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Abstract

In modern epidemiological and clinical studies, the covariates of interest may involve genome 

sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure 

on a large number of subjects. A cost-effective solution is the two-phase design, under which the 

outcome and inexpensive covariates are observed for all subjects during the first phase and that 

information is used to select subjects for measurements of expensive covariates during the second 

phase. For example, subjects with extreme values of quantitative traits were selected for whole-

exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing 

Project (ESP). Herein, we consider general two-phase designs, where the outcome can be 

continuous or discrete, and inexpensive covariates can be continuous and correlated with 

expensive covariates. We propose a semiparametric approach to regression analysis by 

approximating the conditional density functions of expensive covariates given inexpensive 

covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-

algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic 

normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the 

superiority of the proposed methods over existing ones through extensive simulation studies. 

Finally, we present applications to the aforementioned NHLBI ESP.
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1. INTRODUCTION

1.1 Background

In clinical and epidemiological studies, the outcomes of interest (e.g, anthropometry 

measurements, lipids levels, or disease status), together with demographical and 

environmental variables (e.g., age, gender, smoking status, and air pollution), are typically 

available for all subjects. The covariates of main interest often involve genotyping, 

biomarker as say, or medical imaging and thus are prohibitively expensive to measure for all 

subjects, especially in a large study. If disease status or another discrete outcome is of 

primary interest, then the case-control design with an equal number of cases and controls is 

the most efficient one (Scott and Wild 1997). If a continuous outcome such as height is of 

primary interest, then a cost-effective strategy is the “extreme-tail” sampling design, 

whereby one selectively measures the “expensive covariates” only for subjects with extreme 

values of the primary outcome measure (Lin et al. 2013). In either case, the efficiency of the 

design can be improved by stratifying on the “inexpensive covariates”.

The case-control and extreme-tail sampling can be viewed as special cases of the two-phase, 

outcome-dependent design, which was first introduced by White (1982). In the first phase of 

this design, the outcome of interest and inexpensive covariates are observed for all study 

subjects; the information collected during the first phase is then used to determine which 

subjects to include for measurements on expensive covariates during the second phase. This 

design greatly reduces the cost and other burdens associated with the collection of expensive 

covariate data while incurring little loss of statistical efficiency and thus has been widely 

used in large epidemiological and clinical studies.

1.2 NHLBI ESP

Our interest in the two-phase design was motivated by the NHLBI ESP, which was designed 

to identify genetic variants in all protein-coding regions of the human genome that are 

associated with heart, lung, and blood diseases. This project performed whole exome 

sequencing on 4494 subjects, who were selected from seven large cohorts: the 

Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators 1989); 

Coronary Artery Risk Development in Young Adults (CARDIA) study (Friedman et al. 

1988); Cardiovascular Health Study (CHS) (Fried et al. 1991); Framingham Heart Study 

(FHS) (Dawber et al. 1951); Jackson Heart Study (Taylor Jr et al. 2005); Multi-Ethnic Study 

of Atherosclerosis (MESA) (Bild et al. 2002); and Women’s Health Initiative (WHI) (The 

Women’s Health Initiative Study Group 1998).

The NHLBI ESP contains several studies, each of which was focused on a particular 

outcome. Some of the studies selected subjects with extreme values of a quantitative trait. 

For example, in the body mass index (BMI) study, 659 subjects with BMI values less than 

25kg/m2 or greater than 40kg/m2 were selected for sequencing. In the blood pressure (BP) 

study, 806 subjects were selected from the upper and lower 0.2%–1.0% of the BP 

distribution adjusted for age, gender, race, BMI, and anti-hypertensive medication. In the 

low-density lipoprotein (LDL) study, 657 subjects were selected because of extremely high 

or low values of LDL adjusted for age, gender, race, and lipid medication. These three 
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studies are important examples of the general two-phase design, under which the second-

phase selection depends on the outcome and inexpensive covariates that can be continuous 

and correlated with expensive covariates.

1.3 Existing Work

Several methods have been developed for regression analysis of two-phase studies. 

