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Abstract

Evidence suggests that associations between the neurotransmitter dopamine and cognition are non-

monotonic and open to modulation by various other factors. The functional implications of a given 

level of dopamine may therefore differ from person to person. By applying latent-profile analysis 

to a large (n = 181) sample of adults aged 64 to 68 years, we probabilistically identified three 

subgroups that explain the multivariate associations between dopamine D2/3R availability (probed 

with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance 

(episodic memory, working memory, and perceptual speed). Generally, greater receptor 

availability was associated with better cognitive performance. However, we discovered a subgroup 

of individuals for which high availability, particularly in striatum, was associated with poor 

performance, especially for working memory. Relative to the rest of the sample, this subgroup also 

had lower education, higher body-mass index, and lower resting-state connectivity between 

caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of 

individuals induces a multivariate non-linear association between dopamine D2/3R availability and 

cognitive performance in this group of older adults, and discuss potential reasons for these 

differences that await further empirical scrutiny.
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The neurotransmitter dopamine plays an important but complex role in several cognitive 

processes (Liggins 2009; Shohamy and Adcock 2010; Cools and D'Esposito 2011; Lisman 

et al. 2011, for reviews). In line with this evidence, we recently reported that between-person 

differences in striatal and hippocampal dopamine D2 and D3 receptor (D2/3R) availability 

were linearly and positively associated with episodic memory performance in a large cohort 

of older adults (Nyberg et al. 2016). However, we observed no such association with 

working memory performance. Though D1 receptors have been more directly implicated in 

working memory processes (Arnsten et al. 1994; Liggins 2009; Rieckmann et al. 2011; 

Roffman et al. 2016), there are reasons for also expecting a role of D2 receptors. For 

example, D2 receptor agonists and antagonists affect aspects of human working memory 

performance (e.g., Luciana et al. 1992; Mehta et al. 2004; van Holstein et al. 2011), perhaps 

partly through the involvement of the hippocampus (Takahashi et al. 2008; Liggins 2009; 

Takahashi 2013). Animal work implicates frontal D2 receptors in attentional and flexibility-

based aspects of working memory (Floresco et al. 2006; Puig and Miller 2015; Ott and 

Nieder 2016). In addition, biophysically grounded computational models suggest a role of 

cortical D2 receptors in the flexible switching between representational states in working 

memory (Durstewitz and Seamans 2008; Rolls et al. 2008). D2 receptors may also be 

involved in striatal-based selective updating of working memory (Frank et al. 2001; Mehta et 
al. 2004; Bäckman et al. 2011). Thus, it remains plausible that between-person differences in 

dopamine D2/3R availability relate to working memory performance under specific 

constraints that may not have been captured in our previous work (Nyberg et al., 2016).

One possibility is that associations between inter-individual differences in dopamine D2/3R 

availability and working memory emerge in both non-linear and multivariate ways, such that 

certain levels of regional dopamine D2/3R availability result in different behavioral outcomes 

for different individuals depending on the state of the rest of their neural system. Similar to 

dopamine D1 receptor activation (Arnsten 1997; Zahrt et al. 1997; Cools and D'Esposito 

2011), D2 receptor activation may non-monotonically relate to working-memory processes 

(Floresco 2013). In addition, examples such as the upregulation of prefrontal dopamine in 

early Parkinson’s disease (Rakshi et al. 1999) point to the importance of multivariate 

individual patterns. For example, in the presence of low striatal dopamine availability, high 

cortical availability may have different functional consequences than it has in the presence of 

high striatal availability. In line with this view, some trains of thought suggest that low 

striatal dopamine levels may result in lower probability of gating information into working 

memory, and that having a robust signal in prefrontal cortex in this situation may cause 

difficulties in updating working memory representations (Frank et al. 2001; Cools and 

D'Esposito 2011; D'Ardenne et al. 2012).

Adding to this complexity, expectations based on experimental and theoretical work on 

within-person differences may, due to sample heterogeneity, not play out in between-person 
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differences (Kievit et al. 2013; Schmiedek et al. 2016). Sample heterogeneity may result in 

associations among variables in the overall sample that may differ markedly from the 

associations observed within some or all of the subgroups. The literature suggests a presence 

of such heterogeneity that may distort bivariate dopamine-cognition associations. Whereas 

striatal dopamine D2/3R availability is substantially decreased in older adults (Bäckman et 

al. 2010), other groups of individuals that also on average show reduced cognitive 

performance, in particular reduced working memory and executive control, may display high 

striatal dopamine D2/3R availability (e.g., schizophrenia: Rolls et al. 2008; Howes and Kapur 

2009; ADHD: Badgaiyan et al. 2015; overweight: Cosgrove et al. 2015; Horstmann et al. 

2015; Dang et al. 2016). High striatal D2/3R availability may thus signal low or high 

functioning in different subgroups of individuals – a pattern of heterogeneity that is difficult 

to detect with either normal linear or classic non-linear bivariate statistics across the entire 

group.

Here, we apply latent-profile analysis to represent the presence of subgroups that may 

account for the multivariate associations between dopamine D2/3R availability (assayed with 
11C-raclopride-PET at rest) and cognitive performance in a large (n = 181) sample of older 

adults (age = 64-68 years). Grounded in the multivariate perspective, we included cortical, 

striatal, and hippocampal dopamine D2/3R availability and several key aspects of cognitive 

performance (episodic memory, working memory, and psychomotor speed) that have been 

linked to dopamine (e.g., Backman et al. 2006; Cools and D'Esposito 2011; Lisman et al. 
2011).

Latent-profile analysis is a type of Gaussian mixture modeling that probabilistically 

represents the presence of subgroups (i.e., multiple multivariate Gaussians) in multivariate 

data with a latent (i.e., unobserved) variable. Similar to other unsupervised statistical-

learning techniques such as cluster analysis, it is typically set up so that multivariate 

associations in the data are accounted for by forming subgroups of subjects that are 

described by their mean profiles in the variables analyzed. That is, the typical model 

assumes that the existence of the classes is the reason why the variables are correlated. With 

the appropriate number of classes, correlations among variables within classes are thus not 

present. Thus, latent-profile analysis is well suited for describing, in a data-driven manner, 

non-linear multivariate patterns of individual differences in cognitive performance and 

dopamine D2/3R availability. Its probabilistic feature, with each individual having a 

probability of belonging to each of the classes, allows for characterizing the discovered 

groups on other variables without assuming absolute group membership (and thus high 

classification accuracy) for the individuals. This aspect is important, because differences 

among classes may critically inform interpretation. Based on the results of the latent-profile 

analysis, we probed differences among the classes on select aspects of the rich set of 

demographic, health, genetic, and structural and functional magnetic resonance imaging 

(MRI) measures that are available for this sample. Although advantageous in many ways, 

this statistical approach, including both the profile analysis and the investigation of 

differences between classes, is exploratory in nature. The need for future confirmatory 

studies should therefore be kept in mind when interpreting results.
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Materials and Methods

This study uses data from the Cognition, Brain, and Aging (COBRA) project. A detailed 

description of the recruitment procedure, imaging protocols, and cognitive and life-style 

assessments in the COBRA study has been previously published (Nevalainen et al. 2015). 

