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Abstract

Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the

main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid

detection of this disease is so important in order to prevent transmission to other cows and

helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput

technologies, and accumulation of various kinds of ‘-omics’ data in public repositories, there

is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diag-

nosis and treatment of different diseases and to provide mechanistic insights into host resis-

tance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential

to increase the statistical power and generalizability of single-study analysis. In the current

meta-analysis research, six microarray-based studies that investigate the transcriptome

profile of mammary gland tissue after induced mastitis by E. coli infection were used. This

meta-analysis not only reinforced the findings in individual studies, but also several novel

terms including responses to hypoxia, response to drug, anti-apoptosis and positive regula-

tion of transcription from RNA polymerase II promoter enriched by up-regulated genes.

Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli

mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by

using ten different attribute weighting algorithms. Twelve meta-genes were detected by the

majority of attribute weighting algorithms (with weight above 0.7) as most informative genes

including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1

(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated

that all of these genes are the key genes in the immune response, inflammation or mastitis.

The Decision tree models efficiently discovered the best combination of the meta-genes as

bio-signature and confirmed that some of the top-ranked genes -ZC3H12A, CXCL2, GRO,

CFB- as biomarkers for E. coli mastitis (with the accuracy 83% in average). This research
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properly indicated that by combination of two novel data mining tools, meta-analysis and

machine learning, increased power to detect most informative genes that can help to

improve the diagnosis and treatment strategies for E. coli associated with mastitis in cattle.

Introduction

Bovine mastitis is an inflammatory disease with clinical and subclinical forms which result in

significant economic losses due to negative impacts on animal welfare [1–3], productive [4–6]

and reproductive performances [7, 8], poor milk quality [9], increased workload [10], early

culling [1, 11], and high treatment costs [12]. Clinical mastitis was detected in almost 25% of

the 9.3 million dairy cows present in the USA every year; a quarter of them were removed/sold

from the herd, and approximately less than 5% of all cows died as a result of mastitis [13].

Environmental pathogens including coliforms are the major contributors to clinical mastitis

causing acute inflammation with clinical signs in dairy cows, which however may be self-heal-

ing by eventually eradicating the invader [14], are occasionally fatal [15]. Nevertheless, self-

care is often associated with a longer duration of infection, lower milk yield, and the potential

for pathological changes in the mammary gland [16].

There is evidence that mastitis-causing pathogens use various mechanisms to induce cell

pathways. Hence, the identification of pathogens is of major importance in order to correct

actions, prevent transmission to other cows, reduce the risk of appearance of chronic infec-

tions, and helps to reduce inappropriate use of antibiotics, antimicrobial resistance and cost of

treatment [17–19]. Disease-causing genes [20] and biomarkers help to improve diagnosis,

prognosis, and monitoring of responses to therapy [21]. Genes coding for proteins such as

Haptoglobin (HP), Serum Amyloid A (SAA) [22], Cathelicidin antimicrobial peptide (CAMP)

[23], and Lingual antimicrobial peptide (LAP) [24] have been identified as potential biomark-

ers for mastitis detection. The performance of the most mastitis detection systems do not

satisfy the high accuracy required for practical clinical mastitis detection systems [25, 26].

Potential to include several biomarkers on one test strip to enhance the diagnostic efficiency is

an aim of developmental research. Antibiotic therapy should be chosen based on mastitis path-

ogen and the type of mastitis [27, 28]; therefore, biomarker discovery with the focus on specific

pathogens will be useful. The efficacy of antibiotic and/or anti-inflammatory treatment in mas-

titis is still a topic of scientific debate, and studies on treatment value in clinical cases show

conflicting results [29, 30]. Moreover, efforts to find other therapy methods such as homeo-

pathic treatment had no success in this disease [31]. Identification of disease-causing genes

that underlie complex traits such as susceptibility to mastitis is the goal of many genetic and

biomedical studies, which provides mechanistic insights into host resistance in addition to

improving the diagnosis and treatment of the disease. The amplitude of the inflammatory

response is mainly dependent on individual cow factors, and different animals will respond

inconsistently to Escherichia coli (E. coli) infection [32, 33]. Combining the results of indepen-

dent studies with a related hypothesis using meta-analysis, as a relatively inexpensive option

with good potential to increase the statistical power and the generalizability of single-study

analysis, can bypass the challenges associated with individual variations, and strengthen the

mildest data perturbations [34, 35]. In the previous meta-analysis studies, different aspects of

mastitis disease have been investigated. Genini et al. (2011) identified a common transcrip-

tional response to different pathogens in the mammary glands of several species [36].