Semiparametric methods, which specify a parametric form for the regression model but 

allow for an arbitrary covariate distribution, are particularly appealing. In particular, Robins 

et al. (1995) proposed a semiparametric estimator based on inverse probability of inclusion 

weighting. Their approach requires every study subject to have a positive probability of 

being selected in the second phase and thus cannot be applied to the extreme-tail design 

adopted by the NHLBI ESP. In addition, their estimator can be difficult to implement in 

practice because it involves numerical solution of an infinite-dimensional integral equation 

when the outcome of interest is continuous. Lawless et al. (1999) suggested to discretize the 

continuous first-phase data into a small number of strata and then use the stratum 

membership to select subjects in the second phase. For subjects not selected in the second 

phase, only the stratum membership is used in the inference. Breslow et al. (2003) 

established the asymptotic properties of the corresponding maximum likelihood estimator 

(MLE). Such data discretization entails a substantial loss of information and may even bias 

parameter estimation.

To improve efficiency, Chatterjee et al. (2003) proposed a pseudo-score estimator (PSE), and 

Weaver and Zhou (2005) proposed a maximum estimated likelihood estimator (MELE). 

Both methods allow the outcome of interest to be continuous but require the inexpensive 

covariates to be discrete. Chatterjee and Chen (2007) extended the PSE method to allow for 

continuous inexpensive covariates in the regression analysis by using kernel smoothing but 

required the second-phase selection to depend on only discrete covariates. Both the PSE and 

MELE methods are statistically inefficient. Song et al. (2009) and Lin et al. (2013) 

considered efficient estimation for two-phase studies without inexpensive covariates. When 

the inexpensive covariates are available, however, this approach is inefficient because it 

disregards the inexpensive covariates for subjects not selected in the second phase. More 

important, this approach may yield biased estimators if the second-phase selection depends 

on the inexpensive covariates.

1.4 Overview

In this article, we explore efficient semiparametric estimation for regression models under 

general two-phase designs such that the sampling in the second phase can depend on the 

first-phase data in any manner. We allow the outcome variable to be discrete or continuous, 

and we accommodate inexpensive covariates, which can be used to improve the efficiency of 

the second-phase sampling, control for confounding, and evaluate interactions among the 

expensive and inexpensive covariates. We allow inexpensive covariates to be continuous and 

correlated with expensive covariates while leaving the distribution of covariates completely 

unspecified. Dealing with this general situation is very challenging because the likelihood 

function involves the conditional density functions of expensive covariates given continuous 

inexpensive covariates. We address this challenge by incorporating sieve approximations 
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(Grenander, 1981) of the conditional density functions into the nonparametric likelihood 

function. We develop a computationally efficient and numerically stable expectation-

maximization (EM) algorithm to maximize the sieve likelihood. We show the consistency, 

asymptotic normality, and asymptotic efficiency of the resulting estimators through a novel 

combination of modern empirical process theory and sieve approximation theory. We 

demonstrate the superiority of the proposed methods over the existing ones through 

extensive simulation studies. Finally, we provide detailed applications to the motivating 

NHLBI ESP.

2. METHODS

Let Y denote the outcome of interest, X denote the vector of expensive covariates that is 

measured on a fraction of subjects in the study, Z denote the vector of inexpensive covariates 

that is potentially correlated with X, and W denote the vector of inexpensive covariates that 

is known to be independent of X given Z. The data (Y, X, Z, W) are assumed to be generated 

from the joint distribution Pθ(Y|X, Z, W)P(X|Z)P(Z, W), where Pθ(Y|X, Z, W) is a 

parametric regression model indexed by parameter θ, P(X|Z) is the conditional distribution 

of X given Z, and P(Z, W) is the joint distribution of Z and W. For linear regression,

where θ = (α, βT, γT, ηT,σ2)T; for logistic regression,

where θ = (α, βT, γT, ηT)T The linear predictors can be modified to include the interaction 

terms among X, Z, and W.