Here, we describe the methods directly relevant to the present results.

Participants

The sample consisted of 181 older individuals (64-68 years; mean = 66.2, SD = 1.2; 81 

women) randomly selected from the population register of Umeå, in northern Sweden. 

Exclusion criteria included suspected brain pathology, impaired cognitive functioning (Mini 

Mental State Examination < 27), and conditions that could bias the measurements of 

cognitive performance (e.g., severely reduced vision) or hinder imaging (e.g., metal 

implants). 22% of the sample was working, 18% used nicotine, and 33% took blood pressure 

medications. Mean education was 13.3 years (SD = 3.5), Body-Mass Index (BMI) was 26.1 

(SD = 3.5), systolic blood pressure was 142 (SD = 17), and diastolic blood pressure was 85 

(SD = 10). The sample is fairly representative of the healthy target population in Umeå 

(Nevalainen et al. 2015).

Image Acquisition

MR imaging was performed with a 3 tesla Discovery MR 750 scanner (General Electric, WI, 

US), equipped with a 32-channel phased-array head coil. Positron Emission Tomography 

(PET) was done with a Discovery PET/CT 690 scanner (General Electric, WI, US).

PET image acquisition—PET was performed during resting-state conditions following 

an intravenous bolus injection of 250 MBq 11C-raclopride. Preceding the injection, a low-

dose helical CT scan (20 mA, 120 kV, 0.8 s/revolution) was obtained to be used for 

attenuation correction. Starting at tracer injection, a 55-minute 18-frame dynamic scan was 

acquired (9 x 120 s + 3 x 180 s + 3 x 260 s + 3 x 300 s). Attenuation, scatter and decay-

corrected images (47 slices, axial field of view = 25 cm, 256 × 256-pixel transaxial images, 

voxel size = 0.977 × 0.977 × 3.27 mm) were reconstructed with the resolution-recover 

Ordered Subset Expectation Maximum (OSEM) iterative algorithm VUE Point HD-SharpIR 

(Bettinardi et al. 2011). The reconstruction was performed using 6 iterations, 24 subsets, and 

3.0 mm post filter, yielding a full width at half maximum (FWHM) resolution of 

approximately 3.2 mm (Wallsten et al. 2013). A second image set was reconstructed using 

Filtered Back Projection (FBP) with a 6.4 mm post-filter, to the same matrix size. Head 

movements during the imaging session were minimized with an individually fitted 

thermoplastic mask that was attached to the bed surface.

Structural MRI—A 3D fast spoiled-echo sequence was used for acquiring anatomical T1-

weighted images, collected as 176 slices with a thickness of 1 mm., TR = 8.2 ms., TE = 3.2 

ms., flip angle = 12 degrees, and field of view = 25 x 25 cm. White-matter microstructure 

was examined using diffusion tensor imaging (DTI). These images were acquired by a spin-

echo-planar T2-weighted sequence, using 3 repetitions and 32 independent directions. The 

total slice number was 64, with a TR of 8000 ms, a TE of 84.4 ms, a flip angle of 90 
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degrees, a field of view of 25 x 25 cm, and with b = 1000 s/mm2. Perfusion measurements 

were made with a whole-brain 3D pseudo-continuous arterial-spin labeling (ASL), with 

background suppression and a spiral acquisition scheme. Additional parameters were: 

Labeling time = 1.5s, post labeling delay = 1.5s, field of view = 24 cm, slice thickness = 4 

mm, and resolution = 8 arms by 512 data points, 30 control/label pairs, 3 signal averages, 

TR = 4674ms, TE =10ms, field of view = 240 x 240 mm A FLAIR sequence was acquired to 

assess white-matter hyperintensities. The total number of slices were 48, with a slice 

thickness of 3mm. TE was 120 ms, TR was 8000 ms, and field of view was 24 x 24 cm.

Functional MRI—BOLD-contrast sensitive scans where acquired using a T2*-weighted 

single-shot gradient echoplanar imaging sequence. Parameters were: 37 transaxial slices, 3.4 

mm thickness, 0.5 mm spacing, TE/TR = 30/2000 ms, 80 degrees flip angle, 25 x 25 cm 

field of view, and a 96 x 96 acquisition matrix. At the start of the scan, 10 dummy scans 

were collected. The functional data were acquired during resting-state conditions (6 min) 

and during a working memory task (numerical n-back). In this task, a sequence of single 

numbers appeared on the screen. Each number was shown for 1.5 s, with an ISI of 0.5 s. 

During each item presentation, participants reported if the number currently seen on the 

screen was the same as 1, 2, or 3 digits back. A heading that preceded each subtest indicated 

the actual condition. Participants responded by pressing one of two adjacent buttons with the 

index or middle finger to reply ‘yes, it is the same number’ or ‘no, it is not the same 

number’, respectively. A total of 9 blocks for each condition (1-, 2-, and 3-back) was 

performed in random order, each block consisting of 10 trials. The trial sequence was the 

same for all participants.

Image Processing

PET images—To generate regions of interests (ROIs) for the PET images, we parcellated 

cortical and subcortical brain regions on the T1-weighted images, using FreeSurfer 5.3 

(http://surfer.nmr.mgh.harvard.edu/). This process relies on atlas-based probabilistic models 

of characteristic magnetic-resonance appearances and spatial relationships (Fischl et al. 

2002; Desikan et al. 2006). A supercomputer cluster, Abisko, located at Umeå University, 

was used for data processing. The following command line statement was used "recon-all -s 

$AnatomicalFile -sd $SubjectDirectory -all -qcache -hippo-subfields -nuintensitycor-3t -

schwartzya3t-atlas".

The PET emission scan format was converted from DICOM to NIfTI, corrected for head 

movements, and then co-registered to the corresponding T1-weighted images using 

Statistical Parametric Mapping software (SPM8). Binding potential, defined as the ratio of 

specifically bound radioligand to non-displacable radioligand in tissue (BPND; (Innis et al. 

2007), was calculated from the time-activity curves for each ROI emanating from the 

cortical and subcortical parcellation described above using Reference Logan analysis (Logan 

et al. 1996). The regression for determining the slope from the Logan analysis started from 

18 minutes post injection, after which the Logan plot followed a straight line. Cerebellum 

was used as reference region, because of its negligible D2/3R expression (Farde et al. 1986; 

Levey et al. 1993).
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BPND was calculated using the above-mentioned procedure on both Sharp-IR and FBP-

reconstructed images. Sharp-IR reconstruction has about 3 mm FWHM resolution, and is 

therefore superior when examining small or narrow features, but is known to exhibit bias for 

low-intensity regions (Walker et al. 2011; Jian et al. 2015). Therefore, FBP reconstruction 

was used to independently quantify BPND-values in extrastriatal regions where D2/3R 

availability is low. The BPND values did however correlate to a high degree for the two 

reconstruction methods for all ROIs included in the analyses of this paper (r-values: 

mean=0.90, median=0.91, min.=0.70, max. =0.97; p<0.001 for all), and we chose therefore 

to perform all analyses on Sharp-IR reconstructed data.