Younis et al. (2016) investigated differences in transcriptional response between E. coli and
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Staphylococcus aureus strains infections and also between lipopolysaccharide (LPS), and E.

coli-induced mastitis [37].

In the current study, for the first time, two novel data mining tools, meta-analysis and

machine learning, were integrated to detect differentially expressed gene (DE)s and prioritize

them to identify the most informative genes in response to E. coli mastitis. Attribute weighting

algorithm (AW)s and Decision tree model (DT)s are the most widely used approaches in

machine learning. Various algorithms of AW or feature selection give weight to features and

allow the variable set to be reduced in size, thereby creating a more manageable set of attri-

butes for modeling and attribute ranking [38, 39]. Decision tree models predict the value of a

discrete dependent variable within a finite set of independent variables [40]. We used various

DTs to classify samples in datasets for confirmation of AWs. The high efficiency and applica-

bility of several well-known AWs and DTs have been demonstrated previously [41–44].

Material and methods

The following steps were performed in this article: 1. Identifying the suitable microarray stud-

ies of bovine mammary gland infected with E. coli, extracting the data from studies, preparing,

normalizing, and annotating the individual studies; 2. Analyzing individual studies and then

combining the studies-specific p-values with rOP meta-analysis method; 3. Fulfilling the func-

tional enrichment analysis on the DEs introduced by meta-analysis; 4. Applying 10 different

AWs on standardized expression values of meta-genes in all samples to rank and select the

most important genes and making 10 new datasets based on the selection of attributes; and 5.

Utilizing various DTs to classify samples in datasets for confirmation of AWs

Microarray datasets

PubMed central ("https://www.ncbi.nlm.nih.gov/pubmed/"Accessed January 2016) and Goo-

gle Scholar ("https://scholar.google.com/"Accessed January 2016) were searched by using “Bos
Taurus [organism]”,“Mastitis” and “Escherichia coli” keywords. Microarray gene expression

data were retrieved from either, GEO of NCBI ("https://www.ncbi.nlm.nih.gov/gds/" Accessed

January 2016) or ArrayExpress of EMBL_EBI ("https://www.ebi.ac.uk/arrayexpress/"Accessed

January 2016). Twelve studies matched these search criteria. Upon additional review, only six

studies were selected for further analysis as they all used the Affymetrix bovine GeneChipTM

("http://www.affymetrix.com/index.affx" Accessed February 2016). Information of these stud-

ies are shown in Table 1. Studies were excluded from the meta-analysis for the following rea-

sons: had non-commercial platforms, which incompletely overlap the Affymetrix arrays,

therefore would significantly reduce the number of genes after matching and/or they had

incomplete annotation or no valid citation. Affymetrix Bovine Genome Array platform con-

tains 24,128 probe sets to measure global transcript abundance (Bovine.na.36, March 2016).

From these probe sets, 19,192 ones, which had an associated gene symbol, were used in the

analysis reported here. The Bovine Genome Array annotation is available from NetAffx Analy-

sis Centre ("http://www.affymetrix.com/support/technical/annotationfilesmain.affx Accessed

December 2016"). Only samples infected by E. coli without any treatment and appropriate con-

trols were used in this analysis. The study by Brand et al. which was mentioned in Table 1, had

samples from animals with either high or low susceptibility to mastitis [45]. Only data from

the highly susceptible animals were used in this analysis. As sampling times after infection dif-

fered among experiments, each sampling time was considered as a separate study. A total of

130 mammary gland samples (57 healthy and 73 infected) of 15 retrieved datasets from 6 stud-

ies were included in the differential expression analysis (Table 1).
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Pre-processing of microarray datasets

The quality of each dataset was explored by PCA analysis and box plots before and after nor-

malization, as previously described [50–52]. Quartile normalization and summarization were

performed on individual datasets by log scale Robust Multi-array Average (RMA) [53] as

implemented in R Affy package [54].The Affymetrix Bovine GeneChipTM has multiple probes

(or probe sets) that represent the same genes. Therefore, gene matching was necessary for

these probe sets/genes. Among all possible probe IDs for a given gene, the probe ID with the

largest Inter-Quartile Range (IQR) of expression value was selected to represent that gene. In

order to reduce the false discovery rate of microarray data analysis, we removed approximately

10% of the non-expressed genes based on the small average expression values across the major-

ity of studies, and approximately 10% of the non-informative genes that had minimal amounts

of variation. Final dataset (Fd) was used for the next meta-analysis process. The MetaDE pack-

age in R (version 1.0.5) was used for matching and filtering procedures [55].