Under the two-phase design, (Y, Z, W) is measured for all n subjects in the first phase, and X 
is measured for a sub-sample of size n2 in the second phase. Let R indicate, by the values 1 

versus 0, whether the subject is selected for the measurement of X in the second phase. We 

assume that the distribution of R depends on (Y, X, Z, W) only through the first-phase data 

(Y, Z, W). Under this assumption, the data on X are missing at random, such that the 

sampling indicators (R1,…, Rn) can be omitted from the likelihood function when estimating 

θ. Thus, the observed-data log-likelihood takes the form

(1)
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We maximize expression (1) using the nonparametric maximum likelihood estimation 

(NPMLE). For each distinct observed z, we estimate P(X|z) by a discrete probability 

function on the distinct observed values of X, denoted by x1,…, xm (m ≤ n2), where m is the 

total number of the distinct values. Even with this discretization, maximization of expression 

(1) is not feasible when Z contains continuous components because then only a small 

number of the observations on X are associated with each z.

To tackle this challenge, we approximate P(X|z) by the method of sieves (Grenander, 1981). 

Specifically, we use the B-spline basis (Schumaker, 1981) to construct the approximating 

functions. Assuming that Z has bounded support, we center and rescale each component of 

Z such that it has support on [0, 1]. We then partition the interval [0,1] as 

 where {tl: l = −q + 1,…,q + 

bn} are the knots, q is the order of the B-spline basis, and bn is the number of interior knots. 

The number bn is determined by the first-phase sample size n. For ease of implementation, 

we choose the interior knots as evenly spaced partitions in [0,1] with gap 1/(bn + 1). Let 

 be a one-dimensional normalized B-spline basis of order q associated with 

∆. We construct  from the recursive formula

where  Figure S1 shows  for q ≤ 3. 

We refer to , , and  as the histogram, linear, and 

quadratic bases, respectively. We then construct the multivariate B-spline basis on the 

support of Z as  where Zν is the νth 

component of Z, and dz is the dimension of Z. To simplify notation, we represent the B-

spline basis functions in as 

 Because the B-spline basis functions have local support, we 

approximate log P(Xi|Zi) and P(x|Zi) in expression (1) by 

 and  respectively, 

where and 

We aim to maximize the following function

(2)
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under the constraints of  and  With the use of 

the empirical distribution function of X given Z, parameter estimation based on the 

maximization of expression (2) is feasible even when X is multidimensional.

Remark 1

If there are no inexpensive covariates Z and W, then the observed-data log-likelihood (1) 

reduces to

(3)

Song et al. (2009) and Lin et al. (2013) maximized expression (3) using the NPMLE, where 

P(X) is estimated by the discrete probabilities at the observed values of X. This maximum 

likelihood estimation approach, denoted by MLE0 hereafter, can be viewed as a special case 

of our sieve maximum likelihood estimation approach. If the inexpensive covariates are 

available for all subjects but the second-phase selection does not depend on either Z or W, 

then the MLE0 method can be adopted by redefining the “expensive covariates” as (XT, ZT, 

WT)T and disregarding Z and W for subjects not selected in the second phase. This data 

reduction approach may entail a substantial loss of information. If the second-phase 

selection does depend on Z and W, then expression (3) no longer correctly reflects the 

sampling mechanism, and the MLE0 method is generally biased.

We present in the Appendix a novel EM-type algorithm for maximizing expression (2) that 

is computationally efficient and numerically stable. We prove in Section S.1 of the 

Supplemental Material that the resulting sieve maximum likelihood estimator (SMLE)  is 

consistent, asymptotically normal, and asymptotically efficient. Our proofs integrate 

techniques from modern empirical process theory and sieve approximation theory. Our 

framework does not require every study subject to have a positive selection probability in the 

second phase and thus covers a wide spectrum of two-phase designs. We provide in Section 

S.1 of the Supplemental Material easily-verifiable conditions on model identifiability that 

rely only on subjects with complete data.