Although it is uncommon to measure extrastriatal dopamine D2/3R availability with 11C-

raclopride-PET, recent evidence indicates good reliability of such measures (Alakurtti et al. 

2015). In line with this evidence, analyses of the present data showed that median BPND was 

significantly higher in all ROIs than in the cerebellar reference region, with the left frontal 

pole showing the smallest difference from the cerebellar reference area (mean BPND = 0.1; t 
= 15, p < .001). Moreover, confirmatory factor modelling on the present dataset has shown 

strong positive links between BPND in the ROIs across the hemispheres and among different 

brain regions that tap known anatomical dopamine subsystems, and less strong associations 

between regions of different subsystems (Papenberg et al. 2017), supporting a division into 

cortical, striatal, and limbic factors for the purpose of the current study. Thus, we deem the 

extrastriatal estimates as reliable and reflective of target binding.

Dopamine D2/3R BPND was missing for four participants due to imperfect segmentation of 

MR images or PET/MR co-registration. Three statistical outliers in striatal D2/3R BPND 

(outlier labeling rule with 2.2 interquartile ranges; Hoaglin and Iglewicz 1987) were deleted. 

Five statistical outliers were detected in the cortical BPND data and these scores were 

deleted. BPND were then averaged across left and right striatum and left and right 

hippocampus. These variables were then standardized (mean = 0; SD = 1) to form the 

measures of striatal and hippocampal dopamine D2/3R availability. Cortical dopamine D2/3R 

availability was represented in analyses with the standardized first principal component from 

a factor analysis of BPND in all cortical ROIs. This first principal component accounted for 

40.5% of the variance in cortical availability.

Volumetric MRI processing—To quantify grey-matter volumes, T1-weighted images 

were first segmented into grey matter, white matter, and cerebrospinal fluid using the unified 

segmentation approach (Ashburner and Friston 2005) in SPM12b (Statistical Parametric 

Mapping, Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) 

implemented in Matlab 10 (The Mathworks, Inc). Moreover, the “light clean up” option was 

used to remove odd voxels from the segments. The grey-matter images were further 

analyzed using DARTEL (Ashburner 2007) in SPM12b (Diffeomorphic Anatomical 

Registration Through Exponentiated Lie Algebra). The grey-matter segments were imported 

into DARTEL space, and a final customized template was created as well as subject-specific 

flow fields containing the individual spatial-normalization parameters (diffeomorphic non-

linear image registration). Grey-matter segments were further warped into standard MNI 

space, by incorporating an affine transformation mapped from the DARTEL template to 

MNI space. In addition, the normalized grey-matter volumes were modulated by scaling 
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them with Jacobian determinants from the registration step to preserve local-tissue volumes. 

Volumes were smoothed with a FWHM Gaussian kernel of 8 mm in the 3 directions. Here, 

we focused on the measure of total grey-matter volume, corrected for intracranial volume 

(grey matter + white matter + cerebrospinal volume; ICV) using the analysis of covariance 

approach: adjusted volume = raw volume - b(ICV – mean ICV), where b is the slope of 

regression of volume on ICV (Raz et al. 2005). To complement this measure, we also 

extracted mean-modulated striatum volumes from each individual’s smoothed images based 

on the masks of the striatum (caudate and putamen) from the WFU Pickatlas. These 

measures were also corrected for ICV and averaged across hemispheres to form one measure 

of striatal volume.

Perfusion analyses—Quantitative perfusion maps (in ml/100g/min) were calculated 

using a post-processing tool installed on the scanner by the manufacturer. The perfusion 

maps where normalized to MNI space using the DARTEL-derived transformation fields and 

affine registration. Grey matter perfusion was calculated by averaging perfusion over voxels 

with a grey-matter probability higher than 25% in the group template.

Diffusion-weighted image processing—Diffusion-weighted data analysis was 

performed using the University of Oxford's Center for Functional Magnetic Resonance 

Imaging of the Brain (FMRIB) Software Library (FSL) package (http://www.fmrib.ox.ac.uk/

fsl) and Tract-Based Spatial Statistics (TBSS) as part of the FMRIB software package. The 

full details of DTI data analyses (using identical imaging parameters, but in a different 

sample) are given elsewhere (Salami et al. 2012). In short, the three subject-specific 

diffusion acquisitions were concatenated in time followed by eddy-current correction to 

adjust for head motion and eddy-current distortions. Accordingly, the b-matrix was 

reoriented based on the transformation matrix (Leemans and Jones 2009). Next, the first 

volume within the averaged volume that did not have a gradient applied (i.e. the first b = 0) 

was used to generate a binary brain mask with the Brain Extraction Tool (Smith 2002). 

Finally, DTIfit was used to fit a diffusion tensor to each voxel included in the brain mask/

space. As such, voxel-wise maps of fractional anisotropy (FA) were generated. Using the 

TBSS processing stream, all subject-specific FA maps were nonlinearly normalized to 

standard space (FMRIB58_FA) and then fed into a skeletonize program to make a skeleton 

of common white-matter tracts across all subjects. Mean diffusivity (MD) images were 

processed based on the results of the processing of the FA images, yielding individual MD 

skeletons. Averaged FA and MD along the spatial course of the entire skeleton and of seven 

major WM tracts (genu, body, splenium, fornix, superior longitudinal fasciculus, superior 

fronto-occipital fasciculus, and cingulum) were computed with reference to JHU ICBM-

DTI-81 white matter labels (Wakana et al. 2004).

Segmentation of white-matter hyperintensities—Lesions were segmented by the 

lesion growth algorithm (Schmidt et al. 2012) as implemented in the LST toolbox version 

2.0.14 (www.statisticalmodelling.de/lst.html) for SPM12. The algorithm first segmented the 

T1 images into the three main tissue classes (cerebrospinal fluid, grey matter, and white 

matter). Following, this information was combined with the coregistered FLAIR intensities 

to calculate lesion belief maps. By thresholding these maps with a pre-chosen initial 
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threshold (κ=0.3, defined by visual inspection), an initial binary lesion map was obtained. 

This initial map was then grown along neighboring voxels that appeared hyperintense in the 

FLAIR image, resulting in a lesion probability map. Finally, the lesion probability map was 

thresholded (threshold: 50%) to obtain the binary map of lesions. From these, the total 

volume (cm3) of white-matter lesions per individual were attained.

Functional MRI analyses—SPM8 (Wellcome Department of Cognitive Neurology, 

London, UK) was used for preprocessing and data analysis of the fMRI task and resting 

state data. Preprocessing of the task fMRI data included slice-timing correction, unwarping 

and realignment of the time-series to the first image of each volume, and normalization to a 

sample-specific template (using DARTEL), followed by affine alignment to MNI standard 

space. Data were resampled to 2-mm isotropic voxels and spatially smoothed using an 6-mm 

FWHM Gaussian kernel. First-order task analyses included the experimental conditions (1-

back, 2-back, 3-back) as regressors of interest in a general linear model, convolved with a 

hemodynamic response function. The six realignment parameters were included as 

covariates of no interest to account for residual movement artifacts.