Meta-analysis

Here, we utilized transcriptome data from 6 independent studies that were different in em-

ployed techniques (in vivo versus in vitro), methods of bacterial preparation (live E. coli versus

heat-inactivated E. coli), strains of E. coli (1303, K2BH2 and ECC-Z) and also different doses of

Challenge (see Table 1). Differences in the response to bacterial challenge of the mammary epi-

thelial cells in vivo and in vitro have been characterized previously [56, 57]. It has been shown

that virulence factors of heat-inactivated pathogens are different from those of active pathogens

[45]. It has been illustrated that phenotypic properties of strains from different phylogroups are

likely to be different [58]. For this reasons, we used meta-analysis based on p-values because this

method permits us to join related studies with heterogeneous data [59]. For each meta-analysis,

it is possible to apply different purposes with different approaches. In the current study, we

Table 1. Summary of the microarray datasets employed in meta-analysis in this study.

Accession number Citation Treatment timea (h) Pathogen Challenge/ Inoculum dose Kind of experiment Preparation of bacteria Samples (ctr:tr)b

GSE15025 [46] 6 E. coli 1303 500 CFUc in vivo Live 5:5

24 5:5

GSE24217 [47] 24 E. coli K2BH2 20–40 CFU in vivo Live 9:12

192 14:14

GSE24560 [45] 1 E. coli 1303 100 μL solution in vitro heat-inactivated 3:5

6 3:5

24 4:4

GSE25413 [48] 1 E. coli 1303 107 particles/ml in vitro heat-inactivated 3:3

3 3:3

6 3:3

24 3:3

GSE32186 [49] 6 E. coli 1303 107 particle/ml in vitro heat-inactivated 3:3

6d 3:3

GSE50685 [29] 24 E. coli ECC-Z 100 CFU in vivo Live 2:2

48 3:3

a Time of sampling after infection
b Number of healthy samples: number of treatment samples
cColony Forming Unit
dCells were harvested either 30h (short waiting experiment) or 60 h (long waiting experiment) after the start of the trial.

https://doi.org/10.1371/journal.pone.0191227.t001
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considered investigating genes, which commonly up/down expressed in all studies related to E.

coli mastitis.

Here, at first, expression levels of mastitis and healthy samples for each gene were compared

by using a moderated Student’s t-test implemented to run on Fd by MetaDe package [55]. We

used a one-tailed p-value analysis in each study to specify the direction of the alternative

hypothesis to identify up- and down-regulated genes after meta-analysis. The p-values of each

dataset were used in the rth ordered p-value (rOP) meta-analysis method. We used rth = 5 to

combine p-values in order to detect DEs in 5 smallest p-values among all datasets (out of 15

datasets) [60]. A separated meta-analysis performed on right-sided p-values, and left-sided p-
values offer up- and down-regulated genes, respectively. A false discovery rate adjustment for

multiple testing with cut off value of 0.005 (one tailed) was performed as described by Benja-

mini and Hochberg [61]. All individual data analyses and meta-analyses were performed in R

program (version 3.3.1) using the MetaDE package (version 1.0.5). Differentially expressed

gene(s) identified by meta-analysis (meta-gene(s)) were used for machine-learning process. A

flow diagram has been prepared to better understanding of all processes in an attempt to

achieve meta-genes (see Fig 1).

Functional enrichment analysis

The meta-genes were submitted to functional annotation tool of Dataset for Annotation, Visu-

alization and Integrated Discovery program, version 6.8, (DAVID, http://david.abcc.ncifcrf.

gov/home.jsp) in order to identify the biological processes, cellular components and molecular

functions [62, 63].

We analyzed the gene ontologies for up- and down-regulated meta-genes separately. The

gene ontology (GO) terms generated by modified Fisher Exact test and terms with p-values
better than 0.05 were selected.