The profile log-likelihood function for θ is  As justified at the 

end of Section S.1 of the Supplemental Material, we can estimate the limiting covariance 

matrix of  by the negative inverse of the Hessian matrix of  Specifically, we obtain the 

value of pl (θ) by holding θ fixed in the EM algorithm and obtaining the value of ln(θ, {pkj}) 

at convergence. Then, we estimate the covariance matrix of θ by the negative inverse of the 

matrix whose (k, l)th element is 

 where eκ is the kth 

canonical vector, and hn is a constant of the order n−1/2.
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3. SIMULATION STUDIES

We conducted extensive simulation studies to compare the performance of the SMLE and 

MLE0 methods by mimicking the extreme-tail sampling design adopted in the NHLBI ESP. 

In the first set of studies, we set X = U1, Z = rU1 + U2, and W = U3, where U1, U2, and U3 

are independent Uniform(0,1) variables, and r is a parameter controlling the correlation 

between X and Z. We varied r from 0 to 0.3. We generated the outcome from the linear 

model: Y = 0.5X + 0.5Z + 0.5W + ε, where ε is a standard normal random variable 

independent of U1, U2, and U3. We let n = 2000 and selected 150 subjects with the highest 

and 150 subjects with the lowest values of Y in the second phase. For the subjects selected 

in the second phase, the data consist of (Y, X, Z, W); for those not selected in the second 

phase, the data utilized by the SMLE and MLE0 methods consist of (Y, Z, W) and Y, 

respectively. In the SMLE method, we estimated P(X|Z) using the histogram basis. We 

partitioned the domain of Z using evenly-spaced quantiles and varied the number of regions 

sn from 5 to 15 to assess its effects on model-fitting. The results with different sn are very 

similar. The maximum difference in the coverage probability of the 95% confidence interval 

for any parameter is only 0.5%. Therefore, we only report the results for sn = 10. We 

estimated the covariance matrix of  by the profile likelihood method with step size of n−1/2.

The results of the simulation studies are summarized in Table 1. Both the SMLE and MLE0 

parameter estimators are virtually unbiased. The SMLE variance estimator accurately 

reflects the true variation, and the corresponding confidence intervals have reasonable 

coverage probabilities. The SMLE estimator is much more efficient than the MLE0 estimator 

for Z and W because the SMLE method utilizes additional data on (Z, W) for those subjects 

not selected in the second phase. The SMLE estimator is also more efficient than the MLE0 

estimator for X, and the efficiency gain increases as the correlation between X and Z 
increases. We also considered larger first-phase sample sizes and reported the results in 

Table S1. By comparing the results in Tables 1 and S1, we see that the relative efficiencies of 

the SMLE estimators to the MLE0 estimators increase as the first-phase sample size 

increases, i.e., the second-phase sampling becomes more extreme.

In the second set of simulation studies, we generated the data from the model Y = 0.5X 
+ 0.5Z + 0.5W + 0.4XW + ε. The results are summarized in Table 2. The SMLE estimator is 

much more efficient than the MLE0 estimator for all covariates. In addition, the relative 

efficiency of the SMLE estimator to the MLE0 estimator for X is much higher with the 

interaction term than without the interaction term in the regression model.

In the above two sets of simulation studies, the second-phase selection depends on the 

outcome only such that MLE0 provides unbiased estimation of all parameters. If the second-

phase selection depends on both the outcome and inexpensive covariates, then MLE0 may be 

biased, whereas PSE (Chatterjee et al. 2003; Chatterjee and Chen 2007) is applicable 

provided that the sampling depends on only discrete covariates. In a third set of simulations, 

we compared the SMLE, MLE0, and PSE methods in this scenario. Specifically, we set X = 