In order to obtain measures of fronto-parietal upregulation of brain activity across load in the 

1-back to the 2-back and 3-back working memory tasks, fMRI contrast estimates (betas) 

were extracted from the relevant contrast images (1-back < 2-back, 1-back < 3-back), 

averaged across 9 regions of the core frontoparietal WM network (Figure 3; anterior 

cingulate, bilateral anterior prefrontal cortex, bilateral dorsolateral prefrontal cortex 

(DLPFC), bilateral anterior insula, and bilateral anterior inferior parietal cortex). Because 

fMRI estimates were extracted both from task and resting state, ROIs were selected a priori 

as 5 mm spheres around the fronto-parietal control network seeds as described by Vincent et 

al. (2008).

Preprocessing of the resting state data was carried out using the Data Processing Assistant 

for Resting-State fMRI (Chao-Gan and Yu-Feng 2010). Data were corrected for acquisition 

time differences between slices within each volume and then motion corrected. A within-

subject rigid registration was carried out to align functional and structural T1-weighted 

images. Next, the effect of physiological noise was removed by regressing out Friston’s 

twenty-four parameters from a motion model (Yan et al. 2013), as well as nuisance 

variables, such as global signal, white matter, and cerebrospinal fluid signal, along with both 

linear and quadratic trends. In addition, nuisance-corrected data were bandpass filtered 

(passband 0.01-0.1 HZ). Finally, using DARTEL, the noise-corrected realigned fMRI images 

were nonlinearly normalized to the sample-specific group template, affine aligned into 

stereotactic MNI space, and smoothed using a 6.0-mm FWHM Gaussian filter.

Previous findings have demonstrated functional relationships between dorsal caudate and 

several parts of the fronto-parietal circuitry (Postuma and Dagher 2006; Di Martino et al. 

2008). To obtain a finer parcellation of the caudate, Martino and colleagues distinguished 

ventral caudate (VC) from dorsal caudate (DC) based on the Z coordinate following 

Postuma and Dagher (2006). We followed closely the approach taken by Di Martino and 

colleagues and placed seeds in each hemisphere (DC: ±13 15 9). Then, a 4mm diameter 

sphere centered on the aforementioned coordinates was generated and the mean time series 
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was computed by averaging across voxels for each seed. For both hemispheres, multiple 

regression analyses were carried out for each subject including the time series of a seed, 

yielding subject-specific functional connectivity maps of each seed. Functional connectivity 

maps for each subject were taken into a second-level multiple-regression analysis to 

delineate regions that are functionally connected to each seed at the group level. Local 

maxima with p < 0.05 (FWE-corrected), with an extent threshold of 10 continuous voxels (k 

> 10) were considered to be statistically significant. Then, we overlapped the seed regions 

from Vincent and colleagues (2008) with the functional connectivity map of the left and 

right DCs and computed the average correlation between left and right DC and each fronto-

parietal seed.

Cognitive Measures

Episodic memory, working memory, and psychomotor speed were assessed with three tasks 

each (one verbal, one numerical, and one figural task per ability). Episodic memory was 

measured with word recall, number-word recall, and object-position recall. Working 

memory was assessed with letter updating, columnized numerical 3-back, and spatial 

updating. Speed was tested with letter comparison, number comparison, and figure 

comparison (see Nevalainen et al. 2015, for details). Task scores were computed by 

summing performance across blocks or trials of each task. Confirmatory factor modelling 

has shown that these task scores can be used to form a model of working memory, episodic 

memory, and psychomotor speed that fits the data well (Nevalainen et al. 2015). We 

therefore standardized and averaged the three task-scores of each ability to create one unit-

weighted measure for each of the three cognitive abilities. In case of missing data (< 1.2% 

for all variables, with technical errors or misunderstandings of the task accounting for almost 

all of these missing data points), an average of the available observed scores for a cognitive 

ability was imputed into these ability measures, so that these variables do not have missing 

values. This approach corresponds to a regression imputation assuming equal loadings of the 

tasks on the latent ability they are assumed to measure. Standardized (z-scores; mean = 0; 

SD = 1) versions of these unit-weighted averages were used in the analyses.

Health Variables

Objective health measures included BMI and blood pressure measurements. Subjective 

reports of medication use formed the basis for dichotomous variables representing use of 

medication for indications of hyperlipidemia, atherosclerosis, cardiovascular disease, 

hypertension, and depression/anxiety. A dichotomous measure of high blood pressure was 

formed by a combination of either the blood pressure measurements (systolic > 140; 

diastolic > 90) or self-reported use of blood pressure medication.

Leisure Activities and Personality

Self-reported leisure activities were assessed using a questionnaire that included 43 

activities, 18 intellectual, 15 physical, and 10 social. Participants were asked to indicate for 

how many hours (1, 2, 3, etc., 15+ hrs) they engage in each of the activities during a typical 

summer week. A sum score (hours/week) was computed across all intellectual, physical, and 

social activities, respectively. Outliers (> 3.29 SD) were excluded variable-wise (n = 2 from 

intellectual activities, n = 1 from physical activities, n = 2 from social activities). In addition 
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to frequency of each activity, the questionnaire asked for intensity ratings for each of the 

intellectual and physical activities. For each intellectual activity, participants were asked to 

rate how mentally demanding it would normally be to perform the activity (on a scale from 1 

= “not at all” to 5 = “extremely”). For each physical activity, they were asked how physically 

demanding the activity would be (1 to 5). A mean across intensity ratings was computed for 

intellectual and physical activities, respectively. A rating was included in the mean score 

only if the rater had also reported at least 1hour/week of engagement in a given activity.

Genetics

Blood samples were analyzed for presence of single-nucleotide polymorphisms (SNPs) in 

genes for the D2 receptor (C957T; rs6277), Catechol-O-Methyltransferase (COMT; rs4680), 

dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32, PPP1R1B; 

rs879606), and the vesicular monoamine transporter 2 (VMAT2, SLC18A2; rs363387). 

These SNPs were chosen as they likely entail differences in dopamine transmission, via 

proteins that regulate striatal and frontal dopamine levels, dopamine signaling, and vesicular 

dopamine storage (Lachman et al. 1996; Hirvonen et al. 2004; Schwab et al. 2005; Kunii et 

al. 2014). They have furthermore been associated with behavioral differences, including 

working memory performance (Meyer-Lindenberg et al. 2007; Diaz-Asper et al. 2008; 

Lindenberger et al. 2008; Colzato et al. 2016).

Based on previous literature, allelic variants were categorized as markers of a beneficial (C-

allele of C957T, A-allele carriers of COMT, G homozygotes for DARPP-32, and G-allele 

carriers of VMAT2) or less beneficial (T homozygotes of C957T, G homozygotes of COMT, 

A-allele carriers of DARPP-32, and T homozygotes of VMAT2) dopamine signalling 

profile, and scored 1 or 0 accordingly. Thus, the summarized gene score ranged between 0 

and 4. Furthermore, Apolipoprotein E gene polymorphisms (ApoE, rs7412 and rs429358) 

were also analysed, and the distribution of carriers versus non-carriers of the ε4 allele was 

compared between classes. This is motivated by the ApoE ε4 allele being a strong predictor 

of cognitive decline in aging (Christensen et al. 2008; Schiepers et al. 2012).