Attribute weighting algorithms

After meta-analysis, 885 genes showed DEs between healthy and induced mastitis samples,

based on Benjamini & Hochberg adjustment p-value correction (q<0.01). To improve the abil-

ity to detect the most informative genes, we used a two-step standardization procedure pro-

posed by Yoon et al. (2006) on meta-genes including within-array standardization (array-

specific Z-score calculation) followed by the gene-specific multi-array standardization (gene-

specific Z-score calculation) [64]. Subject feature (categorized as healthy and mastitis) was set

as the target or label variable and standard expression value of meta-genes was set as feature or

attribute, which were classified as continuous data. This new dataset (Metad), was used to

import into RapidMiner Studio software (RapidMiner 7.0.001 Gmbh). A supplemental spread-

sheet file shows this dataset (see S1 Table).

Ten different AWs consisting of PCA, Uncertainty, Relief, Chi Squared, Gini Index, Devia-

tion, Rule, Gain Ratio, Information Gain, and SVM [65] were applied on the list of meta-

genes. We ranked meta-genes based on the number of AT algorithms which indicate that gene

(attribute) is important (weight above 0.7) with respect to the subject (mastitis and healthy).

Ten new datasets produced by trimming the Metad based on a weight above 0.7 given by each

AW (Attribute Selection), as well as the Metad (11 datasets in total), used as input for DT

models.

Decision tree models

Sixteen Tree Induction models including: Decision Tree, Random Tree, Tree Stump, Tree and

Random Forest models, each model with 4 different criteria Accuracy, Gain Ratio, Gini Index
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and Information Gain were applied on eleven datasets including the original Metad and 10

datasets generated by the10 AWs as described previously [65]. The Decision tree model s was

applied to find patterns between important genes. The models were run with a minimal size of

two for all leaves, a minimal gain of 0.1 to produce a split, and a maximal tree depth of 20. A

confidence level of 0.25 was selected for the pessimistic error calculation for pruning[42]. The

performance of different models in prediction of the target variable (healthy and mastitis)

based on attribute variables (standardized expression of meta-genes) was used to calculate

model efficiency. Accuracy was calculated by taking the percentage of correct predictions over

the total number of samples (130 samples). A ten-fold cross-validation algorithm with strati-

fied sampling was used to build the trees. Furthermore, an average of ten runs were used to cal-

culate the performance percentage [66].

The PRISMA checklist is included as S2 Table.

Results

Meta-analysis increase power to detect DEs

From the 19,192 probe sets on the Affymetrix Bovine Genome Array, which contained annota-

tion, 12,860 unique genes were identified after matching. Following the filtering step, the meta-

analysis was applied on 10,416 probes. 885 meta-genes were differentially expressed, of which 143

genes were down-regulated and 742 genes were up-regulated (one-tailed, q<0.005). We prepared

a supplemental spreadsheet file that contains more additional information (see S3 Table). In these

meta-genes, 291 genes never showed a significant q-value in any of the individual studies, most

likely due to the relatively small sample sizes of those individual studies (see S4 Table). The results

provide a strong evidence that meta-analysis has improved the ability of DEs detection.

Functional annotation clustering analysis of meta-genes revealed several

novel themes

In order to understand the functional significance of the identified meta-genes, GO enrich-

ment analysis was performed using the DAVID program. We had more focus on biological

process pathways. The p-values<0.05 were used to determine statistically significant catego-

ries. Up-regulated genes mainly enriched the biological processes terms were associated with

the immune response, defense responses, inflammation, chemotaxis, acute phase protein, pro-

tein degradation and proteolysis, growth and death of cell, response to wounding and cell sig-

naling pathways. Product of up-regulated genes was mostly localized in plasma membrane and

extracellular region based on cellular component analysis.

Down-regulated genes mainly enriched terms related to fatty acid metabolism and lipid

biosynthesis including cholesterol, sterol, terpenoid biosynthesis and metabolic process. All

components of GO terms related to up- and down-regulated genes were shown in supplemen-

tal spreadsheet files (see S5 and S6 Tables respectively).