I(U1 > 0.8) and , where , r is a parameter controlling the 

correlation between X and Z, U1 and U2 are independent Uniform(0,1), and is the 80% 

quantile of  We generated the outcome from the model Y = X + Z + ε, where ε is a 
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standard normal random variable independent of U1 and U2. In the first phase, we simulated 

a cohort of 4000 subjects and defined six strata according to the values of Z and Y. That is, 

for subjects with Z = 0, we defined three strata according to whether their values of Y are 

less than the 5% quantile, greater than the 95% quantile, or between these two quantiles; for 

subjects with Z = 1, we defined another three strata according to whether their values of Y 
are less than the 20% quantile, greater than the 80% quantile, or between these two 

quantiles. The quantiles were chosen such that each of the extreme-tail strata contained ~160 

subjects. In the second phase, we only included subjects with values of Y in the four 

extreme-tail strata such that n2 ≈ 640. Because Z is binary, for the SMLE method we 

estimated P(X|Z) by the empirical probability of X given Z. As shown in Table 3, the SMLE 

method is much more efficient than the PSE method, and the efficiency gain increases as the 

correlation between X and Z decreases. The MLE0 parameter estimators are severely biased 

whether X and Z are correlated or not.

To assess the robustness of SMLE when the inexpensive covariates that are correlated with 

expensive covariates are misclassified as being independent of expensive covariates, we 

simulated data in the same setup as in the first set of studies but treated Z as independent of 

X in the analysis. The results are summarized in Table S2. The SMLE estimators perform 

reasonably well when r is small. Comparing the standard errors of the SMLE estimators for 

X and Z when r = 0 in Tables 1 and S2, we observe that there is virtually no efficiency loss 

when inexpensive covariates that are independent of expensive covariates are treated as if 

they were correlated with expensive covariates.

Finally, we conducted simulation studies to evaluate the performance of SMLE when Z 
contains more than one continuous component. Specifically, we set X = U1 and Z = 

(Z1,Z2)T, where Z1 = rU1 + U2, Z2 = rU1 + U3, U1, U2, and U3 are independent 

Uniform(0,1) variables, and r is a parameter controlling the correlation between X and Z. We 

generated the outcome from the linear model: Y = 0.5X + 0.5Z1 + 0.5Z2 + ε, where ε is a 

standard normal random variable independent of U1, U2, and U3. We let n = 2000 and 

considered two second-phase sampling strategies: the first one selected 300 subjects from 

the two tails of the distribution of Y; the second one selected 300 subjects from the two tails 

of the distribution of the residuals from the linear model relating Y to Z. We estimated P(X|

Z) using the linear basis. We set bn = 8 and partitioned the domain of Z1 and Z2 using 

evenly-spaced quantiles. The results of the simulation studies are summarized in Table S3. 

The SMLE method continues to perform well.

4. APPLICATIONS TO THE NHLBI ESP

The NHLBI ESP is one of the largest and most expensive genome sequencing projects 

conducted up to date. As mentioned in Section 1.2, this project consists of several studies, 

some of which selected subjects under two-phase, outcome-dependent sampling. In this 

section, we describe applications of the proposed methods to the single-variant analysis in 

the BP and LDL studies, both of which selected subjects on the basis of extreme trait values 

adjusted for medication and demographical variables. Exome sequencing was performed at 

the University of Washington and the Broad Institute using the Roche NimbleGen SeqCap 
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EZ or Agilent SureSelect Human All Exon 50 Mb. The data were processed according to the 

quality control criteria described in Lin et al. (2013).

4.1 BP Study

We first considered the BP study. The first phase was comprised of 28,202 subjects from the 

ARIC, CARDIA, CHS, FHS, JHS, and MESA cohorts. In the second phase, 253 and 245 

subjects from the upper and lower tails of the BP distribution, respectively, were selected for 

sequencing. The selection was not based on the original BP values, but rather the average 

residuals from the linear models relating diastolic and systolic BP values to age, gender, 

race, BMI, and anti-hypertensive medication. In addition to the 498 subjects selected from 

the two tails of the BP distribution, the second-phase sample also included 410 subjects from 

the deeply phenotyped reference (DPR) group, which is a random sample of subjects with 

measurements on a common set of phenotypes.