Upon analysis, deoxyribonucleic acid (DNA) was extracted from the buffy-coat fraction of 

blood samples using the Kleargene™ XL nucleic acid extraction kits and genotyping of 

SNPs was carried out with KASP™ genotyping assays (at LGC genomics, Hoddesdon, 

United Kingdom). In brief, DNA template was mixed with a KASP master mix (containing 

KASP Taq polymerase, deoxynucleoside triphosphates, buffers, salts, two fluorescently-

labelled (FAM and HEX) reporter cassettes), and a SNP-specific KASP Assay mix 

(containing two allele-specific forward primers and one common reverse primer). Then, 

polymerase chain-reaction sessions were performed, during which primers bound to their 

target sequences, fluorophores were incorporated into the DNA product, and the DNA 

product was amplified. SNP allelic variants were determined via detection of FAM or HEX 

fluorescence for homozygous alleles, or both for heterozygous alleles.

For each analysis, two forward and one reverse primers were constructed. The forward 

primers differed at one base in the 3´-end and included 5’-CA TGG TCT CCA CAG CAC 

TCC C/T-3’ for rs6277, 5’-GCA TGC ACA CCT TGT CCT TCA C/T-3’ for rs460, 5’-G 

GGA AAG GGT GGC AGG AGG T/C-3’ for rs879606, and 5’-GC CAG GCC AGT GCA 

Lövdén et al. Page 10

Cereb Cortex. Author manuscript; available in PMC 2019 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



CAC G/T-3’ for rs363387. Reverse primers used were 5’-TCT CRG GTT TGG CGG GGC 

TGT-3’ for rs6277, 5’-CAT CAC CCA GCG GAT GGT GGA T-3’ for rs460, 5’-AGG ACA 

TCC CAC TCC TAT GAG CAA-3’ for rs879606, and 5’-AGA TGC TCT GGA AGC TGT 

CTG AGA T-3’ for rs363387.

Statistical Procedures

A series of latent-profile (mixture) models from 1 to 4 classes were conducted for 

representing the presence of latent subgroups (multiple multivariate Gaussians) of cognitive 

(episodic memory, working memory, and psychomotor speed) performance and dopamine 

D2/3R availability in the striatum, hippocampus, and neocortex that account for the 

multivariate associations among the variables. All analyses were performed with Mplus 7.4 

(Muthén and Muthén 2015). In these analyses, scattered missing values (on the measures of 

dopamine D2/3R availability) are accommodated in the Mplus estimation under the missing-

at-random assumption. Classes (i.e., subgroups) were assumed to have equal variances. As is 

typical for these analyses, we did not allow for residual covariances between observed 

variables within classes (i.e., we assumed local independence), because we aimed at 

explaining the multivariate associations based on the formation of classes. That is, our model 

assumes that the presence of latent classes is the reason that the variables are correlated. 

With the appropriate number of classes, correlations among variables within classes are not 

present and all information about the associations among variables can be found by 

inspecting the differences among classes in their mean profile on the variables of interest.

The Bayesian Information Criterion (BIC) was used as the primary method to select the 

best-fitting model (i.e., the number of classes). A lower BIC indicates a model with better fit 

and parsimony. A bootstrapped Lo-Mendell Rubin Test (BLRT) of the difference in fit 

between a model with k classes and one with k-1 classes (2*ΔLL, ΔDF) was used to further 

inform model selection in case the BIC comparison was ambiguous. Standardized entropy 

(ranging from 0 to 1) was used to measure classification accuracy.

After determining the number of classes, interpretation of the results was based on profiling 

the means of the latent classes. Based on these results, we then examined differences among 

the classes on select aspects of the available demographic, lifestyle, health, genetic, and 

functional and structural brain variables. We selected those aspects that we considered as 

potentially informative correlates of the association between dopamine D2/3R availability 

and cognitive performance revealed by the latent-profile results. These differences were 

estimated and statistically tested with the BCH (for continuous variables) and the DCAT (for 

categorical variables) methods implemented in Mplus 7.4. The BCH method is a three-step 

method that first builds the latent class model, then determines class membership, and then 

tests for equality of means across classes on distal variables not included in the first step. It 

assumes normality and involves performing weighted statistical tests of mean differences, 

with weights that are inversely related to classification error probabilities. The method has 

been shown to perform well (Bakk and Vermunt 2015). In the DCAT method (Lanza et al. 

2013), which is suitable for categorical data, Bayes theorem is used to represent joint 

distribution of the latent class variable and the distal variable as regression of the latent class 

variable conditional on the distal variable. These methods do not affect the original latent-
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class solution. Both take into account the probabilistic class membership of each individual. 

In this way, the interpretability of these results does not depend on high classification 

accuracy.

We aimed for a comprehensive and global description of the classes, without making strong 

claims regarding the nature of the classes based on single findings of statistically significant 

differences, and therefore set a rather lenient threshold for statistical significance at p < .05. 

In the Results, we also note which findings that survive more conservative thresholds based 

on correction for multiple testing.

Results

Latent-Profile Analyses

Latent-profile models specifying one, two, three, or four classes for cognitive (episodic 

memory, working memory, and psychomotor speed) performance and BPND in striatum, 

hippocampus, and cortex were estimated. The model fit indices are reported in Table 1. Our 

primary measure for selecting the number of classes (the BIC) had a clear minimum at three 

classes and we therefore considered this solution as the best fit to the data. Figure 1 depicts 

the profiles of mean cognitive performance and BPND for the three subgroups that this 

model represents. Profiles for the two and four class solutions are reported in Supplementary 

Materials 1.

Class 1 (n = 99; 55% of the sample) is a large group of individuals that generally performs 

above the mean of the sample and has slightly above-average dopamine D2/3R availability. 

Class 2 (n = 42; 23%) is a group that clearly performs lower than the class 1 and has low 

BPND in all regions. In contrast to this class of individuals with low dopamine D2/3R 

availability and performance, class 3 (n = 40; 22%) displays high dopamine D2/3R 

availability (especially in striatum, where it is even higher than for class 1) despite low 

cognitive performance, especially for working memory where they perform lower than class 

2. In other words, the multivariate associations in the data are accounted for by forming 

classes of subjects indicating that relatively high D2/3R availability is associated with high 

cognitive performance for most individuals, but that there is a smaller group of individuals 

where high availability, particularly in striatum, instead is associated with poor performance, 

especially for working memory.

Demographic and Health Differences Across Classes

To aid interpretation of the multivariate associations between dopamine D2/3R availability 

and cognitive performance that the observed classes represent, it is reasonable to first 

examine whether they relate to differences in more general demographic and health 

variables. Of the examined variables (see Table 2), two tended to distinguish class 3 from the 

other two classes: Individuals in class 3 had on average fewer years of education (class 3 vs. 