Attribute weighting algorithms were used to rank meta-genes

Various AWs were employed to identify the important genes. In the AWs, normalized data

were used to run the models. It was expected that all weights would be between 0 and 1.0

value, closer to 1 is an indication that a given gene is an important attribute. CXCL2 gene

Fig 1. All processes including selection of studies, pre-processing of datasets (quality control, normalization,

summarization and preparation of datasets), individual differential analysis and performing a meta-analysis to

achieve differentially expressed genes (meta-genes).

https://doi.org/10.1371/journal.pone.0191227.g001
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(Chemokine (C-X-C motif) ligand 2) was the most important gene pointed out by 70% of the

AWs (7 from 10 AWs); followed by CXCL8, CFB, ZC3H12A, CCL20,NFKBIZ, S100A9,

S100A8, PDE4B, CASP4 and HP. A table containing the meta-genes with all weights given by

10 AWs was shown in a supplemental spreadsheet file (see S7 Table). A complete list of high

relevant genes that were confirmed by the majority of AWs (with a weight above 0.7) is pre-

sented in Table 2. In order to run DTs, 10 new datasets based on attribute selection with

weights above 0.7 in each AWs were also generated.

Decision tree models identified gene bio-signatures that can discriminate mastitis from

healthy samples. Sixteen different DTs were applied to eleven datasets. The minimum and

maximum performances were 53.08% and 86.5%, respectively (Table 3).

The architecture of selected threes generated by DTs has shown in Fig 2. This selection was

based on the size of tree, display the role of top-ranked genes in the classification of samples

and performance percentages of trees in prediction of label of samples as healthy or mastitis

based on standard expression value of meta-genes. We generated these trees by performing of

Random Forest models with Gini Index, Accuracy, Information Gain and Gain Ratio criterion

run on SVM (A), Gini Index(B) Relief (C) and SVM (D) datasets respectively. As shown in Fig

2 (A), ZC3H12A gene has potential biomarker performance. When the value of ZC3H12A
gene was greater than -0.100, the cases fell into the mastitis class. Moreover, when the value

was equal to or lower than -0.100, and the value of NFKBIZ gene was lower than -1.204, a sam-

ple fell into the healthy class. In contrast, when the value of last feature was equal or higher

than -1.138, the sample fell into the healthy class. Otherwise, a sample fell into the mastitis

class with an accuracy of 83.85%, indicating that from the 130 samples, 110.5 were correctly

categorized between mastitis and healthy class. In Fig 2, in the same way, CXCL2 in B part,

CFB in C part and GRO1 in D part were at the peak of trees and have potential biomarker per-

formance with 83.85%, 82.31%, and 83.85% accuracy respectively.

Discussion

With the rapid progress in high-throughput technologies and accumulation of various kinds

of ‘-omics’ data in public repositories, there is an opportunity to retrieve, integrate, and re-

Table 2. The most important attributes (differentially expressed genes introduced by meta-analysis) ranked

based on 10 attribute weighting algorithms (AWs), including PCA, Uncertainty, Relief, Chi-Squared, Gini Index,

Deviation, Rule, Gain Ratio, Information Gain, and SVM.

Attribute

(Gene

symbol)

Gene name (alias) The number of AWs that indicate

the attribute is important (weight above

0.7)

CXCL2 chemokine (C-X-C motif) ligand 2 (GRO3) 7

CXCL8 C-X-C motif chemokine ligand 8 (IL-8, IL8) 6

GRO1 chemokine (C-X-C motif) ligand 1 (CXCL1, MGSA) 6

CFB complement factor B (BF) 6

ZC3H12A zinc finger CCCH-type containing 12A 6

CCL20 C-C motif chemokine ligand 20 5

NFKBIZ NFKB inhibitor zeta (MAIL) 5

S100A9 S100 calcium binding protein A9 5

S100A8 S100 calcium binding protein A8 5

PDE4B phosphodiesterase 4B 5

CASP4 caspase 4, apoptosis-related cysteine peptidase

(CASP13)

5

HP haptoglobin 5

https://doi.org/10.1371/journal.pone.0191227.t002
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analyze them to identify the most important genes and biomarker candidates in an efficient

way [67–70]. Based on definition of biomarker, a “good” biomarker as an indicator must be

specific for a disease and should remain unchanged by unrelated disorders. Moreover, reliable

and reproducible biomarker quantifications must be demonstrated [17].