Because the original BP values were not available for those subjects without the sequence 

data, we considered the average BP residuals as the outcome of interest in the analysis. We 

included log-transformed BMI, race, age, age-squared, gender, and cohort indicators as 

covariates. Although BMI and race are not correlated with the BP residuals, they are 

potentially correlated with single-nucleotide polymorphism (SNP) genotypes and thus may 

provide information on SNP genotypes for those subjects without the sequence data. The 

other covariates are assumed to be independent of SNP genotypes given BMI and race. We 

verified this assumption by performing genome-wide association analysis of age, gender, 

and cohort indicators adjusted for log-transformed BMI and race in the DPR group (see 

Figure S2). Thus, when implementing the SMLE method, we let Z include log-transformed 

BMI and race and W include the other covariates. In the sieve approximation, we used the 

histogram basis because Z contains only one continuous component (i.e., log-transformed 

BMI). We partitioned the domain of BMI using separate evenly-spaced quantiles for the 

European Americans (EAs) and African Americans (AAs). In genome-wide association 

studies, a well-behaved quantile-quantile (QQ) plot and a close-to-one genomic control λ, 

which is the ratio of the observed median of the test statistics to the median of the 

distribution, imply good model fitting and proper type I error control. We used the QQ plot 

and genomic control λ to select the number of regions; this resulted in three regions for the 

EAs and one region for the AAs (Figure S3).

We restricted our analysis to the 24,941 SNPs with minor allele frequencies (MAFs) greater 

than 15%. We chose the additive genetic model, under which the genetic variable codes the 

number of minor alleles that an subject carries at a variant site. Figure 1 shows the QQ plots 

for the SMLE and MLE0 methods. Because the second-phase selection is solely determined 

by the outcome of interest, the MLE0 method is valid. The SMLE method produces more 

significant results than the MLE0 method. Table 4 lists the top 10 SNPs for the SMLE 

method. The genetic effect estimates are similar between the two methods. Correlations 

between log-transformed BMI and the SNP genotypes are weak. When the SNP genotypes 

are weakly correlated with race, the standard error estimates of the SMLE method are 

comparable to those of the MLE0 method; when the SNP genotypes are strongly correlated 

with race, the standard error estimates of the SMLE method are much smaller than those of 
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the MLE0 method. These results are consistent with the theoretical and simulation results. It 

would be worthwhile to follow up the SNPs listed in Table 4 in larger samples.

4.2 LDL Study

We next considered the LDL study. The first phase was comprised of 49,904 subjects from 

the aforementioned seven cohorts. In the second phase, 604 subjects with extremely large or 

small values of the residuals from the linear regression of log-transformed LDL on age, 

gender, race, and lipid medication and 923 subjects from the DPR group were selected for 

sequencing. We considered log-transformed LDL as the outcome of interest and included 

log-transformed BMI, race, age, age-squared, gender, and cohort as covariates. As in Section 

4.1, we let Z include log-transformed BMI and race and W include the other covariates. In 

the sieve approximation, we used the histogram basis and partitioned the domain of BMI 

using separate evenly-spaced quantiles for the EAs and AAs. We used the QQ plot and 

genomic control λ to select the number of regions; this resulted in one region for both EAs 

and AAs (Figure S4). When implementing the MLE0 method, we performed both race-

combined and race-stratified analysis.

We restricted our analysis to the 26,431 SNPs with MAFs greater than 15%. We chose the 

additive genetic model. Figure 2 shows the QQ plots using the SMLE and MLE0 methods. 

The observed p-values of the SMLE method agree very well with the global null hypothesis 

of no association, except at the extreme right tail. By contrast, the observed p-values of both 

the race-combined and race-stratified MLE0 methods deviate substantially from the null 

distribution, reflecting excessive false-positive results. This is because the second-phase 

selection is determined by both the outcome of interest and the inexpensive covariates. 

Incidentally, the PSE method of Chatterjee and Chen (2007) could not be applied here 

because it does not allow the second-phase selection to depend on continuous covariates.