1: χ2(1) = 18.7, p < .001. Class 3 vs. 2: χ2(1) = 4.0, p = .045) and higher BMI (class 3 vs. 1: 

χ2(1) = 4.3, p = .038. Class 3 vs. 2: χ2(1) = 6.1, p = .013). Individuals in class 3 in addition 

tended to report performing physical activities with lower intensity (class 3 vs. 1: χ2(1) = 

7.5, p = .006; Class 3 vs. 2: χ2(1) = 2.4, p = .119) than the other classes. There were no 
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statistically significant differences in sex distribution, but class 1 was younger than class 2, 

although this difference was very small (6 months). There were no statistically significant 

differences in other physical health measures, including blood pressure, medication use 

(including depression and anxiety medication, which was low), and nicotine consumption. In 

summary, class 3, with low cognitive performance despite high dopamine D2/3R availability, 

differentiates itself from the other classes mainly by consisting of individuals with higher 

BMI and lower education. Note however that with strict Bonferroni correction for multiple 

testing (.05 / 57 test ≈ .001) only the difference between class 3 and class 1 on education 

remains statistically significant.

Genetic differences

We next examined differences among the three classes on the gene score for dopamine 

transmission. Here, both the class with high receptor availability and low cognition (class 3; 

mean = 1.93; SE = 0.16) and the class with low receptor availability and low cognition (class 

2; mean = 1.99; SE = 0.13) tended to score lower than class 1 (mean = 2.32; SE = 0.09; class 

3 vs. 1: χ2(1) = 3.92, p = .048; Class 2 vs. 1: χ2(1) = 3.62, p = .057), with no statistically 

significant differences between class 2 and 3 (χ2(1) = 0.8, p = .783). Thus, genetics related 

to lower dopamine transmission were related to lower cognitive performance, but did not 

map directly onto the differences in D2/3R availability. There were no statistically significant 

differences between the classes on ApoE ε4 status. Note also that with strict Bonferroni 

correction for multiple testing (.05 / 6 tests ≈ .008) none of the differences remain 

statistically significant.

Structural Brain Differences

Given that lower dopamine D2/3R availability cannot account for the low cognitive 

performance of individuals in class 3, we investigated differences among the classes on 

structural brain variables that may be indicative of general brain integrity in this cohort. 

Similar to the gene score, both class 2 and 3 showed smaller total grey-matter volume 

(adjusted for ICV) than class 1 (class 3 vs. 1: χ2(1) = 5.7, p = .017, class 2 vs. 1: χ2(1) = 

11.6, p < .001). There were no statistically significant differences between class 2 and class 

3, but, if anything, class 3 tended to have slightly more grey matter than class 2 (see Figure 

2A). Estimates of striatal volume followed a similar pattern, with class 1 tending to have 

higher striatal volume than class 2 (χ2(1) = 2.5, p = .11) and 3 (χ2(1) = 3.7, p = .055), but 

with no difference (p = .97) between class 2 and class 3. Cerebral blood flow in total grey 

matter also showed a similar pattern (Figure 2B), with class 2 showing significantly lower 

flow than class 1 (χ2(1) = 11.4, p < .001), but with class 3 taking a clearer intermediate 

position, tending to show lower blood flow than class 1 (χ2(1) = 2.7, p = .098). The 

difference between class 2 and 3 was not statistically significant (χ2(1) = 2.3, p = .131). 

Total burden of white-matter hyperintensities (Figure 2C) was significantly higher in class 2 

than in the other two classes (class 2 vs. 1: χ2(1) = 9.1, p = .003. Class 2 vs. 3: χ2(1) = 5.7, 

p = .017), with no statistically significant differences between class 1 and 3 (χ2(1) = 0.1, p 
= .722). There were no statistically significant differences among the classes on any of the 

DTI variables. Thus, worse global brain integrity does not single out the class with low 

cognition and high receptor availability (class 3) from individuals with low performance and 

low receptor availability (class 2). Note also that with a stricter threshold for significance (p 

Lövdén et al. Page 13

Cereb Cortex. Author manuscript; available in PMC 2019 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



< .001), only the difference between class 1 and class 2 in total grey-matter volume remains 

significant.

Differences in Functional Brain Activity Among Classes

For striatal BPND, we noted that differences among classes portray an inverted u-shaped 

relation to cognitive performance, with the group having intermediate striatal BPND 

performing best. This conclusion is tempting to draw but perhaps overly simplistic, 

especially in light of earlier analyses of this data set, which did not reveal any indications of 

such non-linearity (Nyberg et al. 2016). We further note that the latent-profile model is set 

up to explain also the multivariate associations within the BPND and cognition domains with 

the formation of these classes. That is, a key addition to the solution is probably that class 3 

has particularly high dopamine D2/3R availability in striatum relative to other regions and 

that this is related to especially low working memory performance relative to other cognitive 

functions. With this in mind, we reasoned that class 3 may have impaired working memory 

performance due to dysfunctional signaling between the striatum and cortex and therefore 

probed differences among the classes in connectivity between the caudate and the ROIs in 

the fronto-parietal network during rest (Figure 3).

Class 3 had on average lower connectivity between left caudate and left DLPFC (class 3 vs. 

1: χ2(1) = 10.2, p < .001; Class 3 vs. 2: χ2(1) = 6.7, p = .010) and between left caudate and 

right DLPFC (class 3 vs. 1: χ2(1) = 11.4, p < .001; Class 3 vs. 2: χ2(1) = 9.0, p = .003) than 

the other two classes. The results were similar for the right caudate (left DLPFC: class 3 vs. 

1: χ2(1) = 7.6, p = .006; Class 3 vs. 2: χ2(1) = 5.3, p = .022; right DLPFC: class 3 vs. 1: 

χ2(1) = 11.3, p < .001; Class 3 vs. 2: χ2(1) = 3.8, p = .050). There were no statistically 

significant differences between class 1 and class 2 in this regard (all ps > .171). Several of 

the differences in connectivity remain statistically significant after strict Bonferroni 

correction for multiple testing (.05 / 42 tests ≈ .001). The general pattern was similar for 

connectivity between the left caudate and the left anterior parietal cortex (class 3 vs. 1: χ2(1) 

= 8.1, p = .004; class 3 vs. 2: χ2(1) = 7.3, p = .007; class 1 vs. 2: χ2(1) = 0.1, p = .726). 

With the exception of a small difference between class 3 and class 1 for connectivity 

between left caudate and left anterior prefrontal cortex (χ2(1) = 4.34, p = .037) and a 

difference between class 2 and 3 for connectivity between the right caudate and ACC (χ2(1) 

= 5.14, p = .023), no other difference between the groups reached statistical significance at 

the p = .05 level (all ps > .079). In summary, class 3 that displayed relatively high dopamine 

D2/3R availability, but low cognitive performance, shows lower connectivity of the caudate 

with the DLPFC bilaterally.

This pattern contrasts with the differences among classes in frontoparietal up-regulation of 

activity from the 1-back to the 2-back and 3-back working memory conditions. Here, both 

class 2 and class 3 failed to upregulate their activity (Figure 4). Specifically, for both 

contrasts, class 1 showed greater upregulation than both class 2 (χ2(1) = 12.6, p < .001 and 

χ2(1) = 16.7, p < .001) and class 3 (χ2(1) = 27.6, p < .001 and χ2(1) = 10.9, p < .001). 