Here, we performed a meta-analysis on series of microarray gene expression datasets in

order to enhance the power of analysis to identify genes that may be significantly involved in

response to E. coli mastitis in dairy cows. Meta-analysis confirmed the most important findings

in individual studies such as induction of the pathways related to immune response, inflamma-

tion, cytokines and chemokines signaling, acute phase proteins, proteolysis, response to

wounding, apoptosis and cell signaling. It also suppressed several aspects of basic epithelial

biology including extracellular matrix biosynthesis, mammary gland development markers

and epidermis morphogenesis such as cholesterol, sterol and terpenoid biosynthesis [29, 45–

49]. Importantly, based on our results, E. coli infection causes down-regulation of genes encod-

ing lipid biosynthesis enzymes including ALOX15, FASN, GPAM, TM7SF2 that are involved in

milk production [37]. Generally, in infection, host metabolism is suppressed because the tissue

has to divert energy to fight infection. Moreover, up-regulated meta-genes enriched novel bio-

logical pathways including responses to hypoxia, positive regulation of transcription from

RNA polymerase II promoter and anti-apoptosis agents.

Low oxygen (O2) environments are created by pathophysiological conditions including

sites of infection and inflammation. In addition, pyruvate accumulation caused by inhibition

of lipid metabolism has indeed been shown to stimulate hypoxia signaling in mastitis disease

in dairy cattle [71]. In the previous studies, the results have demonstrated that stress-response

Fig 2. The architecture of different Decision tree models in predicting mastitis and healthy samples, based on the

differentially expressed genes introduced by meta-analysis (A) Random Forest model with Gini Index criterion run on

SVM dataset. (B) Random Forest model with accuracy criterion run on Gini Index dataset (C) Random Forest with

Information Gain criterion run on Relief dataset and (D) Random Forest model with Gain Ratio criterion run on SVM

dataset.

https://doi.org/10.1371/journal.pone.0191227.g002
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genes such as those responsible to immune-response pathways were enriched in paused RNA

polymerase II [72]. For this reason, and due to this point that RNA polymerase II is essential

for the transcription of many genes which up-regulated genes during E. coli infection, induced

expression of genes related to positive regulation of transcription from RNA polymerase II

promoter is necessary. Macrophages are the key players in innate immunity, and because of

their crucial role in immunity, regulation of monocyte/macrophage lifespan is important in

both physiological and pathological processes. Anti-apoptotic genes such as Bcl2 family has

been shown to be involved in the survival of monocytes/macrophages through enhancing the

resistance of macrophages against various apoptotic stimuli [73].

In the current research, for the first time, the machine-learning approach were used to pri-

oritize meta-genes to find the most important genes in response to E. coli-induced mastitis.

The top-ranked meta-genes- CXCL8 (IL8), NFKBIZ, HP, CXCL2, CCL20,GRO1, ZC3H12A,

PDE4B, CASP4, CFB, SA00A9, SA00A8- that were listed in Table 2 play an important role in

the immune defense, inflammation, and/or chemotaxis. Inflammatory chemokine interleukin-

8 (IL-8), one of the most widely studied chemokines, is a critical inflammatory mediator and

plays an important role in neutrophil migration into bovine mammary glands during mastitis

[74, 75]. Furthermore, previous studies demonstrated IL-8 as an antibody therapeutic target in

inflammatory diseases in human [76] and bovine mastitis [74].

IκBz (also known as Molecule possessing ankyrin-repeats induced by lipopolysaccharide

(MAIL) and INAP), encoded by the NFKBIZ gene, is a member of the nuclear IκB family of

proteins that act as transcriptional regulators via association with nuclear factor kappa B (NF-

κB)) [77]. The critical role of IκBz signaling in the regulation of immune responses has been

revealed previously [78, 79]. Like other IκB proteins, IκBz has inhibitory effects on the tran-

scription of inflammatory genes regulated by NF-κB such as tumor necrosis factor (TNF)-α,

interleukin-1 (IL-1) [77, 80] and IL-17A production from CD4+ T cells [81]. Furthermore, it

has been demonstrated that IκBz is indispensable for the expression of a subset of genes acti-

vated in TLR/IL-1R signaling pathways [77]. Toll-like receptors (TLRs) recognize various bac-

terial cell wall components such as LPS, peptidoglycan (PGN) and lipopeptides, and trigger the

inflammatory and immune responses against pathogens [82]. Investigations have revealed that

function and gene polymorphisms of NFKBIZ can be introduced as potential markers of mas-

titis resistance in dairy heifers [83].

Already abbreviated Haptoglobin (HP), an acute phase protein mostly secreted by the liver,

is synthesized within the mammary gland through stimulation by pro-inflammatory stimuli as

it is in the liver [84]. HP has been introduced as a sensitive inflammatory marker for acute

mastitis by numerous studies [84–86].

