

151. Wei, J. and Hendershot, L.M. (1996) Protein folding and assembly in the endoplasmic reticulum. EXS 77, 41–55. 
152. Mirazimi, A., Nilsson, M., and Svensson, L. (1998) The molecular chaperone calnexin interacts with the NSP4 

enterotoxin of rotavirus in vivo and in vitro. J. Virol. 72, 8705–8709. 

153. Mirazimi, A. and Svensson, L. (1998) Carbohydrates facilitate correct disulfide bond formation and folding of 

rotavirus VP7. J. Virol. 72, 3887–3892. 



Ruiz et al.: Rotavirus Entry and Replication TheScientificWorldJOURNAL (2009) 9, 1476–1497 
 

 1497 

154. Xu, A., Bellamy, A.R., and Taylor, J.A. (1998) BiP (GRP78) and endoplasmin (GRP94) are induced following 

rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion component . J. Virol. 72, 9865–

9872. 
155. Maruri-Avidal, L., Lopez, S., and Arias, C.F. (2008) Endoplasmic reticulum chaperones are involved in the 

morphogenesis of rotavirus infectious particles. J. Virol. 82, 5368–5380. 

156. Berkova, Z., Crawford, S.E., Trugnan, G., Yoshimori, T., Morris, A.P., and Estes, M.K. (2006) Rotavirus NSP4 

induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J. Virol. 80, 6061–6071. 

157. Dector, M.A., Romero, P., Lopez, S., and Arias, C.F. (2002) Rotavirus gene silencing by small interfering RNAs . 
EMBO Rep. 3, 1175–1180. 

158. Petrie, B.L., Greenberg, H.B., Graham, D.Y., and Estes, M.K. (1984) Ultrastructural localization of rotavirus antigens 

using colloidal gold. Virus Res. 1, 133–152. 

159. Au, K.S., Mattion, N.M., and Estes, M.K. (1993) A subviral particle binding domain on the rotavirus nonstructural 

glycoprotein NS28. Virology 194, 665–673. 
160. Bowman, G.D., Nodelman, I.M., Levy, O., Lin, S.L., Tian, P., Zamb, T.J., Udem, S.A., Venkataraghavan, B., and 

Schutt, C.E. (2000) Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-

binding site. J. Mol. Biol. 304, 861–871. 

161. Chwetzoff, S. and Trugnan, G. (2006) Rotavirus assembly: an alternative model that utilizes an atypical trafficking 

pathway . Curr. Top. Microbiol. Immunol. 309, 245–261. 
162. Sapin, C., Colard, O., Delmas, O., Tessier, C., Breton, M., Enouf, V., Chwetzoff, S., Ouanich, J., Cohen, J., Wolf, C., 

and Trugnan, G. (2002) Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 

cells. J. Virol. 76, 4591–4602. 

163. Nejmeddine, M., Trugnan, G., Sapin, C., Kohli,  E., Svensson, L., Lopez, S., and Cohen, J. (2000) Rotavirus spike 

protein VP4 is present at the plasma membrane and is associated with microtubules in infected cells . J. Virol. 74,  
3313–3320. 

164. Delmas, O., Durand-Schneider, A.M., Cohen, J., Colard, O., and Trugnan, G. (2004) Spike protein VP4 assembly 

with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 cells. J. Virol.  78, 10987–

10994. 

165. Cuadras, M.A. and Greenberg, H.B. (2003) Rotavirus infectious particles use lipid rafts during replication for 
transport to the cell surface in vitro and in vivo. Virology 313, 308–321. 

166. Jourdan, N., Maurice, M., Delautier, D., Quero, A.M., Servin, A.L., and Trugnan, G. (1997) Rotavirus is released 

from the apical surface of cultured human intestinal cells through nonconventional vesicular transport that bypasses 

the Golgi apparatus. J. Virol. 71, 8268–8278. 

167. Berkova, Z., Morris, A.P., and Estes, M.K. (2003) Cytoplasmic calcium measurement in rotavirus enterotoxin-
enhanced green fluorescent protein (NSP4-EGFP) expressing cells loaded with Fura-2. Cell Calcium 34, 55–68. 

168. Ruiz, M.C., Diaz, Y., Pena, F., Aristimuno, O.C., Chemello, M.E., and Michelangeli, F. (2005) Ca2+ permeability of 

the plasma membrane induced by rotavirus infection in cultured cells is inhibited by tunicamycin and brefeldin A . 

Virology 333, 54–65. 

169. Mirazimi, A., Magnusson, K.E., and Svensson, L. (2003) A cytoplasmic region of the NSP4 enterotoxin of rotavirus 
is involved in retention in the endoplasmic reticulum. J. Gen. Virol. 84, 875–883. 

170. Storey, S.M., Gibbons, T.F., Williams, C.V., Parr, R.D., Schroeder, F., and Ball, J.M. (2007) Full-length, glycosylated 

NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique. J Virol. 81(11), 5472–5483. 

171. Bugarcic, A. and Taylor, J.A. (2006) Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces 

of polarized epithelial cells. J. Virol. 80, 12343–12349. 
172. Gonzalez, M.E. and Carrasco, L. (2003) Viroporins. FEBS Lett. 552, 28–34. 

173. Fischer, W.B. and Sansom, M.S. (2002) Viral ion channels: structure and function. Biochim. Biophys. Acta 1561, 27–

45. 

174. Bergmann, C.C., Maass, D., Poruchynsky, M.S., Atkinson, P.H., and Bellamy, A.R. (1989) Topology of the non-

structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J. 8, 1695–1703. 
175. Taylor, J.A., O'Brien, J.A., and Yeager, M. (1996) The cytoplasmic tail of N SP4, the endoplasmic reticulum-localized 

non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains . EMBO J. 15, 4469–

4476. 

176. Komoto, S., Sasaki, J., and Taniguchi, K. (2006) Reverse genetics system for introduction of site-specific mutations 

into the double-stranded RNA genome of infectious rotavirus. Proc. Natl. Acad. Sci. U. S. A. 103, 4646–4651. 

 

 

This article should be cited as follows: 

Ruiz, M.C., Leon, T., Díaz, Y., and Michelangeli, F. (2009) Molecular biology of rotavirus entry and replication. 

TheScientificWorldJOURNAL 9, 1476–1497. DOI 10.1100/tsw.2009.158. 

 