These differences also survive a more stringent threshold for statistical significance at p = .

008 (.05/6 tests). At the p < .05 level, there was also statistically significant difference 

between class 2 and class 3 for the 2-back > 1-back contrast (χ2(1) = 4.5, p = .033), but no 
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difference between these two classes for the 3-back > 1-back contrast (p = .94). There were 

no statistically significant differences among the classes for 1-back (vs. baseline) activity (all 

ps > .55).

Discussion

We report a representation of the multivariate associations between dopamine D2/3R 

availability and cognitive performance in a large sample of older adults with three classes of 

individuals. One of these classes is a large group of individuals with relatively high cognitive 

performance and D2/3R availability. A second class of individuals performs on average lower 

and has relatively low D2/3R availability. Notably, a third class displayed high D2/3R 

availability, especially in the striatum, along with low cognitive performance, particularly for 

working memory. Put differently, relatively high D2/3R availability was associated with high 

cognitive performance for most individuals, but there was a smaller group of individuals 

where high availability, particularly in striatum, instead came with poor performance, 

especially for working memory. The presence of this third class affects D2/3R availability-

cognition correlations at whole-sample level. If we were to remove this group of individuals, 

the mean differences between the other two groups would result in a positive association 

between dopamine D2/3R availability and cognitive performance in general, not only for 

episodic memory (cf. Nyberg et al. 2016).

High dopamine D2/3R availability in the striatum has been linked to functional impairments, 

particularly in working memory and related executive functions, in some groups of 

individuals. For example, individuals with ADHD display higher striatal D2/3R availability 

than controls, which may be related to behavioral symptoms (Lou et al. 2004; Badgaiyan et 
al. 2015). The evidence is similar for schizophrenia, in particular with respect to increased 

striatal D2/3R availability (Howes and Kapur 2009). Although the present sample consists of 

healthy normal (older) adults, we note that class 3, with the profile of cognitive performance 

and dopamine D2/3R availability that resembles these psychiatric conditions, also tended to 

have lower education and higher BMI than the other two classes – variables that often relate 

to psychiatric disease (Barnett et al. 2006; Gurpegui et al. 2012; Cerimele and Katon 2013; 

Esch et al. 2014). In particular low education, which generally is a powerful correlate of 

cognitive performance in both younger and older age, may play an important role in our 

findings: One way to summarize the findings is that performance on cognitive tests may be 

relatively poor, despite relatively high receptor availability, if education is low (i.e., for 

higher and comparable levels of education, the availability-performance association in more 

monotonic). The association with BMI converge well with evidence of higher dopamine 

D2/3R availability in overweight adults (but perhaps not obesity; Wang et al. 2001; Cosgrove 

et al. 2015; Horstmann et al. 2015; Dang et al. 2016). Given that consumption of 

psychotropic drugs was low in our sample and did not differ among classes, these 

characteristics may together be indicative of a phenotype that is associated with reduced 

working memory performance, regardless of psychiatric status.

It may be that individuals with such characteristics (i.e., class 3) have high receptor amount 

relative to their endogenous dopamine levels. This could reflect receptor upregulation that 

can take place upon dopamine degeneration (Brooks et al. 1992; Scherfler et al. 2006; Lin et 
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al. 2008), but also increased ligand binding due to reduced competition with endogenous 

dopamine (Laruelle et al. 1997). If so, such persons may exhibit a system that is as 

functionally inefficient as one with few available receptors (i.e., class 2). In line with this 

reasoning, striatal D2/3R availability is normalized in ADHD following medication that 

increases striatal dopamine levels (Ilgin et al. 2001; Volkow et al. 2002). Furthermore, lower 

dopamine release relates to poorer working memory performance in schizophrenia (Rolls et 
al. 2008; Cassidy et al. 2016), whereas dopamine D2/3R availability has been found to be 

higher in this condition than in controls (Howes and Kapur 2009).

If relatively lower dopamine levels underlie the high D2/3R BPND observed in class 3, this 

could partly be due to genetic reasons, as this class leaned towards displaying reduced 

dopamine transmission gene scores when compared to class 1. Class 2 also tended to display 

lower dopamine transmission gene scores, but may have lower D2/3R availability because 

receptor density is correspondingly adapted. The high gene score for class 1 is in agreement 

with reports of higher working memory performance for beneficial allelic variants of rs4680 

and rs879606 (Meyer-Lindenberg et al. 2007; Diaz-Asper et al. 2008; Lindenberger et al. 
2008). An alternative explanation is that class 3 consists of individuals that have experienced 

particularly marked aging-related losses (relative to class 2) in dopamine release (e.g., 

Karlsson et al. 2009). One important aspect to consider is that affinity of 11C-raclopride to 

the D2/3R varies in accordance to endogenous dopamine levels (Laruelle 2000). High BPND-

values can be observed in individuals in which ligand affinity is high, presumably as a 

consequence to low dopamine levels (Hirvonen et al. 2009). Similarly, low BPND-values 

were found upon amphetamine-induced dopamine level increments, due to reduced ligand 

affinity (Carson et al. 2002; Doudet and Holden 2003). In such cases a high BPND is not 

representative of high receptor count, but rather, poor dopamine system integrity. However, 

with the caveat that the data are cross-sectional, the measures of total grey-matter volume, 

perfusion, and white matter hyperintensities suggest that class 3 is at the same level or 

somewhat better off in terms of general brain integrity than class 2 (although both of these 

classes were worse off on grey-matter volume and perfusion than the good performers in 

class 1).

The present results are in line with the often-observed non-monotonic association between 

dopamine and working memory performance (Cools and D'Esposito 2011; Floresco 2013; 

Garrett et al. 2015). Although the within-person, pharmacological evidence on which this 

pattern is primarily based does not necessarily translate into similar between-person 

differences (Kievit et al. 2013; Schmiedek et al. 2016), the present analyses do (in a data-

driven manner) represent the multivariate associations among the variables by forming 

groups consistent with a non-monotonic dopamine-cognition association, but here with 

dopamine D2/3R availability. Notably, functional activity during the working memory task 

also followed this pattern, such that individuals with intermediate striatal D2/3R availability 

upregulated their frontoparietal activity across working memory load more than those with 

low (class 2) or high D2/3R availability (class 3). Moreover, the profiles suggest that such an 

association may be particularly pronounced for striatal dopamine D2/3R availability and 

working memory performance.
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The status of striatal D2/3R availability in our results may relate to the strong updating 

component of the working memory tasks used – a cognitive process that has been linked to 

striatal functioning (Frank et al. 2001; Mehta et al. 2004; Dahlin et al. 2008; Bäckman et al. 
2011; Cools and D'Esposito 2011; D'Ardenne et al. 2012). Striatal dopamine is thought to 

bias the probability of gating information into cortical representations in working memory 

(Frank et al. 2001; Cools and D'Esposito 2011; D'Ardenne et al. 2012). Cortical dopamine, 

particularly in DLPFC, may stabilize working memory representations by reducing 

vulnerability to interference (Durstewitz and Seamans 2008; Cools and D'Esposito 2011). 