Pro-inflammatory cytokines, chemokines such as CXCL2, CCL20, and GRO1(CXCL1) have

important roles in immune responses due to modulation of leukocyte infiltration (neutrophils

and monocytes). CXCL2 has been determined as a biomarker of the inflammatory reaction pre-

viously [87]. It has been suggested that CXCL1 can be used as therapeutic targets, therapeutics,

or biomarkers in mastitis [88]. According to our result and validation with DTs, as shown in

Fig 2, CXCL2 and GRO1 have good abilities to separate mastitis and healthy samples with

83.85% accuracy; and they are good candidates to distinguish E. coli mastitis as a biomarker.

Zinc finger protein, ZC3H12A, has been shown as TLR-inducible gene to modulate LPS-

induced inflammatory response [89]. It is also an RNase essential for the control of immune

responses by regulating mRNA decay [90]. As shown in Fig 2 and based on DTs, ZC3H12A
also has been identified as a potential biomarker for E. coli mastitis with 83.85% accuracy.

However it needs more investigations at the protein level to be considered as a biomarker.

The PDE4B2 is the short isoform of PDE4 isoenzyme family. PDE4 is cAMP-specific and

the dominant PDE in inflammatory cells. Inhibition of PDE4 elevates intracellular cAMP

Integration of machine-learning and meta-analysis to identifies bio-signature

PLOS ONE | https://doi.org/10.1371/journal.pone.0191227 February 22, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0191227


levels, which inhibit the activity of promoters such as NF-κB and down-regulation of the

inflammatory responses by reducing the expression of TNF-α and other pro-inflammatory

cytokines, while increasing anti-inflammatory cytokines such as IL-10 [91]. Interestingly,

PDE4 inhibition is used as therapeutics for the treatment of inflammatory diseases in numer-

ous studies [92, 93]

Caspases are a family of cysteine proteases that are highly conserved in multicellular organ-

isms, functioning as central regulators of apoptosis [73]. Caspase-4 is classified as inflamma-

tory caspases [94]. CASP4 has been shown to bind with LPS with high specificity and affinity

directly and it is an innate immune receptor for intracellular LPS [94, 95]. It has been demon-

strated that caspase-4 plays an important role in the classical LPS induced TLR4-signaling

pathway, leading to NF-κB dependent transcriptional up-regulation and secretion of impor-

tant cytokines and chemokines in innate immune signaling in human monocytic cell [94].

Remarkably, CASP4 represents a new candidate for pattern recognition in immunity [95].

Complement factor B (CFB) an acute phase plasma protein is central to the action of the

innate immune system in response to inflammation and infection and plays a role in B-cell

activation and the cytotoxic reaction [86, 96, 97]. Research in bovine has demonstrated that

the complete complement system can be found in colostrum, and components of the system

are also present in the milk [97]. At present, attention is being focused on using acute phase

proteins such as haptoglobin, serum amyloid A. [85, 98, 99], as biomarkers for the diagnosis of

mastitis. However they are non-specific markers of the inflammatory process. CFB has been

confirmed by DTs with 82.31% accuracy (Fig 2) and it may be a good candidate for the diagno-

sis of E. coli mastitis.

The role of last two top-ranked genes, SA00A9 and SA00A8, are inducing chemotaxis and

adhesion of neutrophils [100] and play an important role in the innate immunity and tissue

repair [101]. Moreover, these genes were identified as biomarkers for acute inflammation in

infused and autoimmune disease [102, 103].

Due to the fact that the performances of the most mastitis detection systems do not satisfy

the high accuracy required for practical clinical mastitis detection [25, 26], potential to include

several biomarkers on one test strip or commercial kit might enhance the diagnostic efficiency

of mastitis. Therefore, antibiotic therapy can, therefore, be chosen based on the mastitis patho-

gen and the type of mastitis. These results are valuable bioinformatics findings that need more

laboratory based-studies to confirm.

Conclusions

This finding showed that the meta-analysis based on a large amount of original data represents

an important contribution to our understanding of most informative genes for E. coli mastitis

in cattle. Furthermore, this research properly indicated that the combination of machine learn-

ing with meta-analysis provides an opportunity to obtain a better resolution of the most

important genes that might provide a more robust bio-signature and thereby may be good bio-

marker candidates. Our results provide the basis for strategies to improve the diagnosis and

treatment of the E. coli mastitis in the dairy cow.
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