Table 5 lists the top 10 SNPs identified by the SMLE method. Two SNPs reached 

genomewide significance. The top SNP (19:045389174, p-value = 6.73 × 10−11) is located in 

gene PVRL2 in the 19q13.32 region. This is a well-known gene region (BCAM/PVRL2/

APOE/APOC1) for LDL (Sandhu et al. 2008; Sabatti et al. 2009). The second most 

significant SNP (17:040353722, p-value = 3.07 × 10−9) is located in gene STAT5B, which 

was suggested by Kornfeld et al. (2011) to play a role in the transcription regulation of 

hepatic cholesterol homeostasis.

5. DISCUSSION

We have presented efficient semiparametric inference procedures for general two-phase 

designs. The proposed EM algorithm is numerically stable and computationally efficient. In 

our analysis of the BP and LDL studies in the NHLBI ESP, it took ~10 seconds on an IBM 

HS21 machine to perform one association analysis. An R package that implements the 

proposed method is available on GitHub (https://github.com/dragontaoran/TwoPhaseReg).

Lin et al. (2013) analyzed the LDL study in the NHLBI ESP using the MLE0 method. To 

avoid the dependence of the second-phase selection on the inexpensive covariates, they used 

the residuals instead of the original LDL values as the outcome of interest, even though the 
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LDL values were available for all subjects. This workaround is not desirable because the 

resulting genetic effect estimates are difficult to interpret and not comparable with estimates 

from studies that use the original LDL values.

In our sieve approximation to P(X | Z), the number of interior knots bn in the domain of Z 
can be chosen in a data-adaptive manner. One possible approach for choosing bn is through 

cross-validation. For any fixed bn, we use part of the data as the test set and the remainder as 

the validation set. We evaluate expression (2) in the validation set using estimates obtained 

from the test set. The optimal number of interior knots bn is the value that maximizes the 

average cross-validation likelihood. Alternative approaches can also be used to choose bn. 

As demonstrated in Section 4, one can use the QQ plot and genomic control λ to choose the 

appropriate bn in genetic association studies.

In our sieve approximation to P(X|Z), Z cannot contain too many continuous components 

because of the curse of dimensionality. There are several ways to obtain a lowdimensional Z. 

If there is prior scientific knowledge or historical data about the dependence among 

covariates, then such information can be incorporated into the modeling. For example, in 

genetic association studies, it is often reasonable to assume that a subject’s genetic 

susceptibility, a factor that is determined at birth, is independent of his/her subsequent 

environmental exposure and age (Chatterjee and Carroll 2005). If the second-phase sample 

contains a random subsample (e.g., the DPR group in the NHLBI ESP), then one can test the 

independence between expensive and inexpensive covariates using this subsample. If such 

prior knowledge or data is not available, then one may adopt a dimension-reduction 

technique, such as principal component analysis.

We have assumed that the second-phase selection depends on a single outcome. If the 

selection depends on multiple outcomes in one study, then one should consider all of them 

simultaneously in a multivariate regression model in order to obtain valid inference. 

Recently, Tao et al. (2015) extended the MLE0 approach to multivariate outcome-dependent 

sampling without inexpensive covariates. We can extend our SMLE approach to multivariate 

outcome-dependent sampling with inexpensive covariates. We simply replace Pθ(Y|X, Z, W) 

in expression (2) by the conditional density function Pθ(Y|X, Z, W) of the multivariate 

outcome Y given covariates. If Y contains missing components, then we need to modify the 

EM algorithm in Section 2.2 by first calculating the conditional expectations of the missing 

components given the observed data in the E-step and then replacing the missing 

components with their conditional expectations in the M-step. We expect that the asymptotic 

properties of our SMLEs to continue to hold.

In both the simulation studies and NHLBI ESP applications, the outcome of interest is 

always used in the second-phase sampling process. In practice, investigators may be 

interested in a secondary outcome that is not used for sampling but is correlated with the 

primary outcome used for sampling. In light of the above discussion on multivariate 

outcome-dependent sampling, it is straightforward to analyze the secondary outcome by 

assuming a bivariate regression model for the primary and secondary outcomes.
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This work is focused on the inference procedures rather than the design aspects of two-phase 

studies. An important topic of investigation is the optimal study design when the primary 

interest is to estimate β When the outcome is continuous and there is no inexpensive 

covariate, Lin et al. (2013) showed that the efficient information for estimating β using the 

MLE0 method is approximately Var(Y|R = 1)Var(X|R = 1)/σ4 (assuming that X is a scalar). 