These two processes may interact with each other in determining working memory 

performance, such that too much flexibility (i.e., updating) is associated with distractibility, 

whereas too much stability is linked to inflexibility. The balance between these two aspects 

of working memory has been suggested to depend on the circuits connecting DLPFC with 

the striatum (Cools and D'Esposito 2011). Our results suggest that class 3, with high D2/3R 

availability, especially in the striatum, and low performance, particularly for working 

memory, may have suboptimal balance in this system. Specifically, individuals in class 3 

showed lower functional connectivity between dorsal caudate and DLPFC bilaterally than 

individuals in the two other groups. These results suggest that the neural circuits behind 

working memory are not well synchronized in class 3. Interestingly, reduced connectivity 

between the dorsal caudate and the fronto-parietal network has also been observed among 

older individuals with higher dopamine synthesis capacity (Berry et al. 2016). The similarity 

of these findings to the ones reported here raises the possibility that higher dopamine 

receptor availability may be linked to alterations in dopamine synthesis, with both perhaps 

emerging as responses to other changes in the dopamine system in a subset of individuals 

(Braskie et al. 2008; Berry et al. 2016).

The particularly strong role of relatively high striatal dopamine D2/3R availability in 

working memory, but perhaps less so in episodic memory, is in line with our previous report 

of linear relationships of striatal and hippocampal dopamine D2/3R availability to episodic 

memory performance (Nyberg et al. 2016). Together with theoretical and experimental work 

linking hippocampal dopamine receptors to episodic memory performance (Lisman et al. 
2011), the present results suggest a dissociation of links of dopamine D2/3R availability to 

episodic and working memory. Working memory may relate non-monotonically to D2/3R 

availability, with groups of individuals characterized by low and by high striatal availability 

performing low, whereas episodic memory may display a more homogenous pattern of 

positive associations between D2/3R availability and performance.

To substantiate our interpretations of the results, experimental work as well as longitudinal 

imaging work is needed. More advanced measures of D2/3R availability than BPND 

measured by a single 11C-raclopride-PET scan at rest would also be useful, particularly 

measures that allow for teasing apart receptor density and endogenous dopamine levels 

(Seeman et al. 1989; Yoder et al. 2008). Further, although recent evidence supports the 

reliability and validity of extrastriatal measurements of D2/3R availability with 11C-

raclopride (Alakurtti et al. 2015; Papenberg et al. 2017), it is possible that partial-volume 

effects may to some degree bias the measurements. Importantly, however, we think that 

these measurement imperfections are unlikely to explain our main result as class 2 and 3 did 

not differ much (and not statistically) in grey matter volume. We also note that the present 
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data-analytic approach probabilistically assigns individuals to classes, and that classification 

accuracy was far from perfect. Hence, the groups identified in our analyses are unlikely to 

represent distinct entities. Rather, they can be thought of as guideposts for detecting non-

linear multivariate associations that apply to the entire population (Bauer 2007). Finally, we 

emphasize again that the methodological approach of the current study is exploratory in 

nature. This also holds for the investigation of differences among the classes on other 

variables than those included in the latent-profile analysis. It is our aim to provide a 

comprehensive and broad description of classes of individuals, without attaching too much 

meaning to the individual comparisons of different variables between classes. That said, it 

should be noted that not all of the discussed differences survive p-threshold correction for 

multiple testing. Future confirmatory work is therefore warranted.

We have reported a data-driven representation of the associations between D2/3R availability 

and cognitive performance in a large sample of older individuals with three subgroups of 

individuals. Our results emphasize the need to take into account the multivariate 

heterogeneity of individual profiles of D2/3R availability and cognitive performance for 

understanding between-person differences in brain-cognition associations. Relatively high 

dopamine D2/3R availability comes with high cognitive performance for most individuals, 

but there is a smaller group of individuals where high availability, especially in the striatum, 

instead comes with poor performance, particularly for working memory.
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Figure 1. 
Mean (SE) profiles of cognitive performance and 11C-raclopride BPND for the three-class 

solution. EM = Episodic Memory; WM = Working Memory; HC = Hippocampus.
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Figure 2. 
Mean (SE) total grey matter volume (A), mean (SE) cerebral blood flow in total grey matter 

(B), and mean (SE) total burden of white matter hyperintensities (C) as a function of class.
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Figure 3. 
Mean (SE) connectivity at rest between activity in left (A) and right (B) dorsal caudate 

nucleus and regions-of-interest in the fronto-parietal network as a function of class. L = Left; 

R = Right; DLPFC = DorsoLateral Prefrontal Cortex; aPAR = anterior Parietal lobe; aPFC = 

anterior Prefrontal Cortex; ACC = Anterior Cingulate Cortex.
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Figure 4. 
Mean (SE) activity (2-back vs. 1-back and 3-back vs. 1-back) averaged across the regions of 

the frontoparietal network as a function of class.
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Table 1
Model fit indices.

One Class Two Classes Three Classes Four Classes

Log-Likelihood -1518 -1484 -1460 -1448

BIC 3099 3066 3055 3068

Entropy .64 .70 .73

2*ΔLL (ΔDF) 69(7) 47 (7) 24(7)

BLRT approx. p-value <.0001 <.0001 .0400

Note. BIC = Bayesian Information Criterion; ΔLL = Difference in log-likelihood between a model with k classes and one with k-1 classes; BLRT = 
Bootstrapped Lo-Mendell Rubin Test.

Cereb Cortex. Author manuscript; available in PMC 2019 May 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Lövdén et al. Page 30

Table 2
Differences among classes on demographic, health, lifestyle, genetic, and personality 
variables.

P-value for Equivalence of Means

Class 1 Class 2 Class 3 1 vs. 2 1 vs. 3 2 vs. 3

Age (years) 66.0 66.5 66.3 .046* .230 .534

Women 46% 32% 58% .258 .491 .180

Education (years) 14.3 13.0 11.2 .114 <.001* .045*

Working 28% 12% 20% .087 .519 .616

Body-Mass Index 25.8 25.3 27.7 .464 .038* .013*

Nicotine use 15% 32% 9% .096 .614 .107

Systolic blood pressure 141 141 144 .984 .469 .545

Diastolic blood pressure 86 83 85 .305 .753 .509

Blood pressure med. 32% 37% 32% .712 .966 .722

High Blood Pressure 59% 46% 44% .302 .279 .911

Hyperlipidemia med. 15% 14% 21% .884 .518 .489

Atherosclerosis med. 2% 14% 11% .088 .115 .724

Cardiovascular med. 38% 43% 44% .644 .579 .964

Depression/anxiety med. 6% 5% 5% .878 .776 .945

Hours intellectual activity 34 33 35 .809 .783 .683

Hours physical activity 21 21 25 .853 .252 .375

Hours social network 27 23 29 .211 .421 .100

Intensity physical act. 1.76 1.64 1.40 .398 .006* .119

Intensity intellectual act. 1.41 1.50 1.42 .382 .877 .543

Note. n is 99 for class 1, 42 for class 2, and 40 for class 3. Med. = medication, act. = activity *p < .05.
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