This implies that the study design is more efficient if it selects subjects with more extreme 

values of Y. For general two-phase studies with (possibly multivariate) continuous outcomes 

of interest, it is unclear what the best sampling strategy is. Because our likelihood 

framework applies to any two-phase design, the variance estimators for the SMLE method 

can be used to evaluate the efficiencies of different designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: EM Algorithm

Direct maximization of expression (2) is difficult due to the intractable form of the second 

term. To make the problem more tractable, we artificially create a latent variable U for 

subjects with R = 0 such that U takes values on 1/sn,…, 1 and satisfies the equations 

 and 

P(Y|X, Z, W,U) = P(Y|X, Z, W). Consequently,  for subjects 

with R = 0, and the second term in expression (2) is equivalent to the log-likelihood of (Yi, 

Zi, Wi), assuming that the complete data consist of (Yi, Xi, Zi, Wi, Ui) but with both Xi and 

Ui missing.

We devise an EM-type algorithm to maximize expression (2) by treating (X, U) for subjects 

with R = 0 as missing. The complete-data log-likelihood is
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In the E-step, we calculate the conditional expectations of I(Xi = xk,Ui = j/sn) and I(Xi = xk) 

given (Yi, Zi, Wi) for the ith subject with Ri = 0 as , and 

, respectively, where

In the M-step, we update θ by maximizing

(A.1)

Expression (A.1) is a weighted sum of the log-likelihood functions for the regression model 

Pθ(Y|X, Z, W). Thus, we can use existing algorithms for weighted regression to maximize 

expression (A.1). We update pkj (k = 1,…, m; j = 1,…, sn) by maximizing

such that

We start with initial values  being the sample variance 

of Y (in linear regression), and , and we 

iterate until convergence to obtain the SMLEs  and . Because 

the MLE for the distribution function of Z is the empirical distribution function based on 

(Z1,…, Zn), the joint distribution function of (X, Z), denoted by F(·,·), can be estimated by

(A.2)
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Remark A.1

When Z is a scalar, we can use the histogram basis  to estimate P(X|Z) (see 

Remark S.1). In this case, the artificial latent variable U is not needed, and the EM algorithm 

can be greatly simplified. The complete-data log-likelihood becomes

Consequently, in the E-step, we only need to calculate  for the ith subject with Ri = 0 as

In the M-step, we update θ by maximizing expression (A.1) and update pkj (k = 1,…, m; j = 

1,…, sn) by the following simple formula
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Figure 1. 
Quantile-quantile plots for the analysis of the BP study in the NHLBI ESP using the SMLE 

and MLE0 methods.
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Figure 2. 
Quantile-quantile plots for the analysis of the LDL study in the NHLBI ESP using the 

SMLE and MLE0 methods.
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Table 5

Top 10 SNPs in the Analysis of the LDL Study in the NHLBI ESP

SNP MAF Est SE p-value

19:045389174 0.18 −6.86E-02 1.05E-02 6.73E-11

17:040353722 0.15 −3.00E-02 5.06E-03 3.07E-09

06:165715460 0.21 −4.20E-02 8.70E-03 1.38E-06

06:165715673 0.21 −3.89E-02 8.55E-03 5.23E-06

12:053823307 0.16 3.39E-02 7.74E-03 1.21E-05

06:042995211 0.26 −3.57E-02 8.57E-03 3.08E-05

07:107696289 0.20 4.26E-02 1.02E-02 3.20E-05

03:087295049 0.18 3.32E-02 8.05E-03 3.85E-05

01:216371934 0.21 −3.10E-02 7.57E-03 4.22E-05

12:053818287 0.16 3.87E-02 9.59E-03 5.60E-05

NOTE: see the Note to Table 4.
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